
Generic Constructions for Verifiably Encrypted

Signatures Without Random Oracles or NIZKs

– preliminary draft –

Markus Rückert?1, Michael Schneider2, and Dominique Schröder?3

1 markus.rueckert@cased.de
2 mischnei@cdc.informatik.tu-darmstadt.de

3 schroeder@me.com
Technische Universität Darmstadt, Germany

Abstract. Verifiably encrypted signature schemes (VES) allow a signer
to encrypt his or her signature under the public key of a trusted third
party, while maintaining public signature verifiability. With our work,
we propose two generic constructions based on Merkle authentication
trees that do not require non-interactive zero-knowledge proofs (NIZKs)
for maintaining verifiability. Both are stateful and secure in the stan-
dard model. Furthermore, we extend the specification for VES, bringing
it closer to real-world needs. We also argue that statefulness can be a
feature in common business scenarios.
Our constructions rely on the assumption that CPA (even slightly weaker)
secure encryption, “maskable” CMA secure signatures, and collision re-
sistant hash functions exist. “Maskable” means that a signature can
be hidden in a verifiable way using a secret masking value. Unmask-
ing the signature is hard without knowing the secret masking value. We
show that our constructions can be instantiated with a broad range of
e�cient signature and encryption schemes, including two lattice-based
primitives. Thus, VES schemes can be based on the hardness of worst-
case lattice problems, making them secure against subexponential and
quantum-computer attacks. Among others, we provide the first e�cient
pairing-free instantiation in the standard model.

Keywords Generic construction, Merkle tree, post-quantum, standard
model

1 Introduction

Boneh et al. introduced the concept of verifiably encrypted signatures (VES) at
Eurocrypt 2003 as a means of covertly exchanging signatures, while maintaining
their verifiability [BGLS03]. They include a passive, trusted third party, the
? This work was supported by CASED (www.cased.de). Dominique Schröder is also

supported by the Emmy Noether Programme Fi 940/2-1 of the German Research
Foundation (DFG).

adjudicator, which makes VES schemes fall into the category of optimistic fair
exchange protocols [ASW00,BDM98].

Signer, receiver, and adjudicator, interact as follows. The signer encrypts his
or her signature � for a document M as a verifiably encrypted signature $.
Given $, the receiver can verify that it contains a valid signature for M , but is
otherwise unable to extract �. A commercially important application is online

contract signing under the supervision of an escrow. As opposed to the classic
(o✏ine) scenario, where the escrow needs to be involved in every step of the pro-
cess, verifiably encrypted signatures make signing contracts more cost-e�cient
due to the passiveness of the escrow and simultaneously allow the parties to
negotiate online rather than meet in person. They simply exchange verifiably
encrypted signatures on the negotiated contract, verify them, and finally ex-
change the corresponding regular signatures. Assume Alice acts honestly, while
Bob tries to misuse (e.g., for negotiating a better deal elsewhere or simply for
blackmail) the partially signed document without providing a signature himself.
The adjudicator can step in and disclose Bob’s signature. The contract becomes
binding despite Bob’s attempt to back out.

Boneh et al. propose the first construction [BGLS03], which is provably se-
cure in the random oracle model (ROM), followed by a slightly more e�cient
construction by Zhang et al. [ZSNS03]. Lu et al. present the first scheme in the
standard model in [LOS+06]. Furthermore, they sketch a generic construction
based on NIZKs. Another NIZK construction has been proposed by Dodis et
al. in [DLY07]. Using NIZKs, however, is generally very ine�cient with respect
to computational cost and signature size.

The previous e�cient instantiations typically use pairings in order to achieve
verifiability of El Gamal encrypted signatures. With pairings, however, security
proofs have to rely on very special versions of the Di�e-Hellman problem, whose
actual hardness is yet to be assessed [Bon07]. Note that there is a second line
of work on “verifiable encryption” in a more general scenario by Camenisch and
Shoup [CS03] as well as Ateniese [Ate04]. Their objectives di↵er from the one in
[BGLS03] as Boneh et al. demand that transmitting and verifying an encrypted
signature can be done in a single move. In particular, the verification process
does not involve interactive ZK proofs as required in both [CS03] and [Ate04].
Therefore, we focus on the line of research coming from Boneh et al.

Our Contribution

Generic construcions of cryptographic schemes help understand their complexity.
A common approach is: take a message, encrypt it, and append a NIZK, proving
that the encrypted value satisfies some property. Removing NIZKs is non-trivial.
In the following, we discuss how they can be avoided in the context of VES.

VES with a Setup Phase. We extend the model of Boneh et al. in the sense that
the signer’s key may depend on the adjudicator’s public key. More precisely, we
allow signer and adjudicator to interact once during key generation. We believe
that this is a good model of real-world business scenarios. To illustrate this, let’s

consider a notary, the adjudicator, that oversees fair online contract signing. In
general, the notary wants to remain passive but he or she still wants to bill his
or her services on a per signature-exchange basis. With our extension and the
instantiations therein, we show how the (o✏ine) notary can actually control the
number of verifiably encrypted signature that his or her customers can securely
exchange. The customer pays for a certain number of signatures in advance
and the notary completes the customer’s key pair accordingly. Interestingly, the
underlying signature scheme can still be used in a black-box way. Thus, smart
cards or other signing devices can be used and the secret signing key is not
revealed. This is important for contract signing as laws and ordinances often
require this for the contract to be legally binding.

Generic Construction. So far, there have been two construction principles for
VES schemes: use pairings for e�ciency or NIZKs for generic constructions from
minimal cryptographic assumptions. Our construction fills the gap between those
extremes as it can be considered both e�cient (compared to NIZKs) and generic.
We believe that our construction principles may also be helpful in finding NIZK-
free generic constructions for other schemes. In detail, we show three things.

Firstly, generic constructions for VES schemes need not involve ine�cient
non-interactive zero-knowledge proofs. We propose two generic constructions in
the standard model, which is encouraged by the work of Canetti, Goldreich,
and Halevi [CGH04]. Both are based on “random plaintext secure” (RPA) en-
cryption4, “maskable” existentially unforgeable (EU-CMA) signatures, and a
collision-resistant hash function in a Merkle authentication tree [Mer89] that
can be handled e�ciently. This allows us to scale the resulting scheme according
to the individual needs of specific application scenarios.

Maskability is a property of the signature scheme that states that we can
choose a random masking value ↵ and mask a given signature � for a message
M by calling (⌧,�) Mask(�,↵). The resulting masked signature ⌧ is still valid
for the same message under a modified verification procedure that uses some
additional advice �. Given (⌧,�), it is hard to recover �. However, with the
secret masking value ↵, one can call �0 Unmask(⌧,�,↵) and recover a valid
(ordinary) signature for M .

