
J. Math. Cryptol. 5 (2011), 169–203
DOI 10.1515/JMC.2011.011 © de Gruyter 2011

Security of blind signatures under aborts and
applications to adaptive oblivious transfer

Marc Fischlin and Dominique Schröder

Communicated by Rainer Steinwandt

Abstract. We explore the security of blind signatures under aborts where the user or the
signer may stop the interactive signature issue protocol prematurely. Several works on
blind signatures discuss security only in regard of completed executions and usually do
not impose strong security requirements in case of aborts. One of the exceptions is the
paper of Camenisch, Neven and Shelat (Eurocrypt 2007) where the notion of selective-
failure blindness has been introduced. Roughly speaking, selective-failure blindness says
that blindness should also hold in case the signer is able to learn that some executions have
aborted.

Here we augment the work of Camenisch et al. by showing how to turn every secure
blind signature scheme into a selective-failure blind signature scheme. Our transformation
only requires an additional computation of a commitment and therefore adds only a neg-
ligible overhead. We also study the case of multiple executions and notions of selective-
failure blindness in this setting. We then discuss the case of user aborts and unforgeability
under such aborts. We show that every three-move blind signature scheme remains un-
forgeable under such user aborts. Together with our transformation for selective-failure
blindness we thus obtain an easy solution to ensure security under aborts of either party
and which is applicable for example to the schemes of Pointcheval and Stern (Journal of
Cryptology, 2000).

We finally revisit the construction of Camenisch et al. for simulatable adaptive oblivi-
ous transfer protocols, starting from selective-failure blind signatures where each message
only has one valid signature (uniqueness). While our transformation to achieve selective-
failure blindness does not preserve uniqueness, it can still be combined with a modified
version of their protocol. Hence, we can derive such oblivious transfer protocols based
on unique blind signature schemes only (in the random oracle model), without necessarily
requiring selective-failure blindness from scratch.

Keywords. Blind signature, adaptive oblivious transfer, aborts.

2010 Mathematics Subject Classification. 94A60.

Dominique Schröder is a postdoctoral fellow of the DAAD.

170 M. Fischlin and D. Schröder

1 Introduction

Blind signatures, proposed by Chaum [8], allow a signer to interactively sign mes-
sages for users such that the messages are hidden from the signer. Since their
introduction many blind signatures schemes have been proposed [2, 4, 5, 8, 10, 13,
18–20,23,24,26], and they typically share two basic security properties: blindness
says that a malicious signer cannot decide upon the order in which two messages
have been signed in two executions with an honest user, and unforgeability de-
mands that no adversarial user can create more signatures than interactions with
the honest signer took place.

The security requirements for blind signatures have been formalized by Juels et
al. [18] and by Pointcheval and Stern [24]. Although these widely used definitions
give basic security guarantees, blindness only holds in a restricted sense when it
comes to aborted executions. That is, prior work does not guarantee blindness in
case the signer is able to learn which of two executions aborted (even if one exe-
cution aborts only after the protocol has concluded). However, in e-cash scenarios
an honest user, unable to eventually derive a valid coin, will most likely complain
to the malicious bank afterwards.

Recently, Camenisch et al. [6] considered a stronger kind of aborts where a
cheating signer may be able to make the user algorithm fail depending on the mes-
sage being signed,1 and where the malicious signer is informed afterwards which
execution has failed (if any). Considering for example a voting protocol based on
blind signatures [6,11], a malicious administrator can potentially deduce informa-
tion about votes (possibly also for non-aborted executions) by causing some voters
to abort and consulting the subsequent complaints.

As for user aborts and unforgeability, albeit the definitions [18] and [24] are
identical in spirit, the “one-more” notion in [24] leaves two possible interpreta-
tions: either the adversarial user is deemed to generate one more signature than
executions with the signer have been initiated (i.e., even counting executions in
which the user aborts), or the malicious user needs to output one more signature
than executions have been completed (i.e., allowing user aborts). In fact, this am-
biguity re-appears in many works about blind signatures, some explicitly counting
initiated executions [4, 10, 16], some emphatically referring to completed execu-
tions [5, 18, 20, 23] and some remaining vague, too [2, 6, 17].

For both cases, user and signer aborts, the stronger notions are desirable of
course. For a blind signature scheme used to sign coins in an e-cash system, for
instance, a malicious signer may otherwise abort executions deliberately and, by
this, may be able to revoke unlinkability of coins. Vice versa, if unforgeability says

1 Ultimately, since the malicious signer causes the abort, this can be seen as a more general case
of signer aborts.

Blind signatures under aborts 171

that no adversarial user is able to create more signatures than interactions with the
signer have been initiated, and no requirement about aborted sessions is imposed,
then an adversarial user could potentially derive more signatures from such aborted
executions. The signing bank could generally charge users for executions, which
have stopped early. Yet, if the connection in the signing process breaks down
accidently, the honest user is most likely unable to derive the coin and would
hence be reluctant to pay for the transaction. The bank may then gracefully waive
the fee for such aborted executions, but still needs to handle forgery attempts.

Related work. As mentioned before, Camenisch et al. [6] have already consid-
ered the limitations of the standard blindness notion. They have introduced an ex-
tension called selective-failure blindness in which a malicious signer should not be
able to force an honest user to abort the signature issue protocol because of a cer-
tain property of the user’s message, which would disclose some information about
the message to the signer. They present a construction of a simulatable oblivious
transfer protocol from so-called unique selective-failure blind signature schemes
(in the random oracle model) for which the signature is uniquely determined by
the message. Since the main result of the work [6] is the construction of oblivi-
ous transfer protocols, the authors note that Chaum’s scheme [8] and Boldyreva’s
protocol [4] are examples of such selective-failure blind schemes, but do not fully
explore the relationship to (regular) blindness.

Hazay et al. [16] present a concurrently-secure blind signature scheme and, as
part of this, they also introduce a notion called a-posteriori blindness. This notion
considers blindness of multiple executions between the signer and the user (as
opposed to two sessions as in the basic case), and addresses the question how to
deal with executions in which the user cannot derive a signature. However, the
definition of a-posteriori blindness is neither known to be implied by ordinary
blindness, nor implies it ordinary blindness (as sketched in [16]). Thus, selective-
failure blindness does not follow from this notion.

Aborts of players have also been studied under the notion of fairness in two-
party and multi-party computations, especially for the exchange of signatures,
e.g. [3, 12, 14]. Fairness should guarantee that one party obtains the output of
the joint computation if and only if the other party receives it. Note, however,
that in case of blind signatures the protocol only provides a one-sided output to
the user (namely, the signature). In addition, solutions providing fairness usually
require extra assumptions like a trusted third party in case of disputes, or they add
a significant overhead to the underlying protocol.