Our first construction uses regular (many-time) signature schemes, the other
solely requires the existence of a suitable one-time signature scheme. Both of
our constructions are stateful and the key generation step depends, as always
with tree-based constructions [Mer89], on the desired signature capacity ` of the
resulting scheme. Using Merkle trees for VES was first considered in [Rüc09] for
the special case of RSA signatures. By formalizing this approach, we develop
this technique to its full potential.

Secondly, pairings are not necessary for e�cient VES schemes. In particular,
we show the first pairing-free VES scheme in the standard model without NIZKs.

4 A weaker notion than CPA security, where the adversary has to distinguish the
ciphertext for a random message from the encryption of the 0-string (see Section 3).

Thirdly, we introduce e�cient VES schemes to the post-quantum era because
we give a lattice-based instantiations that withstands quantum computer and
subexponential attacks. Previous instantiations will become insecure in the pres-
ence of quantum computers due to the work of Shor [Sho97]. The full version
contains a second instantiation from lattices and one from RSA.

Organization. We start by recalling the VES security model in Section 2. There,
we also propose our extension. Then, we describe the required building blocks,
including “maskability”, in Section 3, followed by our generic constructions. In
order to demonstrate their feasibility, we instantiate both constructions with
various e�cient primitives in Section 4 and the full version [RSS10].

2 Verifiably Encrypted Signatures

Verifiably encrypted signature schemes support the encryption of signatures un-
der the public key of a trusted third party, while simultaneously proving that
the encryption contains a valid signature. They are built upon digital signature
schemes DSig = (Kg,Sign,Vf), defined via Key Generation: Kg(1n) outputs a
key pair (ssk, spk). ssk is a private signing key and spk the corresponding public
verification key spk 2 K (public key space); Signing: Sign(ssk, M) outputs a sig-
nature � 2 ⌃ (signature space) on a message M 2M (message space) under ssk;
Signature Verification: Vf(spk,�, M) outputs 1 i↵ � is a valid signature on M un-
der spk. Now, a verifiably encrypted signature scheme VES = (AdjKg,AdjSetup,
Kg,Sign,Vf,Create,VesVf,Adj) consists of the following algorithms. Note that
we generalize the model slightly by letting the key generation algorithm of the
signer depend on the keys of the adjudicator (see AdjSetup below). In particu-
lar, we view the key generation process as an interactive algorithm between the
adjudicator and the signer, i.e., the interaction takes place only once.

Adjudicator Key Generation: AdjKg(1n) outputs a key pair (ask, apk), where
ask is the private key and apk the corresponding public key.

Adjudication Setup: The adjudicator provides an algorithm AdjSetup(ask, pk)
whose input is the private key of the adjudicator ask and a public key pk of
the signer. It returns a key pk0.

Key Generation: The key generation algorithm Kg(1n) may interact with the
adjudicator via the oracle AdjSetup(ask, ·) to produce the key pair (sk, pk).

Signing and Verification: Same as in a digital signature scheme
VES Creation: Create(sk, apk, M) takes as input a secret key sk, the adjudica-

tor’s public key apk, and a message M 2M. It returns a verifiably encrypted
signature $ for M .

VES Verification: VesVf(apk, pk,$, M) takes as input the adjudicator’s pub-
lic key apk, a public key pk, a verifiably encrypted signature$, and a message
M . It returns a bit.

Adjudication: Adj(ask, apk, pk,$, M) takes as input the key pair (ask, apk)
of the adjudicator, the public key of the signer pk, a verifiably encrypted
signature $, and a message M . It extracts an ordinary signature � for M .

A VES scheme is complete if for all adjudication key pairs (ask, apk) AdjKg(1n)
and for all signature key pairs (sk, pk) KgAdjSetup(ask,·)(1n) the following holds:
VesVf(apk, pk,Create(sk, apk, M), M) = 1 and Vf(pk,Adj(ask, apk, pk,Create(sk,
apk, M)), M) = 1 for all M 2M.

2.1 Security Model

Security of verifiably encrypted signatures is defined by unforgeability, opac-
ity [BGLS03], extractability, and collusion-resistance [RS09].5 Unforgeability re-
quires that it is hard to forge a verifiably encrypted signature, opacity implies
that it is di�cult to extract an ordinary signature from an encrypted signa-
ture, extractability guarantees that the adjudicator can always extract a regular
signature from a valid verifiably encrypted signature, and collusion-resistance

prevents signer and adjudicator from successfully colluding in order to produce
a verifiably encrypted signature on behalf of another party, provided that the col-
lusion happens in the online phase and not during key registration. The security
requirement can be interpreted as a stronger form of unforgeability.

Since we allow the key generation algorithm to depend on the interaction with
the adjudicator, we also give the adversary access to the corresponding oracle.
Unforgeability and opacity are formalized in experiments, where the adversary is
given the public keys of the signer and of the adjudicator. Moreover, the adver-
sary has access to three oracles: C returns verifiably encrypted signatures for a
given message, A extracts a regular signature from a verifiably encrypted signa-
ture, and S allows the adversary to perform setup queries. In the extractability
experiment, the adversarial signer is given access to an adjudication oracle and
wins if he or she can output an encrypted signature that is hidden irrecoverably.
Finally, the collusion-resistance experiment gives the adversary direct access to
the adjudicator’s private key. The goal is to forge a signature for another party.
All experiments are defined in Figure 1.

As usual, n is the security parameter. VES is secure if the following holds for
any e�cient adversary A:

Unforgeability: VES is unforgeable if VesForgeVES

A (n) outputs 1 with negligible
probability.

Opacity: VES is opaque if OpacVES

A (n) outputs 1 with negligible probability.
Extractability: VES is extractable if ExtractVES

A (n) outputs 1 with negligible
probability.

Collusion-Resistance: VES is collusion-resistant if CollusionVES

A (n) outputs 1
with negligible probability. In this experiment the adversary gets as input the
adjudication key pair and a signer public key pk. The adversary gets access
to a VES creation oracle C(sk, apk, ·). It does not need the other oracles
because it has ask.

5 Note that in [RS09] this was called “abuse-freeness”. Here, however, we prefer
“collusion-resistance” because abuse-freeness already has a slightly di↵erent meaning
in the context of fair-exchange, which creates confusion.

Experiment VesForge
VES

A (n)
(ask, apk) AdjKg(1n)
(sk, pk) Kg

AdjSetup(ask,·)(1n)
(M⇤, $⇤) AC(sk,apk,·),A(ask,apk,pk,·,·),S(ask,·)(pk, apk)
Return 1 i↵ VesVf(apk, pk, $⇤, M⇤) = 1 and

A has never queried M⇤ to C(sk, apk, ·)
or A(ask, apk, pk, ·, ·).

Experiment Opac
VES

A (n)
(ask, apk) AdjKg(1n)
(sk, pk) Kg

AdjSetup(ask,·)(1n)
(M⇤, �⇤) AC(sk,apk,·),A(ask,apk,pk,·,·),S(ask,·)(pk, apk)
Return 1 i↵ Vf(pk, �⇤, M⇤) = 1 and

A has never queried M⇤ to A(ask, apk, pk, ·, ·).

Experiment Extract
VES

A (n)
(ask, apk) AdjKg(1n)
(M⇤, $⇤, pk

⇤) AA(ask,apk,·,·,·),S(ask,·)(apk)
Let �⇤ Adj(ask, apk, pk

⇤, $⇤, M⇤)
Return 1 i↵ VesVf(apk, pk

⇤, $⇤, M⇤) = 1
and Vf(pk

⇤, �⇤, M⇤) = 0.

Experiment Collusion
VES

A (n)
(apk, ask) AdjKg(1n)
(sk, pk) Kg

AdjSetup(ask,·)(1n)
state (apk, ask, pk)
(M⇤, $⇤) AC(sk,apk,·)(state)
Return 1 i↵ VesVf(apk, pk, $⇤, M⇤) = 1 and

A has never queried C(pk, apk, ·) about M⇤.

Fig. 1. Overview over the di↵erent security experiments.

A scheme is (t, qC, qA, qS, ✏)-secure, if no adversary, running in time at most
t, making at most qC verifiably encrypted signature oracle queries, at most qA

adjudication oracle queries, and at most qS key registration queries, can succeed
with probability at least ✏ in the VesForge, Opac, Extract (with qC = 0), or
Collusion (with qA = qS = 0) experiment.

Since we have extended the model slightly, we have to re-prove the relations
among the di↵erent properties. The relations in [RS09] still hold in our setting
as phrased in the following propositions. We defer the details to the full version.

Proposition 1. If unforgeable VES schemes exist, there is also an unforgeable

VES scheme that is not extractable.

Proposition 2. If unforgeable and extractable VES schemes exist, there is also

an unforgeable and extractable VES scheme that is not collusion-resistant.

In addition, there is a new relation that can be quite useful when proving a
VES secure. It states that a VES is unforgeable if it is collusion-resistant. To see
this, observe that giving ask to A in the collusion-resistance experiment enables
the adversary to simulate the oracles S and A itself. Thus, if A is successful in
the unforgeability experiment it can also break collusion-resistance.

Proposition 3. If VES is collusion-resistant, it is also unforgeable.

2.2 Discussion

As already discussed in the introduction, giving the key generation algorithm
access to the adjudicator corresponds to the natural case where we have an
initial setup phase. Note that the oracle S only takes as input the public key and
not the private key. Thus, this phase cannot be compared with the models that
require the signer to prove knowledge of the secret key (e.g., KOSK). Moreover,
this phase only takes place once, during key generation and not during each
signature creation process. The adjudicator remains o✏ine, i.e., our modification
is suitable for fair exchange protocols with a passive adjudicator. Via AdjSetup,

the adjudicator may define parts of signer keys. Giving the adjudicator too much
control over, however, is discouraged as it a↵ects collusion-resistance.

In [RS09], the authors show that “abuse-freeness” is already implicit as long
as the underlying signature scheme is unforgeable and treated as a black box
(key independence, Definition 2 below). Since we consider a slightly stronger
definition, we have to re-prove this result for collusion-resistance (Lemma 2).
Note that our constructions satisfy these properties. Thus, it is su�cient to prove
opacity and extractability because key-independent and extractable schemes are
automatically unforgeable (Lemma 1).

3 Generic Construction

We propose two e�cient generic constructions based on CPA-secure (even slightly
weaker) encryption, “maskable” digital signature schemes, and collision resistant
hash functions. As our instantiations in Section 4 and in the full version demon-
strate, this does not overly restrict the possible choices. In order to ensure that
verifiably encrypted signatures can always be decrypted (cf. extractability), we
build a Merkle authentication tree from a collision-resistant hash function. While
our first construction uses regular signature schemes, our second construction re-
duces the assumptions even further by merely relying on one-time signatures.

3.1 Building Blocks

Let G : {0, 1}⇤ ! {0, 1}n be a collision resistant hash function and let {xi}`1 be
the ordered set of values x1, . . . , x`. Furthermore, we use x

$ S, when choosing
an x 2 S uniformly at random and x

� S if x is chosen according to a distri-
bution � over S. For our generic constructions, we need to define “maskable”
signature schemes, secure encryption schemes, and Merkle authentication trees.

Digital Signature Scheme. The definition of digital signature schemes DSig =
(Kg,Sign,Vf) follows the well-known and established definition due to [GMR88].

For our generic construction, we need a signature scheme that is “maskable”.
Generally speaking, signatures can be hidden by a masking value, such that we
can still verify them. Furthermore, we have to be able to recover a valid signature
from a valid masked one. We formalize this in the following definition.

Definition 1 (Maskability). Let DSig be a signature scheme with public-key

space K, signature space ⌃, and message space M. It is maskable if there is

a corresponding masking scheme MSDSig = (Advice,Mask,Unmask,Vf) with the

following specification:

Sets: Let S be a set of masking values and let � be a distribution over S.
Furthermore, let V be the set of advice strings for verifying masked signatures
and T be the space of masked signatures.

Advice: On input spk, ↵, Advice outputs an advice � 2 V.

Experiment Recover
MSDSig

A (n)
(ssk, spk) DSig.Kg(1n)

↵
� S

� Advice(spk, ↵)
�⇤ AM(ssk,spk,↵,·),DSig.Sign(ssk,·)(spk, �)
Let {Mi}`1 be the queries to DSig.Sign and let M⇤ be the query to M.
Return 1 i↵ M⇤ 62 {Mi}`1 and DSig.Vf(spk, �⇤, M⇤) = 1.

Fig. 2. Experiment for the hiding property of a masking scheme.

Mask: On input spk, �, ↵, M , the algorithm Mask outputs a masked signature
⌧ 2 T . Notice that we do not require a perfect masking scheme but allow
the scheme to output the special symbol ⌧ = ?.

Unmask: On input ⌧ , �, ↵, M , the algorithm Unmask outputs a signature
� 2 ⌃.

Verification: On input spk, ⌧ , �, and M the algorithm MSDSig.Vf outputs a
bit, indicating the validity of the masked signature. If ⌧ = ?, it returns 0.

Validity: We require MSDSig.Vf(spk, ⌧,�,M) = 1 =) DSig.Vf(spk,�0, M) = 1,
where �0 = Unmask(⌧,�,↵, M) and � = Advice(spk,↵), for all keys, masked
signatures, messages, and masking values. Note that � is honestly created.