Our results. We pick up the idea of selective-failure blindness to deal with
signer aborts and expand the work of Camenisch et al. [6] towards its relation-

172 M. Fischlin and D. Schröder

ship to blindness and further constructions of such schemes. We first show that
selective-failure blindness is indeed a strictly stronger notion than regular blind-
ness. We also extend the notion of selective-failure blindness to multiple exe-
cutions, particularly addressing aborts of a subset of executions. We give two
possible definitions for the multi-execution case and prove them to be equivalent.
We then show that blindness in the basic case of two executions suffices to guar-
antee security in the case of many sessions and discuss the relation to a-posteriori
blindness [16].

Next we present a general transformation which turns every secure blind sig-
nature scheme into a selective-failure blind scheme. Our transformation only re-
quires an additional commitment of the message, which the user computes be-
fore the actual protocol starts and which the user then uses in the original proto-
col instead of the message itself.2 Since the commitment is non-interactive, our
transformation inherits important characteristics of the underlying protocol like
the number of moves and concurrent security.

It should be noted, though, that the transformation destroys uniqueness (i.e.,
that each message has only one valid signature per key pair), as required by [6]
to derive oblivious transfer from such blind signatures. However, we show that
our transformation is still applicable if we modify the oblivious transfer protocol
of [6] slightly. Hence, we can now easily obtain an adaptive oblivious transfer
from any unique blind signature scheme such that the protocol is simulatable in
presence of failures. Put differently, we show that selective-failure blindness is
not necessary to obtain such oblivious transfer protocols, but uniqueness of the
underlying protocol is sufficient. We note that like the original protocol in [6] this
result is in the random oracle model.

We finally study the case of user aborts and show that every three-move blind
signature scheme is unforgeable under user aborts. While this is clear for two-
move schemes like Chaum’s protocol [8] our result shows that this remains true
for other schemes like the ones by Pointcheval and Stern [24]. We show that, in
general, this does not hold for schemes with four or more moves, assuming the
existence of a secure two-move blind signature scheme. It remains open if there
is a non-trivial and efficient transformation to take care of user aborts for schemes
with more than three moves.3

2 This idea has been conjectured by Hazay et al. [16] to also work for a-posteriori blindness. We
are not aware of any formal claim or proof in the literature that using a commitment indeed
provides security against aborts.

3 By trivial transformations we refer for instance to a solution which ignores the underlying
scheme and simply runs, say, Chaum’s protocol.

Blind signatures under aborts 173

In summary, our transformation to achieve selective-failure blindness, together
with the result about user aborts, shows that any scheme with two or three moves
can be efficiently turned into one, which is secure under aborts (of either party).

2 Blind signatures

To define blind signatures formally we introduce the following notation for inter-
active executions between algorithms X and Y. By .a; b/ hX.x/;Y.y/i we
denote the joint execution of X and Y, where x is the private input of X and y
defines the private input of Y. The private output of X equals a and the private
output of Y is b. We write

YhX.x/;�i
1

.y/

if Y can invoke an unbounded number of executions of the interactive protocol
with X in arbitrarily interleaved order. Accordingly, Xh�;Y.y0/i

1;h�;Y.y1/i
1

.x/ can
invoke arbitrarily ordered executions with Y.y0/ and Y.y1/, but interact with each
algorithm only once.

Definition 2.1 (Blind signature scheme). A blind signature scheme consists of a
tuple of efficient algorithms BS D .KGBS; h� ;Ui ;VfBS/, where

� Key generation. KGBS.1
n/ for parameter n generates a key pair .skBS; pkBS/.

� Signature issuing. The joint execution of algorithms �.skBS/ and U.pkBS; m/

for messagem 2 ¹0; 1ºn generates an output � of the user (and some possibly
empty output � for the signer), .�; �/ h�.skBS/;U.pkBS; m/i.

� Verification. VfBS.pkBS; m; �/ outputs a bit.

It is assumed that the scheme is complete, i.e., for any n 2 N, any .skBS; pkBS/

KGBS.1
n/, any message m 2 ¹0; 1ºn and any � output by U in the joint execution

of �.skBS/ and U.pkBS; m/ we have VfBS.pkBS; m; �/ D 1.

Security of blind signature schemes is defined by unforgeability and blindness
[18, 24]. An adversary U� against unforgeability tries to generate k C 1 valid
message-signatures pairs after at most k completed interactions with the honest
signer, where the number of executions is adaptively determined by U� during the
attack. To identify completed sessions we assume that the honest signer returns a
special symbol ok when having sent the final protocol message in order to indicate
a completed execution (from its point of view). We remark that this output is
“atomically” connected to the final transmission to the user.

The blindness condition says that it should be infeasible for a malicious signer
�� to decide which of two messages m0 and m1 has been signed first in two

174 M. Fischlin and D. Schröder

executions with an honest user U. This condition must hold, even if �� is allowed
to choose the public key maliciously [1]. If one of these executions has returned
? then the signer is not informed about the other signature either.

Definition 2.2 (Secure blind signature scheme). A blind signature scheme BS D
.KGBS; h� ;Ui ;VfBS/ is called secure if the following holds:

� Unforgeability. For any efficient algorithm U� the probability that experi-
ment UnforgeBS

U�
.n/ evaluates to 1 is negligible (as a function of n), where

Experiment UnforgeBS
U�
.n/

.skBS; pkBS/ KGBS.1
n/

..m1; �1/; : : : ; .mkC1; �kC1// U�h�.skBS/;�i
1

.pkBS/

Return 1 iff
mi ¤ mj for 1 � i < j � k C 1, and
VfBS.pkBS; mi ; �i / D 1 for all i D 1; 2; : : : ; k C 1, and
� has returned ok in at most k interactions.

� Blindness. For any efficient algorithm �� (working in modes find, issue and
guess) the probability that the following experiment BlindBS

��
.n/ evaluates to

1 is negligibly close to 1
2

, where

Experiment BlindBS
��
.n/

.pkBS; m0; m1; stfind/ ��.find; 1n/
b ¹0; 1º

stissue ��h�;U.pkBS;mb/i
1
;h�;U.pkBS;m1�b/i

1

.issue; stfind/

and let �b; �1�b denote the (possibly undefined) local outputs
of U.pkBS; mb/ resp. U.pkBS; m1�b/.

set .�0; �1/ D .?;?/ if �0 D ? or �1 D ?
b� ��.guess; �0; �1; stissue/

return 1 iff b D b�.

3 Selective-failure blindness

In this section we review the definition of selective-failure blindness and show that
selective-failure blindness is a strictly stronger requirement than the basic blind-
ness property. Second, we discuss how to extend selective-failure blindness to
multiple executions.