Hiding: The masking scheme needs to hide the signature � (for M) in (⌧,�)
such that no adversary can recover a valid signature for M without knowing
the masking value ↵. This must even hold if the adversary can query an ora-
cle M once that returns a masked signature for an adversely chosen message
and a randomly chosen ↵: M(ssk, spk,↵, M) = [� DSig.Sign(ssk, M); ⌧
Mask(spk,�,↵, M); Return �;]. Furthermore, the adversary can make arbi-
trary queries to an ordinary signature oracle. MS is (t, ✏)-hiding if there is
no adversary, running in time t, that wins the Experiment in Figure 2 with
probability at least ✏.

Notice that the above definition can be trivially satisfied by an encryption
scheme. Then, the output of Advice is a zero-knowledge proof, demonstrating
that it was honestly encrypted. Here, the masking value ↵ would comprise the
public and secret keys for the encryption scheme.

As we are interested in e�cient instantiations, we propose that somewhat
homomorphic signature schemes can provide the same functionality. We demon-
strate this with the following example.

Example 1. Take the RSA signature scheme with full-domain hash function H
and public key (N, v). The verification function for a signature � on a message
M checks whether 0  � < N and �v = H(M) over ZN . We let ⌃ = V = ZN and
S = Z⇤

N
. � is the uniform distribution. Mask((N, v),�,↵, M) outputs �↵ mod N

and Advice((N, v),↵) returns ↵v mod N . Thus, Unmask(⌧,�,↵, M) has to com-
pute � ⌧↵�1 mod N . The modified verification algorithm MS.Vf(spk, ⌧,�,M)
checks whether 0  ⌧ < N and ⌧v = H(M)�. Observe that validity and the
hiding property are satisfied in the random oracle model.

Remark 1. Given the above example, it is easy to see that one can forge a masked
signature (⌧,�) that passes MS.Vf, unless ↵ and � = Advice(pk,↵) are well-
formed. One could simply compute � ⌧v/H(M) over ZN for arbitrary M
and ⌧ . The result (⌧,�, M) would be valid because ⌧v ⌘ H(M)�. However,
in our constructions, the attacker is not able to choose � freely. It is chosen
during a trusted setup procedure and then authenticated with a hash tree. This
authentication mechanism yields an implicit rejection of adversely chosen �.

Notice that AdjSetup and the setup oracle S are always controlled by the
experiments in Figure 1 to make the setup procedure trusted. A straightforward
extension of our security model would be to remove this trusted setup procedure.

Random Plaintext Attacks (RPA). Let PKE = (Kg,Enc,Dec) be a public key
encryption scheme, defined via Key Generation: Kg(1n) outputs a key pair
(esk, epk). epk is the public encryption key and esk is the secret decryption key;
Encryption: Enc(epk, M) outputs a ciphertext c for M ; Decryption: Dec(esk, c)
attempts to decrypt c and returns the enclosed message, or ? upon failure. We
define a weaker notion of security for encryption schemes that we call random

plaintext attacks that is similar to a key encapsulation mechanism (KEM). The
idea is that the adversary obtains a randomly chosen string s and a ciphertext
c. The task is to determine whether c encrypts s or the 0-string.

We say that PKE is indistinguishable under random plaintext attacks (IND-
RPA) if no e�cient algorithm A can associate a randomly generated plaintext
with its ciphertext. The adversary wins if it is able to guess b with probability
> 1/2. PKE is RPA secure if for any e�cient A and a negligible ✏ = ✏(n)

˛̨
˛Prob

h
b = A(epk, C) : (esk, epk) Kg(1n); b

$ {0, 1}; M0
$ M, M1 0|M0|; C

$ Enc(epk, Mb)
i
� 1

2

˛̨
˛ < ✏ .

RPA < CPA. We claim that the notion of random plaintext attacks is strictly
weaker than chosen plaintext attacks, in the sense that any CPA scheme is also
RPA, but not vice-versa.

Proposition 4. A CPA secure scheme is also RPA secure. If an RPA secure

scheme exists then there is also an RPA secure scheme that is not CPA secure.

The first part is obvious. As for the second part, the basic idea is letting
Enc(1k0n�1) in the modified RPA scheme output esk. Clearly, the scheme is
not CPA secure but it is still RPA secure.

Merkle Authentication Trees. Merkle presented a tree structure that can be
used to authenticate big amounts of data using only a single hash value [Mer89].
Originally his idea was to create digital signatures out of one-time signature
schemes, but many other applications of Merkle trees appeared in the past.
With our constructions, we add verifiable encryption to this list of applications.

A Merkle tree is a complete binary tree of height h that is built from the
bottom up to the root such that the leaves define the whole tree. The leaves

are numbered consecutively from left to right. Inner nodes are constructed using
the following rule: a node’s value is the hash value of the concatenation of its
children left and right: node = G(leftkright), where G : {0, 1}⇤ ! {0, 1}n is a
collision resistant hash function. The root of the tree is used to authenticate the
leaf values. For the authentication process, additional tree nodes are required.
These nodes form the authentication path of a leaf. Consider the path from the
leaf with index ' 2 [1, 2h] to the root. The siblings of the nodes on this path
form the authentication path of this leaf. Using this path and the construction
rule G(leftkright), the root of the tree can be reconstructed. If the calculated root
matches the original one, the leaf data is correctly authenticated.

Using an adversary that is able to replace a leaf value, such that the replaced
leaf is still correctly authenticated by the tree, one can find collisions in the un-
derlying hash function G. For an overview of techniques, results, and references,
we refer the reader to [BBD08, Chapter 3].

3.2 Generic Construction

The general idea is to use a maskable signature scheme with one-time masking
values and encrypt these masking values under the adjudicator’s public key. The
validity property of the masking scheme ensures completeness, and opacity will
be guaranteed by the hiding property. In general, we take an ordinary � and
hide it by applying Mask, using one of ` predefined one-time masking values
↵. If, for any reason, the masking scheme returns an invalid masked signature,
the process is repeated with the next ↵. This allows for a broader range of
(imperfect) masking schemes. The corresponding advice � for verification is also
precomputed. Then, � and an encryption � of ↵ are used to build a Merkle
authentication tree that allows a verifier to e�ciently check whether � and �
correspond. The adjudicator forms the tree during the initial registration phase
and signs its root under a certification key pair (csk, cpk) in order to prevent
malicious signers from cheating in the extractablity experiment.

Construction 1. Let DSig be a maskable signature scheme with masking scheme

MSDSig, PKE be a public key encryption scheme and G : {0, 1}⇤ 7! {0, 1}n
be a

collision resistant hash function. Choose an adequate h 2 N, such that the re-

sulting scheme admits ` = 2h
signatures. VES1 = (AdjKg,AdjSetup,Kg,Sign,Vf,

Create,VesVf,Adj) is defined as follows.

Adjudicator Key Generation: Call (ask, apk) PKE.Kg(1n), (csk, cpk)
DSig.Kg(1n) and output ((ask, csk), (apk, cpk)).

Adjudication Setup: On input ((ask, csk), spk), perform the following steps:

1. Choose ↵i

� S and set �i Advice(spk,↵i), �i Enc(apk,↵i) for i =
1, . . . , `; 2. Construct a Merkle tree T using G, i.e., with leaves G

⇣
G(�i)||G(�i)

⌘

that fully define the root ⇢; 3. Compute the signature �⇢ DSig.Sign(csk, ⇢);
4. Output ({↵i}`1, {�i}`1, ⇢,�⇢).

Key Generation: Perform the following steps: 1. Call (ssk, spk) DSig.Kg(1n);
2. Call ({↵i}`1, {�i}`1, ⇢,�⇢) AdjSetup((ask, csk), spk); 3. Initialize a signa-

ture counter c 0; 4. Output pk = (spk, ⇢,�⇢) and sk = (ssk, c, {↵i}`1, {�i}`1).

Sign, Verify: As defined in the underlying signature scheme DSig.
Create: On input sk, pk, M , the algorithm Create works in three steps: 1. Incre-

ment the counter c: c c + 1; 2. Sign the message M using the underlying

signature scheme: � DSig.Sign(ssk, M); 3. Mask the signature � with the

secret value ↵c: ⌧ Mask(spk,�,↵c, M); 4. If MSDSig.Vf(spk, ⌧,�c, M) = 0
increase c and go to 3. The output is $ = (⌧,�c, �c,⇡c), where �c
Advice(spk,↵c) and ⇡c is the authentication path for leaf c.

VES Verification: On input ((apk, cpk), (spk, ⇢,�⇢), (⌧,�, �,⇡), M), VesVf out-

puts 1 i↵ 1. DSig.Vf(cpk,�⇢, ⇢) = 1; 2. ⇡ is correct for � and � with respect

to ⇢; 3. MSDSig.Vf(spk, ⌧,�,M) = 1.
Adjudication: On input ((ask, csk), (apk, cpk), (spk, ⇢,�⇢), (⌧,�, �,⇡), M), Adj

verifies the input using VesVf. If it is correct, it decrypts ↵0 Dec(ask, �),
calls �0 Unmask(⌧,�,↵0, M), and outputs �0.

3.3 Generic Construction Using One-time Signatures

Since we already need a Merkle authentication tree for Construction 1, we can
as well use a suitable one-time signature instead of a regular one. These sig-
natures are potentially easier to achieve, i.e., they may be secure under milder
assumptions. The following construction demonstrates that the second tree that
is needed to turn a one-time signature scheme into a “many-time” signature
scheme via the Merkle transformation can be easily merged with the first one.

Construction 2. With OTS we denote a maskable one-time signature scheme

with masking scheme MSOTS. We define VES2 as follows:

Adjudicator Key Generation: Call (ask, apk) PKE.Kg(1n), (csk, cpk)
DSig.Kg(1n) and output ((ask, csk), (apk, cpk)).

Adjudication Setup: On input ((ask, csk), {spki}`1), perform the following steps:

1. Choose ↵i

� S and set �i Advice(spk,↵i), �i Enc(apk,↵i) for

i = 1, . . . , `; 2. Construct a Merkle authentication tree T using the hash

function G, where the leaves are of the form G
⇣
G(�i)||G(�i)||G(spki)

⌘
. De-

note the root node with ⇢; 3. Compute the signature �⇢ DSig.Sign(csk, ⇢);
4. Output ({↵i}`1, {�i}`1, ⇢,�⇢).

Key Generation: Run the following steps: 1. Call (sski, spki) OTS.Kg(1n)
for i = 1, . . . `; 2. Call ({↵i}`1, {�i}`1, ⇢,�⇢) AdjSetup((ask, csk), {spki}`1);
3. Initialize a signature counter c 0; 4. Output pk = (⇢,�⇢) and sk =
({sski}`1, {spki}`1, c, {↵i}`1, {�i}`1).

Sign, Verify: As defined in OTS.

Create: On input {sski}`1, {spki}`1, c, {↵i}`1, {�i}`1, M , Create works in four steps:

1. Increment c: c c + 1; 2. Sign M : � OTS.Sign(sskc, M); 3. Mask �:
⌧ Mask(spkc,�,↵c, M); 4. If MSDSig.Vf(spkc, ⌧,�c, M) = 0 go to 1.

The output is $ = (⌧,�c, �c,⇡c, spkc), where �c Advice(spk,↵c) and ⇡c is

the authentication path for leaf c.
VES Verification: On input ((apk, cpk), (⇢,�⇢), (⌧,�, �,⇡, spk), M), VesVf out-

puts 1 i↵ 1. DSig.Vf(cpk,�⇢, ⇢) = 1; 2. ⇢ can be reconstructed using ⇡, �, �,
and spk; 3. MSDSig.Vf(spk, ⌧,�,M) = 1.

Adjudication: On input ((ask, csk), (apk, cpk), (⇢,�⇢), (⌧,�, �,⇡, spk), M), Adj
verifies the input using VesVf. If it is correct, it decrypts ↵0 Dec(ask, �),
calls �0 Unmask(⌧,�,↵0, M), and outputs �0.

3.4 Proof of Security

We show in this section that VES1 satisfies the desired security requirements. Se-
curity of Construction 2 is proven analogously, the assumptions are just weaker,
i.e., we only need a maskable one-time signature scheme instead of a regular
one. We show extractability, unforgeability, collusion-resistance, and opacity. The
proofs for VES1 and VES2 are essentially the same, we focus on VES1.

Theorem 1 (Extractability). If G is collision resistant, DSig is unforgeable,

and MSDSig satisfies validity then VES1 (VES2) is extractable.

Proof. The reduction plays against unforgeability of DSig and uses the validity
of MSDSig and the collision-resistance of G and in the analysis. The unforgeabil-
ity ensures that the adversary has to call AdjSetup to create its public key and
validity guarantees that an extracted signatures is valid if computed from an
honestly masked signature. Most importantly, the collision-resistance of G pre-
vents the adversary from altering the leaves of the authentication tree, i.e., from
being able to dishonestly mask a signature.

The reduction chooses the adjudication key honestly during the simulation
and has access to a signature oracle for DSig and to the verification key spk.
Thus, the adversary’s environment can be perfectly simulated. The adversarial
user A outputs a public key (pk⇤, ⇢⇤,�⇤

⇢
) and a pair (M⇤, (⌧⇤,↵⇤, �⇤,⇡⇤)) for

which VesVf outputs 1. Furthermore, we let �0 be the result of the adjudication
algorithm for (⌧⇤,�⇤, �⇤,⇡⇤).