Blind signatures under aborts 175

3.1 Definition

Camenisch et al. [6] put forward the notion of selective-failure blindness, which
says that a malicious signer �� cannot force the user algorithm U to abort based
on the specific message and that blindness should also hold in case the signer is
able to learn that some executions have aborted. This is formalized by informing
�� which instance has aborted (i.e., if the left, the right, or both user instances
have failed):

Definition 3.1. A blind signature scheme BS D .KGBS; h� ;Ui ;VfBS/ is called
selective-failure blind if it is unforgeable (as in Definition 2.2) and the following
holds:
� Selective-failure blindness. For any efficient algorithm �� (working in modes

find, issue and guess) the probability that experiment SFBlindBS
��
.n/ evaluates

to 1 is negligibly close to 1
2

, where

Experiment SFBlindBS
��
.n/

.pkBS; m0; m1; ˇfind/ ��.find; 1n/
b ¹0; 1º

ˇissue ��h�;U.pkBS;mb/i
1
;h�;U.pkBS;m1�b/i

1

.issue; ˇfind/

and let �b; �1�b denote the (possibly undefined) local outputs
of U.pkBS; mb/ resp. U.pkBS; m1�b/.

define answer as: left if only the first execution has failed,
right if only the second execution has failed,
both if both executions have failed,
and .�b; �1�b/ otherwise.

b� ��.guess; answer; ˇissue/

Return 1 iff b D b�.

3.2 Relation to regular blindness

We first prove formally the fact that selective-failure blindness implies regular
blindness. Then we separate the notion by turning a secure blind signature scheme
into a one which is still secure but provably not selective-failure blind.

Proposition 3.2. Every selective-failure blind signature scheme BSSF is also a se-
cure blind signature scheme.

Proof. Assume that there exists an adversarial controlled signer A breaking blind-
ness with noticeable probability. Then we construct an efficient attacker �� break-
ing selective-failure blindness (with noticeable probability). The adversary �� in-
vokes a black-box simulation of A. Whenever A interacts with the user algorithm

176 M. Fischlin and D. Schröder

(as described in the experiment), �� forwards the messages (in both directions).
At the end of the protocol �� is informed if and which of the protocol executions
have failed. In case that at least one of the user instances has aborted, the adversary
�� forwards the pair .?;?/ to A, and otherwise, �� obtains two signatures and
hands them to A. In both cases, A replies with a bit b�, which �� too outputs and
stops.

A straightforward analysis shows that the success probabilities of �� and A in
the corresponding experiment are identical. Moreover, the notions of unforgeabil-
ity are the same in both definitions.

Proposition 3.3. If there exists a secure blind signature scheme BS, then there
exists a secure blind signature scheme BSSF which is not selective-failure blind.

Proof. We modify BS slightly into a scheme BSSF which is identical to BS, except
that we modify the key generation algorithm and add a break condition into the
user algorithm. More precisely, let BS D .KGBS; h� ;Ui ;VfBS/ be a secure blind
signature scheme. We define the new blind signature scheme BSSF as

� KeyGen. KGSF first sets mmax D 1n as the maximum of the lexicographical
order over n-bit strings. It then executes the key generation algorithm of
the underlying blind signature scheme .skBS; pkBS/ KGBS.1

n/ and returns
.skSF; pkSF/ D .skBS; .pkBS; mmax//.

� Signing protocol. The interactive signing protocol remains unchanged except
for one modification. The user algorithm checks after the last move of the
protocol (and after computing the signature �) that m � mmax and, if so,
returns the signature � , and ? otherwise.

� Verification. The verification algorithm returns the result of VfBS.

The modified scheme is clearly complete, as the case m > mmax for an honest
signer never occurs and because the initial protocol is complete. Obviously, if the
blind signature scheme BS is unforgeable, then BSSF is also unforgeable. This is
easy to see as the malicious user may simply ignore the break condition.

Concerning blindness, first note that the malicious signer �� is allowed to
choose the public key and thus to pick some other value m�max. As a malicious
signer �� is not informed which of the executions has failed (if any), setting some
other value m�max than the predetermined maximum and possibly causing an abort
does not lend any additional power to ��. To see this, note that the user algorithm
does not abort prematurely if m > mmax. Hence, from the (malicious) signer’s
point of view, the interaction is indistinguishable from an honest execution. It
therefore follows that BSSF still satisfies blindness.

Blind signatures under aborts 177

We finally show that the modified scheme does not fulfill selective-failure blind-
ness. Consider a malicious signer �� in experiment SFBlindBS

��
.n/. In the first step

the adversary �� computes a key pair .skBS; pkBS/ KGBS.1
n/, it sets m�max D

10n�1 and picks two messages m0 D 0n; m1 D 1n such that m0 � m�max < m1.
It outputs a public key pkSF D .pkBS; m

�
max/ together with the message m0; m1

as defined in the first step of the experiment. Next, �� has black-box access
to two honest user instances (as described in experiment SFBlindBS

��
.n/) where

the first algorithm takes as input .pkSF; mb/ and the second user algorithm re-
ceives .pkSF; m1�b/. In both executions �� acts like the honest signer with key
skSF D skBS. Then �� is eventually informed which of the executions has failed,
i.e., receives left or right (as �� has access to honest user instances, the case where
both executions fail cannot occur by the completeness condition). The adversary
�� returns b� D 1 if the left instance has failed, otherwise it returns b� D 0.

It follows straightforwardly that the adversary �� succeeds in predicting b with
probability 1.

3.3 Selective-failure blindness for multiple executions

The presumably natural way to extend selective-failure blindness to an arbitrary
number of executions with user instances would be as follows. The malicious
signer chooses q messages as well as a public key pkBS and interacts with q user
instances. We denote by � a random permutation over ¹1; 2; : : : ; qº. The i -th user
instance is initiated with the message m�.i/ and the public key pkBS. If at least
one of the user instances aborts, then the adversary is given a binary vector v of
length q indicating which of the user algorithms aborted. In the case that each
execution allows the user to create a valid signature, then the adversary is given all
message-signature pairs in non-permuted order.

In the final step the adversary tries to link a message-signature pair to an exe-
cution. There are two possible venues to formalize this. The first one, which we
believe reflects much better the idea that the adversary should not be able to deter-
mine the order of signed messages, is to ask the adversary two output two indices
i0; i1 such that �.i0/ < �.i1/. The second version would be to ask the adversary
to predict the connection much more explicitly, demanding to output indices .i; j /
such that �.i/ D j . Note that for the case of two executions both notions are
equivalent.

Here we give the “order-based” definition and show in Appendix A that the
two definitions are equivalent, assuming the following strengthening: During the
signature issuing and in the final processing phase we give the malicious signer
access to an oracle Reveal which for input i returns �.i/ and the user’s signature
�i if the execution has already finished successfully. This corresponds to the case

178 M. Fischlin and D. Schröder

that some coins in e-cash systems may have been spent meanwhile. Note that
the reveal oracle takes as input a state strev where each signature is stored. The
adversary’s final choice i0; i1 must not have been disclosed, of course.