Towards contradiction, assume that extraction fails, i.e., DSig.Vf(spk,�0, M⇤)
= 0. From VesVf, we know that ⇢⇤ was previously created by the simulator
together with a signature �⇤

⇢
, using the external signature oracle. Otherwise, we

would have an existential forgery that refutes unforgeability of DSig. Assume
that ⇢⇤ was formed using {↵i}`1, {�i}`1, {�i}`1.

VesVf guarantees that ⇡⇤ is an authentication path for the leaf G(G(�⇤)||G(�⇤))
w.r.t. ⇢. Thus, there is an index i 2 {1, . . . , `} such that �⇤ = �i = Advice(spk,↵i)
and �⇤ = �i. Otherwise, we would have at least one collision in the hash tree,
which refutes collision resistance of G.

Finally, VesVf ensures that MSDSig.Vf(spk, ⌧⇤,�⇤, M⇤) = 1, which implies the
contradiction DSig.Vf(spk,�0, M⇤) = 1 because of the validity of MSDSig. ut

In order to prove unforgeability, we need to observe that both constructions
apply signature and encryption keys separately because DSig.Sign is called as a
black box and the result is encrypted, or masked in our context. More precisely,
they satisfy the following definition of key-independence.

Definition 2 (Key-Independence [RS09]). Let the signer’s private key sk
consist of two independent elements (kisk, ssk) and let pk = (kipk, spk) be the

corresponding public key. VES is key-independent if there is an e�cient encryp-

tion algorithm KI-Enc such that KI-Enc(apk, kipk, kisk,DSig.Sign(ssk, M), M) ⌘
VES.Create(sk, apk, M) for all M 2M, where DSig is employed signature.

Lemma 1 ([RS09]). Let VES be extractable and key-independent. VES is un-

forgeable if the underlying signature scheme DSig is unforgeable.

Regarding our novel security requirement against collusion of the adjudicator
and a user, we prove the following useful lemma.

Lemma 2. Let VES be extractable and key-independent. VES is collusion-resis-

tant if the underlying signature scheme DSig is unforgeable.

Proof. Suppose that there exists an adversaryA that successfully breaks collusion-
resistance with non-negligible probability ✏(n) after at most q queries to the
oracle C. We show how to forge ordinary signatures in DSig, running A as
a black-box, with q queries to the signature oracle. The reduction B, playing
against unforgeability of DSig, receives a public verification key spk and has ac-
cess to a signing oracle DSig.Sign(ssk, ·). It generates an adjudication key pair
(ask, apk) VES.AdjKg(1n) and runs the remaining part of VES.Kg, includ-
ing AdjSetup, to obtain a VES key pair (sk, pk). This is possible because VES
is key-independent. Afterwards, B sets state (ask, apk, pk) and runs A(state)
as a black-box. Whenever A queries M to C, B calls its external signing or-
acle � Sign(ssk, M) and computes $ KI-Enc(apk, kipk, kisk,�, M). Fi-
nally, A stops and outputs (M⇤,$⇤). B extracts the corresponding signature
�⇤ VES.Adj(ask, apk, pk,$⇤, M⇤) and returns (M⇤,�⇤). Observe that the en-
vironment of A is perfectly simulated and all oracle queries are simulated ef-
ficiently. By definition, A has not queried M⇤ to C. Thus, B has not queried
M⇤ to its signature oracle. Moreover, the resulting (M⇤,$⇤) yields an ordinary
message-signature pair (M⇤,�⇤) because VES is extractable. As a consequence,
B’s attack is legitimate and it succeeds with probability ✏(n) after q queries to
the signature oracle. ut

Since VES1 and VES2 are extractable and key-independent, unforgeability
follows from Lemma 1, and Lemma 2 guarantees collusion-resistance.

Corollary 1 (Unforgeability). If DSig is unforgeable and VES1 (VES2) is ex-

tractable and key-independent, then VES1 (VES2) is unforgeable.

Corollary 2 (Collusion-resistance). If DSig is unforgeable and VES1 (VES2)

is extractable and key-independent, then VES1 (VES2) is collusion-resistant.

Concerning Opacity, we show the following:

Theorem 2 (Opacity). If DSig is unforgeable, PKE is RPA secure, MSDSig is

hiding, and G is collision resistant then VES1 (VES2) is opaque.

Proof. An adversary breaking opacity can succeed in two di↵erent ways. First,
by forging the underlying signature scheme, and second, by decrypting a given
verifiably encrypted signature. We say that an algorithm A is a

1. type-1 adversary (A1), if it outputs a message-signature pair (M⇤,�⇤) such
that it has never queried M⇤ to C, or if it invokes A on M 0 without having
queried M 0 to C before.

2. type-2 adversary (A2), if it outputs a message-signature pair (M⇤,�⇤) such
that it has queried M⇤ to C and it has never invoked A on M 0 without
having queried M 0 to C before.

A1 can be directly used to forge signatures in DSig. The reduction has control
over the adjudicator’s private key and can therefore extract ordinary signatures
(forgeries) from A1’s output. We refer the reader to the full version.

Type-2 Attacker. We perform a change to the simulation of A2’s environment
and argue that each does not change A2’s success probability but for a neg-
ligible amount. Let ✏ be A2’s success probability in the (unmodified) opacity
experiment. We change the algorithm AdjSetup.

Adjudication Setup: The algorithm AdjSetup0 selects the elements ↵i,�i as
before and chooses a random index c⇤

$ {0, . . . , `}. It computes all �i 6=c⇤

as before but �c⇤ Enc(apk, 0n). It outputs the corresponding tree, root ⇢,
and signature �⇢ as before.

Due to the RPA security of the encryption scheme, this only changes A2’s suc-
cess probability by a negligible ✏0. The next change to AdjSetup allows us the
reduction to use A2 to refute the hiding property of MSDSig.

Adjudication Setup: The algorithm AdjSetup00 works like AdjSetup0, but re-
ceives �c⇤ from Recover and embeds it into the the leaf at index c⇤.

The success probability of A2 does not change because �c⇤ is distributed as
before. Also, knowledge of ↵c⇤ is not necessary to build the modified public key.

The remaining oracles, C and A, are perfectly simulated for all indices 6= c⇤

because the reduction has access to all masking values (except ↵c⇤) and can
therefore answer all adjudication queries. In particular, this is the reason why
we do not require some form of CCA secure encryption: all plaintexts are known
and authenticated. Also, using these masking values together with the signature
oracle in the Recover experiment, enables the reduction to answer queries to C.

Eventually, A2 outputs a message-signature pair (M⇤,�⇤). If it is valid for
the index c⇤, the reduction outputs �⇤ to refute the hiding property. Otherwise,
it aborts. The reduction’s success probability is noticeable if ✏ is noticeable. ut

4 E�cient Instantiations

We show that the assumptions in our generic constructions are sound and that
maskability does not overly restrict the choice of signature schemes. We aim at
providing VES schemes based on a broad range of cryptographic assumptions,
including post-quantum ones. Here, we present the first e�cient pairing-free VES
in the standard model. The full version contains a instantiations of Construction 1
from lattices and RSA in the random oracle model.