Definition 3.4. A blind signature scheme BS D .KGBS; h� ;Ui ;VfBS/ is called
multi-execution selective-failure blind if it is unforgeable (as in Definition 2.2)
and the following holds:

� Multi-execution SF-blindness. For any efficient algorithm �� (that works in
modes find, issue and reveal) the probability that experiment MSFBlindBS

��
.n/

returns 1 is negligibly close to 1
2

, where

Experiment MSFBlindBS
��
.n/

.pkBS;M; ˇfind/ ��.find; 1n/,
where M D .m1; : : : ; mq/ with mi 2 ¹0; 1ºn

Select a random permutation � over ¹1; 2; : : : ; qº

ˇissue ��h�;U.pkBS;m�.1//i
1
;:::;h�;U.pkBS;m�.q//i

1
;Reveal.�;�;strev/.issue; ˇfind/

and let ��.1/; : : : ; ��.q/ denote the (possibly undefined) local outputs
of U.pkBS; m�.1//; : : : ;U.pkBS; m�.q//, immediately stored in strev

once an execution finishes (strev is initially set to .?; : : : ;?/);
Reveal.�; �; strev/ is an oracle, which on input i returns .�.i/; strev

i /.
Return to �� all signatures v D .�1; : : : ; �q/ iff all executions

have yielded valid signatures; otherwise return a vector v 2 ¹0; 1ºq ,
where the i -th entry is 1 if the i -th signature is valid, and 0 otherwise.

.i0; i1/ ��;Reveal.�;�;strev/.reveal; v; ˇissue/

Return 1 iff �.i0/ < �.i1/ and �� has never queried Reveal about i0; i1.

The definition of multi-execution selective-failure blindness for the case q D 2
covers the standard definition of blindness. An adversary A breaking blindness
can be used to build an adversary �� breaking multi-execution selective-failure
blindness as follows. The malicious signer �� executes A in a black-box way
and follows the blindness experiment until �� receives either the signatures �0; �1
or the vector v. In case these two valid signatures are given to ��, it forwards
both pairs to A and otherwise it outputs ?. Finally, �� outputs the decision bit
b0 returned by A. The definition of selective-failure blindness is (semantically)
identical to the definition of multi-execution selective failure blindness for the case
q D 2.

Proposition 3.5. A selective-failure blind signature scheme is also multi-execution
selective-failure blind.

Blind signatures under aborts 179

Proof. Assume towards contradiction that BS is not multi-execution selective-
failure blind. Then we show how to break selective-failure blindness for the case
of two executions. The idea is as follows. The adversary �� against selective-
failure blindness executes a black-box simulation of the adversary A against multi-
execution selective-failure blindness and tries to guess two executions for which
A tries to succeed and does not make reveal queries (which is necessary for A

to win). Adversary �� inserts the data from its two sessions with honest users in
the corresponding executions in the simulation and plays the honest users in the
other executions itself. Then it uses A’s final output to guess the order of the two
executions.

More precisely, let A be an adversary breaking multi-execution selective-failure
blindness with probability noticeably greater than 1

2
. The algorithm �� against

selective-failure blindness for two executions runs a black-box simulation of A

which initially outputs a pair .pkBS;M/ consisting of a public key pkBS and a
vector M D .m1; : : : ; mq/ of q messages. Adversary �� selects random indices
i 00; i
0
1 between 1 and q as well as a random permutation � over ¹1; 2; : : : ; qº. It

outputs the triple .pkBS; m�.i 00/
; m�.i 01/

/ (and a state).

In the next part algorithm �� has access to two (external) user instances. It also
initializes q � 2 honest user instances U.pkBS; m�.i// for i ¤ i 00; i

0
1 and continues

the simulation of A. For each user instance i ¤ i 00; i
0
1 (with which adversary A

communicates with) adversary �� acts on behalf of the honest user. For i D i 00 or
i D i 01 algorithm �� relays the communication between A and the two external
user instances.

Algorithm �� eventually receives the information that one of the two executions
has failed (or both), or receives two valid signatures. If all q user algorithms have
returned valid signatures, then �� forwards the q messages-signature pairs to A.
Otherwise, it computes the vector v of length q indicating which of the executions
aborted (note that for i ¤ i 00; i

0
1 algorithm �� can easily determine the status as it

runs the user copy itself).
During the experiment, algorithm A is allowed to invoke its reveal oracle at

most q � 2 times. The adversary �� answers each query i ¤ i 00; i
0
1 by sending the

pair .�.i/; �i / (where �i may be undefined). In the case that A tries to reveal an
execution which took place with an external user algorithm, i.e., queries about i 00
or i 01, then �� immediately stops and outputs a random bit b0. Otherwise, if the
algorithm A finally outputs two indices i0; i1 equal to i 00 and i 01, then �� outputs
b0 D 0 if i0 D i 00 and b0 D 1 if i0 D i 01. In the case that A outputs different
indices, then �� also returns a random bit b0.

For the analysis of �� recall that algorithm A outputs two values i0; i1 such
that �.i0/ < �.i1/ with probability ı.n/ � 1

2
C �.n/, where �.n/ is noticeable.

180 M. Fischlin and D. Schröder

The guess i 00; i
0
1 of algorithm �� is correct with probability 1

q2
– noting that the

simulation is perfect up to the point where a bad reveal query is made or till the
adversary stops – and in this case we have b D 0 iff i0 D i 00 and b D 1 iff
i0 D i 01. In any other case �� returns a random bit and succeeds with probability
1
2

. Altogether �� succeeds with probability

1

q2
�

�1
2
C �.n/

�
C
1

2
�

�
1 �

1

q2

�
D
1

2
C
�.n/

q2
;

which is larger than 1
2

by a noticeable amount.

3.4 Relation to a-posteriori blindness

In the following we discuss the relation between selective-failure blindness and
a-posteriori blindness [16]. Roughly speaking, a-posteriori blindness advocates
that blindness only needs to hold for non-aborted sessions. Hazay et al. formalize
this basic idea in an experiment where the adversary first outputs a public key pk
together with a message distribution M. The malicious signer then concurrently
interacts with ` honest user instances, where each user instance gets as input the
public key pk and a message sampled according to M. Afterwards, when the signer
has finished all ` interactions, it receives `0 message-signature pairs in a randomly
permuted order, where 1 � `0 � ` denotes the number of non-aborted execu-
tions. The adversary wins the game if it associates one non-aborted execution to a
messages-signature pair. A detailed discussion about a-posteriori blindness in the
concurrent setting is given in [16].

From a syntactically point of view there are numerous differences between the
definition of selective-failure blindness and a-posteriori blindness. Firstly, the ad-
versary in our security definition picks the messages, whereas in the experiment of
a-posteriori blindness it only chooses a message distribution. Secondly, in contrast
to a-posteriori blindness, the malicious signer in our case receives the information
which of the user instances have aborted. In an e-cash scenario, this corresponds to
the case where a user (who may have completed all rounds of the protocol) could
not derive a valid coin and informs the signing bank about this problem. Thirdly,
we propose two different notions of multi-execution selective-failure blindness.
The first definition (Definition 3.4) is an ordering-based definition where the ad-
versary has to distinguish the order of two different executions. The second def-
inition (Definition A.1, Appendix A) is a prediction-based definition where the
malicious signer has to link an execution to a message-signature pair.

Finally, the attacker in our definitions has access to a reveal oracle that dis-
closes the message used during a specific execution. Such an oracle is also not

Blind signatures under aborts 181

considered in the definition of a-posteriori blindness. In the real world, this oracle
represents side information the signer obtains, e.g., customer A opens up a bank
account before customer B. Then customer B cannot withdraw coins before having
opened up an account and every meanwhile spent coin has to be from customer A.
Note that these side information provide the malicious signer also with informa-
tion about the non-aborted executions. From a technical point of view, the reveal
oracle allows us to prove the equivalence between selective-failure blindness for
two executions and for multiple executions, as well as the equivalence of the two
types of multi-execution selective-failure blindness definitions.

A natural question is whether the definition of a-posteriori blindness and the
definition of multi-execution selective-failure blindness are equivalent for the spe-
cial case of two executions. To answer this question we briefly recall the counter
example of Hazay el al. which shows that a-posteriori blindness does not imply
regular blindness. This example consists of a scheme that satisfies a-posteriori
blindness but that easily violates blindness. In this scheme, the honest user algo-
rithms validates the first received message from the signer. In the case that this
message is improper, then it sends the message m to the signer and aborts af-
terwards. Since a-posteriori blindness only guarantees blindness for non-aborted
sessions, this scheme remains a-posteriori blind. However, it follows easily that
this scheme is not blind. Hence, a-posteriori blindness cannot be equivalent to
selective-failure blindness, because selective-failure blindness does imply regular
blindness.

4 From blindness to selective-failure blindness

In this section we show how to turn every secure blind signature scheme BS into
a selective-failure blind signature scheme BSSF. The high-level idea is to modify
BS slightly into BSSF by executing BS with a non-interactive commitment com of
the message m (instead of the message itself).

Definition 4.1 (Commitment scheme). A (non-interactive) commitment scheme
consists of a tuple of efficient algorithms C D .KGcom;Com;Vfcom/, where

� Key generation. Algorithm KGcom.1
n/ on input the security parameter out-

puts a key pkcom.

� Commitment phase. Algorithm Com takes as input pkcom and m 2 ¹0; 1ºn

and outputs .decom; com/ Com.pkcom; m/.

� Verification. Vfcom.pkcom; m; decom; com/ outputs a bit.

182 M. Fischlin and D. Schröder

It is assumed that the commitment scheme is complete, i.e., for any n 2 N, any
pkcom KGcom.1

n/, for any message m 2 ¹0; 1ºn and any .decom; com/
Com.pkcom; m/ we have Vfcom.pkcom; m; decom; com/ D 1.

Security of commitment schemes is defined by secrecy and unambiguity. Se-
crecy guarantees that the receiver cannot learn the message from the commitment
and unambiguity says that the sender cannot change the message anymore once
the commitment phase is over. Here we use a slightly different way to define se-
crecy compared to the literature, but it is easy to see by a hybrid argument that our
definition is equivalent:

Definition 4.2 (Secure commitment). A (non-interactive) commitment scheme
C D .KGcom;Com;Vfcom/ is called secure if the following holds:

� Secrecy. For any efficient algorithm R�com (working in modes find and guess)
the probability that experiment SecrecyC

R�com
.n/ evaluates to 1 is negligibly

close to 1
2

.

Experiment SecrecyC
R�com

.n/

.m0; m1; pkcom; ˇfind/ R�com.find; 1n/
b ¹0; 1º

comb Com.pkcom; mb/ and com1�b Com.pkcom; m1�b/

b� R�com.guess; ˇfind; com0; com1/
Return 1 iff b D b�.

� Unambiguity. For any efficient algorithm S�com the probability that experi-
ment UnambiguityC

S�com
.n/ evaluates to 1 is negligible.

Experiment UnambiguityC
S�com

.n/

pkcom KGcom.1
n/

.m;m0; decom; decom0/ S�com.pkcom/

Return 1 iff
Vfcom.pkcom; m; decom;Com/ D 1 and
Vfcom.pkcom; m

0; decom0;Com/ D 1 as well as m ¤ m0.

Note that such commitment schemes exist under standard assumptions like
pseudorandom generators [21] or hash functions [9]. In order to use a commit-
ment in a blind signature scheme – which we defined to take messages of n bits –
we need that the commitment scheme is length-invariant, meaning that for n-bit
messages the commitment itself is also n bits. This can always be achieved by
using a collision-resistant hash function (with n bits output) on top.

Blind signatures under aborts 183

Signer �.skSF/ User U..pkBS; pkcom/; m/

.decom; com/ Com.pkcom; m/

�(skBS) U.pkBS; com/
msg1

 ����������������

:::

msgn
����������������! compute � D �.com/

Output m; � 0 D .�; decom; com/

Figure 1. Issue protocol of the blind signature scheme BSSF.

Construction 4.3 (Selective-failure blind signature scheme BSSF).
Let BS D .KGBS; h� ;Ui ;VfBS/ be a blind signature scheme and C be a length-
invariant commitment scheme. Define the blind signature scheme BSSF through
the following three procedures:

� Key generation. The generation algorithm KGSF.1
n/ executes the key gener-

ation algorithm of the blind signature scheme BS; .skBS; pkBS/ KGBS.1
n/

and of the commitment scheme pkcom KGcom.1
n/. It returns the private

key skSF D skBS and the public key pkSF D .pkBS; pkcom/.

� Signature issue protocol. The interactive signature issue protocol for message
m 2 ¹0; 1ºn is described in Figure 1.

� Signature verification. The verification algorithm VfSF.pkSF; m; �
0/ for a

signature � 0 D .�; decom; com/ returns 1 iff VfBS.pkBS; �; com/ D 1 and
Vfcom.pkcom; m; decom; com/ D 1.

Theorem 4.4. If BS is a secure blind signature scheme and C is a secure, length-
invariant commitment scheme, then the scheme BSSF in Construction 4.3 is a
selective-failure blind signature scheme.

We note that, if the starting blind signature scheme provides statistical blind-
ness, and the commitment scheme is also statistically-hiding, then the derived pro-
tocol achieves selective-failure blindness in a statistical sense. This can be seen

184 M. Fischlin and D. Schröder

from the proof of the theorem, which is split into two claims, covering unforge-
ability and selective-failure blindness:

Claim 1. BSSF is unforgeable.

In the proof we distinguish between two cases. The first case occurs if the
adversary U� succeeds in outputting kC1 valid pairsmi ; � 0i D .�i ; decomi ; comi /
such that the commitments comi are pairwise different. But then we can break the
unforgeability of the underlying blind signature scheme BS. In the second case U�

succeeds and at least two commitments comi ; comj (with i ¤ j / are identical. But
then we can break the unambiguity of the commitment scheme C .

Proof. Assume to the contrary that the resulting selective-failure blind signature
scheme BSSF is not unforgeable. Then there exists an adversary U� breaking
unforgeability with noticeable probability, i.e., on input pkSF the algorithm U�

returns k C 1 valid signatures � 0i D .�i ; decomi ; comi / for messages mi after at
most k interactions with the honest signer � . Note that here we do not deal with
user aborts and count any initiated interaction; the case of counting only completed
interactions is taken care of in the next section.