4.1 An Instantiation Based on Worst-case Lattice Problems in
Ideal Lattices (Construction 2)

We propose an instantiation based on the hardness of lattice problems for Con-
struction 2 in the standard model. The impact of this instantiation is significant.
Not only are lattice-based constructions immune to quantum computer attacks,
but they are also desirable in the classic scenario. Computations in lattices are ef-
ficient (mostly basic linear algebra) and cryptographic hardness can be based on
worst-case assumptions by Ajtai’s worst-case to average-case reduction [Ajt96].

Lattices. A full-rank lattice in Rm is a set ⇤ = {
P

m

i=1 xi bi |xi 2 Z}, where
b1, . . . ,bm are linearly independent over R. The matrix B = [b1, . . . ,bm] is a
basis of the lattice ⇤ and we write ⇤ = ⇤(B). The number of linearly independent
vectors in the basis is the dimension of the lattice. Ideal lattices are a special class
of lattices. Given a monic polynomial f of degree n, the ring R = Z[x]/hfi ⇠= Zn,
and an ideal I of R, the ideal lattice ⇤ is the set of coe�cient vectors of the
polynomials in I. In other words, ⇤ = {a 2 Zn :

P
n�1
i=0 aixi 2 I}. The main

computational problem in lattices is the approximate shortest vector problem
(SVP), where an algorithm is given a basis of a lattice ⇤ and is supposed to find
a su�ciently short vector v 2 ⇤ \ {0} with respect to the `1 norm. The SVP
in ideal lattices is called ISVP. We write ISVP(f, ⌫) for the problem of finding
a vector v with kvk1  ⌫�1 (�1 is the minimum distance in the lattice) in all

lattices corresponding to ideals in the ring R = Z[x]/hfi.
HR,m is the family of hash functions that map elements from Rm to R. Func-

tions h 2 HR,m are module homomorphisms, especially h(a+b) = h(a)+h(b). The
problem Col(h, d) asks to find two distinct x and x0 with max{kxk1 , kx0k1}  d
such that h(x) = h(x0). A polynomial time algorithm that solves Col(h, d) for
d = 10�p1/mn log2(n) can be used to solve ISVP(f, ⌫), where ⌫ = Õ(�5n2). Here,
� is a small ring constant defined in [LM08].

LM-OTS signatures. We use the one-time signature scheme of Lyubashevsky and
Micciancio [LM08]. Its security is based on the problem of finding short vectors
in ideal lattices, which is conjectured to be intractable by quantum computers.

Let R = Z[x]/hfi as introduced above. Further let p = (�n)3, m = dlog ne.
Define the constant D = 10�p1/mn log2(n). The LM-OTS scheme is a tuple (Kg,
Sign,Vf), defined via Key Generation: Kg(1n) outputs a signing key (k, l) 2
Rm ⇥ Rm with kkk1 and klk1 bounded. The verification key is (h, h(k), h(l)),
where h

$ HR,m; Signing: Sign((k, l), M), M 2 R, kMk1  1, returns � =
kM + l 2 Rm

D
, where Rm

D
restricts the coe�cients in R to the range [�D,D];

Verification: Vf((h, h(k), h(l)),�, M) returns 1 i↵ � 2 Rm

2 mnD�D
and h(�) =

h(k)M + h(l), for some constant . The above scheme is a slight modification
compared to [LM08] with regard to the admissible signature length. Observe
that honestly generated signatures are in Rm

D
, whereas signatures in Rm

2 mnD�D

may still be valid. The scheme remains secure under the stronger assumption
that Col(h, 2 mnD�D), instead of Col(h, D), is hard. This change is required
for the masking scheme to be hiding. If there is a successful adversary against

unforgeability of this modified signature scheme, then one can find a collision
(x,x0) under h such that max{kxk1 , kx0k1}  D. This can be used to solve
ISVP in the worst case.

Instantiation. Let 2 N>0 be a small constant. The following table summarizes
the instantiation using Construction 2 and the masking scheme MSLMOTS .

pk ⌃ T S V Advice Mask Mask.Vf Unmask

(h, h(k), h(l)) Rm
2 mnD�D Rm

 mnD�D Rm
 mnD R h(↵) � + ↵ h(⌧) ⌘ h(k)M + h(l) + �, ⌧ 2 T ⌧ � ↵

The masking distribution � is component-wise uniform. Signatures � are
masked via ⌧ � + ↵. Therefore, the verification function is easy to adapt
because h is a module homomorphism. Notice that ⌧ � + ↵ may lie outside
Rm

2 mnD�D
. In this case, Mask returns the special symbol ? and Mask.Vf fails.

Fortunately, we have �+↵ 2 Rm

2 mnD�D
with probability ⇡ e�1/ (a generaliza-

tion of Lemma 5.1 in [Lyu08]). There are two ways to deal with this completeness
error. The first is to prepare !(log(n)) many masking values for each leaf of the
tree for a negligible error. However, this would waste time and space as a negli-
gible completeness error is not necessary. By a simple trial-and-error approach,
we may to discard some of the ↵’s in VES.Create and move on to the next leaf. In
practice, the number of failures is small. Choosing = 2, for example, yields a
success probability > 0.6 and it can be brought arbitrarily close to 1 by allowing
larger . Thus, allows a tradeo↵ between completeness and size/security.

The following propositions show that MSLMOTS is applicable.

Proposition 5. MSLMOTS supports validity.

Proof. Let ⌧ be a masked signature for M with advice � = h(↵). Assuming
the validity under Mask.Vf implies that h(⌧ � ↵) = h(k)M + h(l). Observe that
⌧ � ↵ 2 Rm

2 mnD�D
, which concludes the proof. ut

Proposition 6. MSLMOTS is hiding if Col(h, 2 mnD �D) is hard.

Proof. The proof is done in two steps. First of all, we show that two alternative
LM-OTS signatures � 6= �0 for a given message M (which always exist) are
indistinguishable when masked according to the above scheme. Then, we show
that a successful attacker that wins in the Reveal experiment can be used to find
a collision under h, which implies being able to find short lattice vectors.

The first part is showing that the statistical distance of SD(� + ↵,�0 + ↵),
conditioned on � + ↵ 2 T and �0 + ↵ 2 T , is zero (over the choice of ↵). Notice
that SD(� + ↵,�0 + ↵) = 1/2

P
t2T |Prob[↵ = t� �] � Prob[↵ = t� �0] | =

1/2
P

t2T |
Q

mn

i=1 Prob[↵i = ti � �i]�
Q

mn

i=1 Prob[↵i = ti � �0i] |.
Here, the index i specifies a coe�cient of the vectors in Rm, not the vector

itself. Now, observe that Prob[↵i = ti � �i] = 1/|Rm

 mnD
| because ti � �i 2

Rm

 mnD
. Therefore, the distance is zero.