We first take a look at the success probability of U�, we have

 .n/ WD Prob
�
ForgeBSSF

U�
.n/ D 1

�
;

where .n/ is noticeable. This probability can be separated according to the two
exclusive events that U� succeeds and all commitments comi are different, with
the corresponding probability denoted by 0.n/, and into the case where ASF

succeeds and at least two commitments are identical (with probability 1.n/).
According to our assumption that .n/ is noticeable, 0.n/ or 1.n/ (or both)
must be noticeable.

We next construct out of U� algorithms AUNF and AUNA against unforgeability
of BS and unambiguity of the commitment scheme C .

Attacking unforgeability. The adversary AUNF takes as input the public key
pkBS of the blind signature scheme BS and works as follows. It executes the key
generation algorithm of the commitment scheme pkcom KGcom.1

n/ and runs a
black-box simulation of U� on input pkSF D .pkBS; pkcom/. The signer instances
in the attack of U� are simulated with the help of the external signer instances
accessible by AUNF, i.e., adversary AUNF relays the communication between U�

and its signer instance oracle �.skBS/ (as described in experiment ForgeBS
U�

). When
U� finishes its attack, it outputs k C 1 message-signatures pairs mi ; � 0i after at
most k interactions. Now AUNF parses each � 0i as .�i ; decomi ; comi / and returns
the k C 1 pairs comi ; �i and stops.

Blind signatures under aborts 185

Assume that 0.n/, the probability that U� succeeds and all comi ’s are dis-
tinct, is noticeable. Then, since the simulation is perfect from the viewpoint of
U�, adversary AUNF succeeds in outputting k C 1 valid pairs comi ; �i for distinct
“messages” comi with noticeable probability, too, contradicting the unforgeability
property of the underlying blind signature scheme. Note also that the numbers of
initiated and completed executions are identical in both cases.

Attacking unambiguity. In order to break the unambiguity of C , the adversary
AUNA takes as input the public key pkcom of the commitment scheme C and works
as follows. It executes the key generation algorithm of the blind signature scheme
.skBS; pkBS/ KGBS.1

n/ as well as a the honest signer algorithms �.skBS/ and
runs a black-box simulation of U� on input pkSF D .pkBS; pkcom/. Note that run-
ning the program of the honest signer on input skBS simulates each execution with
a signer instance. Algorithm U� eventually returns kC 1 message-signature pairs
.mi ; �

0
i / after at most k interactions with � . The adversary AUNA then checks if

there are valid signatures with comi D comj for some i ¤ j and, if so, out-
puts two tuples .mi ; decomi ; comi /; .mj ; decomj ; comj / such that mi ¤ mj and
comi D comj . If not, it outputs a failure message.

For the analysis note that the simulation again perfectly mimics the original at-
tack of U�. Hence, if 1.n/ is noticeable, then such comi D comj with valid
decommitments for mi ¤ mj appear with noticeable probability, and the commit-
ment adversary AUNA therefore finds an ambiguous commitment with this proba-
bility, too. But this clearly violates the security of the commitment scheme C .

Claim 2. BSSF is selective-failure blind.

The high-level idea of the proof is as follows. We again distinguish between
two cases. In the first case the adversary ASF succeeds with noticeable probability
and both message-signature pairs are valid. But then we show how to break the
blindness property of the underlying blind signature scheme BS. We next argue
that in the case where ASF succeeds with noticeable probability and forces at least
one of the user algorithms to fail, then we are able to break the secrecy of the
commitment scheme (because then the only information available to the signer are
the commitments of the messages).

Proof. Assume towards contradiction that the resulting blind signature scheme
BSSF is not selective-failure blind, and that there exists a successful adversary
ASF against selective-failure blindness.

Let
ı.n/ WD Prob

�
SFBlindBS

ASF
.n/ D 1

�
D

1
2
C �.n/;

186 M. Fischlin and D. Schröder

where �.n/ D ı.n/ � 1
2

is noticeable. We divide the success case according to the
two exclusive events that ASF succeeds and that both message-signature pairs are
valid (event valid) and into the case where ASF succeeds and at least one of the
signatures is not valid (event :valid). Then,

Prob
�
SFBlindBS

ASF
.n/ D 1

�
�
1
2

D Prob
�
valid

�
�

�
Prob

�
SFBlindBS

ASF
.n/ D 1

ˇ̌
valid

�
�
1
2

�
C Prob

�
:valid

�
�

�
Prob

�
SFBlindBS

ASF
.n/ D 1

ˇ̌
:valid

�
�
1
2

�
:

According to our assumption that ı.n/ is noticeable, either the first term, denoted
ı0.n/, or the second term ı1.n/ has to be noticeable (or both are noticeable). We
next turn ASF into algorithms Ablind and Acom against regular blindness and se-
crecy of the commitment scheme, respectively.

Attacking blindness. The adversary Ablind works as follows. It runs a black-
box simulation of ASF, which initially outputs two messages .m0; m1/ together
with a public key pkSF. The attacker Ablind extracts pkBS and pkcom from pkSF and
calculates both the commitments and decommitments

.decom0; com0/ Com.pkcom; m0/;

.decom1; com1/ Com.pkcom; m1/:

It outputs com0; com1 and pkBS. It is then given access to two honest user instances
U.pkBS; comb/ and U.pkBS; com1�b/ for a unknown bit b and relays the commu-
nication between these instances and ASF. If, at the end, at least one of the (exter-
nal) user algorithms fails, then Ablind outputs a random bit and stops. Otherwise, it
augments �0; �1 to � 00 D .�0; decom0; com0/ and � 01 D .�1; decom1; com1/ and
returns the two signatures � 00; �

0
1 (obtained by the external user algorithms) to ASF.

The final output of Ablind consists of the bit b� returned by ASF.
Note that the attacker Ablind simulates the experiment SFBlindBS

ASF
.n/ by execut-

ing the blindness experiment for the underlying blind signature scheme BS and
by computing the commitments internally. Hence, the case where both message-
signature pairs are valid is the one where experiment SFBlindBS

ASF
.n/ is identical to

experiment BlindBS
Ablind

.n/. If one of the signatures is invalid, then Ablind returns a
random bit. Therefore, the success probability of Ablind in experiment BlindBS

Ablind
.n/

can be calculated as follows:

Blind signatures under aborts 187

Prob
�
BlindBS

Ablind
.n/ D 1

�
D Prob

�
b D b� ^ :valid

�
C Prob

�
b D b� ^ valid

�
D Prob

�
b D b�

ˇ̌
valid

�
� Prob

�
valid

�
C Prob

�
b D b�

ˇ̌
:valid

�
� Prob

�
:valid

�
D Prob

�
valid

�
� Prob

�
b D b�

ˇ̌
valid

�
C

1
2
�
�
1 � Prob

�
valid

��
D Prob

�
valid

�
� Prob

�
SFBlindBS

ASF
.n/ D 1

ˇ̌
valid

�
C

1
2
� .1 � Prob

�
valid

�
/

D
1
2
C Prob

�
valid

�
�

�
Prob

�
SFBlindBS

ASF
.n/ D 1

ˇ̌
valid

�
�
1
2

�
D

1
2
C ı0.n/:

According to our assumption that ı0.n/ is noticeable it follows that Ablind breaks
the blindness of the underlying blind signature scheme BS with noticeable proba-
bility. This, however, contradicts our assumption that BS is a secure blind signature
scheme.

Attacking secrecy of the commitment. In order to break the secrecy of the com-
mitment scheme C , the adversary Acom executes a black-box simulation of ASF,
which initially outputs two messages .m0; m1/ as well as a public key pkSF. The
adversary Acom extracts the keys pkcom and pkBS from pkSF and outputs
.m0; m1; pkcom/ for the secrecy experiment of the commitment scheme. It then
receives two commitments com0; com1, one for message mb and the other one
for message m1�b (without knowing which commitment corresponds to which
message).

The adversary now runs (in the role of the honest user U.pkBS; com0/ and
U.pkBS; com1/) the selective-failure blindness experiment with ASF. At the end
of the issue protocol each user instance returns either a signature for the commit-
ment or?. In the case that both user algorithms return a valid signature, then Acom

outputs a random bit b� and stops. Otherwise, if both user algorithms have failed,
then Acom sends the value both to ASF. In the case that the first user algorithm
has failed, then Acom returns left to ASF and else (if the second user algorithm has
failed), it forwards right to ASF. The final output of Acom consists of the bit b�

returned by ASF.
The adversary Acom simulates the experiment of selective-failure blindness per-

fectly, up to the point where it obtains the (possibly undefined) signatures. Given
that at least one of them is invalid, the simulation corresponds to the case
SFBlindBS

ASF
.n/ (given :valid) for the same choice b as in the commitment ex-

periment. Else, Acom outputs a random bit. A simple calculation similar to the
previous case now shows that

Prob
�
SecrecyC

R�com
.n/ D 1

�
D

1
2
C ı1.n/:

188 M. Fischlin and D. Schröder

If ı1.n/ is noticeable, it follows that Acom breaks the secrecy of the commitment
scheme with noticeable probability, contradicting the security of C .

5 Unforgeability and user aborts

In this section we consider executions in which an adversarial controlled user may
abort sessions and the unforgeability requirement with respect to initiated or com-
pleted executions with the signer. For sake of distinction we call the requirement
where the adversary has to find k C 1 valid message-signature pairs after k initi-
ated executions weak unforgeability, and the originally given definition charging
only completed executions unforgeability under user aborts.

We show in the following that every three-move blind signature scheme, which
is weakly unforgeable, is also unforgeable under user aborts. Note that in three-
move schemes, for a meaningful protocol, the first message is always sent by the
signer. As such we may think of two-move schemes as having an additional first
move in which the signer simply sends an empty message (although the claim for
two-move schemes follows straightforwardly anyway).

We remark that we leave the scheduling of transmissions fully up to the adver-
sary controlling the users, i.e., the adversary decides when to send messages to the
signer and when the signer’s messages are delivered to the user. Only the signer’s
output ok is given immediately after the signer’s final message has been delivered.

Theorem 5.1. Every secure blind signature scheme with at most three moves is
unforgeable under user aborts.

The proof idea is that we can delay the delivery of the user’s message in an
execution till we can be sure that the adversary completes this execution. If the ex-
ecution is not completed, then we can simply disregard the original user message,
finish the protocol ourselves as an honest user and create another valid signature
in addition to the forgeries of the adversary.

Proof. Let us assume that BS is a secure blind signature scheme with (at most)
three moves which is not unforgeable under user aborts, i.e., there exists an adver-
sary A which outputs k C 1 valid message-signature pairs with noticeable proba-
bility after at most k completed sessions (in which the signer has output ok). Then
we show via an algorithm U� (derived from A) how to refute the weak unforge-
ability of BS (this time counting all initiated sessions).

Algorithm U� runs a black-box simulation of A, mainly relaying the data be-
tween the external signer instance and A. Each time the adversary A initiates a
new protocol instance with the signer, U� sends the first message received from

Blind signatures under aborts 189

the honest signer � to A. In the case that A asks to deliver the second message of
this protocol, U� saves it until A demands to deliver the third message. We call
this execution open. If the request for the signer’s reply eventually comes then U�

first delivers the previously stored second message to the external signer instance,
receives the answer and only then delivers it to A. The session becomes closed.

At the end of A’s simulation, when A stops and outputs the k C 1 message-
signature pairs ..m1; �1/; : : : ; .mkC1; �kC1// there may still be open executions.
For each such execution U� disregards the stored message, searches (in lexico-
graphical order) the first “fresh” m 2 ¹0; 1ºn such that m is different from the
messages in the closed or meanwhile terminated executions, and completes the
session by running the honest user U.pkBS; m/ for the remaining steps (note that
this is possible as the user has not sent anything yet). Then U� outputs the k C 1
message-signature pairs returned by A plus all the additional pairs created by ter-
minating open sessions.

For the analysis recall that A returns k C 1 valid message-signature pairs after
at most k terminated protocol executions. Suppose the adversary A has aborted
` protocol instances (open executions), which U� has finally finished. By the
completeness of the scheme U� obtained a valid message-signature pair in all of
these ` executions, and thus all kC`C1 pairs verify correctly. In addition, the other
messages in the open executions are picked such that they differ from the k C 1
messages returned by A and from each other (note that all these messages can be
found easily in polynomial time). Altogether, U� creates more valid signatures
for different messages than executions with the signer have been started (namely,
k C ` initiated executions).

We note that the result above is optimal in the sense that for four or more moves
no such claim can be made (if there are secure schemes with two moves):

Proposition 5.2. Every secure blind signature scheme BS with two moves can be
converted into a secure blind signature scheme BSUuA with four moves, which is
weakly unforgeable but not unforgeable under user aborts.

Proof. Let BS be a secure blind signature scheme with two-moves. We modify
BS to a blind signature scheme BSUuA which is identical to BS, except that we add
two additional moves at the end, where the user simply transmits the bit 0 and the
signer also replies with the bit 0.

Obviously, the modification neither affects weak unforgeability nor blindness.
Nevertheless, the modified blind signature scheme is not unforgeable under user
aborts. A malicious user U� can easily abort an interaction after the second move,
allowing him to compute the signature of the underlying blind signature scheme,

190 M. Fischlin and D. Schröder

but such that the signer does not output ok. In other words, U� can create signa-
tures without ever completing a single session.

The previous proposition does not rule out that there is a transformation turn-
ing schemes with four or more moves into unforgeable ones under user aborts. An
apparent approach is to ignore the original protocol and to run a scheme, which
already has this property (like Chaum’s two-move blind signature scheme in the
random oracle model). Yet, it is preferable of course to have a lightweight trans-
formation adhering to the basics of the underlying protocol (like the avoidance of
random oracles or general but expensive multi-party protocols).