The second part is a reduction from the collision resistance of h. The re-
duction chooses its own signature keys to simulate the oracles. It computes
the signature � 2 Rm

D
. The Reveal adversary’s output will be a new signature

Rm

2 mnD�D
3 �0 6= � with probability � 1/2 and we obtain the desired collision.

ut

Encryption. One could use ring-LWE [LRP10] for encryption and furthermore
use SWIFFT [LMPR08] for collision resistant hashing. This would base security
entirely on worst-case ideal lattice problems.

5 Conclusions

With our work, we have extended the model of Boneh et al. by allowing an
initial setup phase that is common in real-world scenarios. Moreover, we have
proposed two novel generic constructions for verifiably encrypted signatures.
Both rely on a certain class of signature schemes, a weaker-than-CPA secure
encryption scheme, and a collision-resistant hash function. Both work without
NIZKs or random oracles. To demonstrate their feasibility, we have instantiated
them with a range of primitives, including post-quantum ones.

Acknowledgments

We thank the reviewers of ACNS 2010 for valuable comments. In particular, we
are indebted to Willy Susilo.

References

[Ajt96] Miklós Ajtai. Generating hard instances of lattice problems (extended ab-
stract). In STOC, pages 99–108, 1996.

[ASW00] N. Asokan, Victor Shoup, and Michael Waidner. Optimistic fair exchange
of digital signatures. IEEE Journal on Selected Areas in Communications,
18(4):593–610, 2000.

[Ate04] Giuseppe Ateniese. Verifiable encryption of digital signatures and applica-
tions. ACM Trans. Inf. Syst. Secur., 7(1):1–20, 2004.

[BBD08] Daniel J. Bernstein, Johannes A. Buchmann, and Erik Dahmen, editors.
Post-Quantum Cryptography. Springer, 2008.

[BDM98] Feng Bao, Robert H. Deng, and Wenbo Mao. E�cient and practical fair
exchange protocols with o↵-line ttp. In IEEE Symposium on Security and

Privacy, pages 77–85. IEEE Computer Society, 1998.
[BGLS03] Dan Boneh, Craig Gentry, Ben Lynn, and Hovav Shacham. Aggregate and

verifiably encrypted signatures from bilinear maps. In Biham [Bih03], pages
416–432.

[Bih03] Eli Biham, editor. Advances in Cryptology - EUROCRYPT 2003, Interna-

tional Conference on the Theory and Applications of Cryptographic Tech-

niques, Warsaw, Poland, May 4-8, 2003, Proceedings, volume 2656 of LNCS.
Springer, 2003.

[Bon07] Dan Boneh. A brief look at pairings based cryptography. In FOCS, pages
19–26. IEEE Computer Society, 2007.

[CGH04] Ran Canetti, Oded Goldreich, and Shai Halevi. The random oracle method-
ology, revisited. J. ACM, 51(4):557–594, 2004.

[CS03] Jan Camenisch and Victor Shoup. Practical verifiable encryption and de-
cryption of discrete logarithms. In Dan Boneh, editor, CRYPTO, volume
2729 of LNCS, pages 126–144. Springer, 2003.

[DLY07] Yevgeniy Dodis, Pil Joong Lee, and Dae Hyun Yum. Optimistic fair ex-
change in a multi-user setting. In Okamoto and Wang [OW07], pages 118–
133.

[GMR88] Shafi Goldwasser, Silvio Micali, and Ronald L. Rivest. A digital signature
scheme secure against adaptive chosen-message attacks. SIAM J. Comput.,
17(2):281–308, 1988.

[LM08] Vadim Lyubashevsky and Daniele Micciancio. Asymptotically e�cient
lattice-based digital signatures. In Ran Canetti, editor, TCC, volume 4948
of LNCS, pages 37–54. Springer, 2008.

[LMPR08] Vadim Lyubashevsky, Daniele Micciancio, Chris Peikert, and Alon Rosen.
Swi↵t: A modest proposal for ↵t hashing. In Kaisa Nyberg, editor, FSE,
volume 5086 of LNCS, pages 54–72. Springer, 2008.

[LOS+06] Steve Lu, Rafail Ostrovsky, Amit Sahai, Hovav Shacham, and Brent Wa-
ters. Sequential aggregate signatures and multisignatures without random
oracles. In Serge Vaudenay, editor, EUROCRYPT, volume 4004 of LNCS,
pages 465–485. Springer, 2006.

[LRP10] Vadim Lyubashevsky, Oded Regev, and Chris Peikert. On ideal lattices and
learning with errors over rings, 2010. To appear in EUROCRYPT 2010.

[Lyu08] Vadim Lyubashevsky. Towards Practical Lattice-Based Cryptography. PhD
thesis, 2008.

[Mer89] Ralph C. Merkle. A certified digital signature. In Gilles Brassard, editor,
CRYPTO, volume 435 of LNCS, pages 218–238. Springer, 1989.

[OW07] Tatsuaki Okamoto and Xiaoyun Wang, editors. Public Key Cryptography -

PKC 2007, 10th International Conference on Practice and Theory in Public-

Key Cryptography, Beijing, China, April 16-20, 2007, Proceedings, volume
4450 of LNCS. Springer, 2007.

[RS09] Markus Rückert and Dominique Schröder. Security of verifiably encrypted
signatures and a construction without random oracles. In Hovav Shacham
and Brent Waters, editors, Pairing, volume 5671 of LNCS, pages 17–34.
Springer, 2009.

[RSS10] Markus Rückert, Michael Schneider, and Dominique Schröder. Generic
constructions for verifiably encrypted signatures without random oracles
or NIZKs. Cryptology ePrint Archive, Report 2010/XXX, 2010. http:
//eprint.iacr.org/.

[Rüc09] Markus Rückert. Verifiably encrypted signatures from RSA without NIZKs.
In Bimal K. Roy and Nicolas Sendrier, editors, INDOCRYPT, volume 5922
of LNCS, pages 363–377. Springer, 2009.

[Sho97] Peter W. Shor. Polynomial-time algorithms for prime factorization and
discrete logarithms on a quantum computer. SIAM J. Comput., 26(5):1484–
1509, 1997.

[ZSNS03] Fangguo Zhang, Reihaneh Safavi-Naini, and Willy Susilo. E�cient verifiably
encrypted signature and partially blind signature from bilinear pairings. In
Thomas Johansson and Subhamoy Maitra, editors, INDOCRYPT, volume
2904 of LNCS, pages 191–204. Springer, 2003.