6 Selective failures and adaptive oblivious transfer

Camenisch et al. [6] also show how to construct an adaptive oblivious transfer
protocol out of any unique selective-failure blind signature scheme (in the random
oracle model).

Roughly speaking, uniqueness means that each message has only one signature
per public key. More formally, a blind signature scheme is unique [6,15] if for ev-
ery (possibly maliciously chosen) public key pkBS and every messagem 2 ¹0; 1º�,
there exists at most one signature s 2 ¹0; 1º� such that VfBS.pkBS; m; s/ D 1.

In this section we focus on the question whether our transformation turning
every blind signature into one with selective-failure blindness is applicable.

We have already mentioned in the introduction that the initial commitment de-
stroys uniqueness of the blind signature scheme because each message may have
several valid signatures per key pair. Here we show that it is nonetheless possible
to build an adaptive k-out-of-N oblivious transfer protocol out of any unique blind
signature scheme by applying our transformation.

The following construction is a modification of the protocol in [6] and, because
of the problems with uniqueness, we have to prove the security of this construc-
tion from scratch, digging also into the proof of selective-failure blindness for our
transformation.

6.1 Simulatable adaptive oblivious transfer

Oblivious Transfer (OT), proposed by Rabin [25], is an interactive protocol be-
tween a sender S and a receiver R. The sender in this protocol gets as input N
messages m1; : : : ; mN and the receiver R wishes to retrieve the message mc . OT
protocols must satisfy the following two security properties: firstly, the sender S
does not find out the receiver’s choice c 2 ¹1; : : : ; N º and, secondly, the receiver
only obtainsmc and does not gain any information about the other messagesmi for

Blind signatures under aborts 191

i ¤ c. For adaptive k-out-of-N oblivious transfer, OTNk�1, the receiver requests
k of these N messages in rounds where the i -th choice is based on the previously
obtained messages. We refer the reader to [6, 22] for more information.

Following [6] closely we define adaptive oblivious transfer more formally.
An adaptive k-out-of-N oblivious transfer scheme OTNk�1 is a tuple of efficient
algorithms .SI;RI;ST;RT/ that consists of an initialization phase and a transfer
phase. During the initialization phase the sender and the receiver perform an in-
teractive protocol. In this protocol the sender executes the algorithm SI on input
.m1; m2; : : : ; mN / and the receiver runs the RI algorithm without input. At the
end of the initialization protocol both parties output some (local) state informa-
tion, denoted by S0 and R0, respectively.

Once the initialization phase is over, both parties engage in a transfer protocol.
During the i -th transfer, where 1 � i � k, the sender runs the algorithm ST.Si�1/

to obtain some state information Si whereas the receiver runs the RT.Ri�1; ci /

algorithm on input state information Ri�1 and its choice ci indicating which mes-
sage it wishes to receive. The receiver obtains some state information Ri together
with the retrieved message m0ci . A scheme is complete if m0ci D mci for all
messages m1; : : : ; mN , for all selections c1; : : : ; ck 2 ¹1; : : : ; N º and for all coin
tosses of the algorithms. Roughly speaking, security of oblivious transfer demands
that the receiver only learns the chosen messages (sender security) and the sender
does not know which messages has been chosen (receiver security). In the fol-
lowing we briefly recall (partly verbatim) the security definitions by Camenisch
et al. [6]. In contrast to the definition of Naor and Pinkas [22] it employs the
real-world/ideal-world paradigm for both sender and receiver security (simulat-
able oblivious transfer). This paradigm compares the execution of an OT protocol
in the real-world with an ideal implementation (see for example [7]).

In the real-world experiment, both parties jointly execute the interactive proto-
col, whereas in the ideal-world the functionality is realized through a trusted third
party. Informally, security requires that the malicious receiver/sender gains in the
real-world no more information than in the ideal-world. To capture failures one
allows the ideal model sender to transmit a bit b, indicating whether the transfer
should succeed or abort. We note that this bit is independent of the choice of the
receiver, reflecting the fact that the abort should not depend on the receiver’s input.

Real experiment. We begin with the description of the real-world experiment
that involves arbitrary sender and receiver algorithms S�real and R�real. The ex-
periment RealS�real;R

�
real
.N; k;m1; : : : ; mN ; c1; : : : ; ck/ works as follows. Algorithm

S�real on input .m1; : : : ; mN / interacts with R�real without input. Both parties gen-
erate an initial state S0 and R0, respectively. Afterwards, the sender and the user
perform k interactions. During the i -th execution, for 1 � i � k, the sender and

192 M. Fischlin and D. Schröder

receiver interact by running Si S�real.Si�1/ and .Ri ; m0ci / R�real.Ri�1; ci /,
where ci 2 ¹1; : : : ; N º is a message index. It is understood that both algorithms
update their state information to Si andRi , respectively. Observe thatm0ci andmci
are not necessarily identical if either party cheats. The output of the experiment
RealS�real;R

�
real

is the tuple .Sk; Rk/ of the final state information.
Next, we define the behavior of the honest sender and honest user algorithm.

That is, the honest sender algorithm Sreal in an OTNk�1 scheme .SI;ST;RI;RT/ takes
as input a set of messages .m1; : : : ; mN /, it runs the algorithm SI.m1; : : : ; mN /

in the initialization phase and runs the ST algorithm in all following interactions.
This algorithm always returns Sk D � as its final state. The honest receiver al-
gorithm Rreal runs the algorithm RI during the initialization phase, the algorithm
RT during the transfer phase and stops, outputting the list of received messages
Rk D .m

0
c1
; : : : ; m0ck / as its final state.

Ideal experiment. In the ideal-world experiment IdealS�ideal;R
�
ideal
.N; k;m1; : : : ;

mN ; c1; : : : ; ck/, the (possibly malicious) sender algorithm S�ideal.m1; : : : ; mN /

generatesN messages .m01; m
0
2; : : : ; m

0
N / and hands these over to the trusted party

T . In each of the k transfers, T receives a bit bi and afterwards an index c0i of the
(possibly cheating) receiver R�ideal. If bi D 1 and c0i 2 ¹1; : : : ; N º, then T sends
the message m0ci to the receiver, otherwise ?. The output of the experiment Ideal
is the tuple .Si ; Ri / of the final state information of S�ideal and R�ideal, respectively.

As above, we now define the honest ideal sender as well as the honest ideal
receiver. The honest ideal sender Sideal.m1; : : : ; mN / sends the messages m1; : : : ;
mN to the trusted party T in the initialization phase, during the i -th transfer it
hands the bit bi D 1 over to T and outputs Sk D � as its final state.

The honest ideal-world receiver Rideal submits its real choice .c1; c2; : : : ; ck/ to
the trusted party and outputs the obtained messages Rk D .m01; m

0
2; : : : ; m

0
k
/ as

its final state.

� Sender’s security. We say that an OTNk�1 is sender secure if for any efficient
cheating real-world receiver R�real there exists an efficient ideal-world receiver
R�ideal such that for any polynomialNq.n/, anyN 2 ¹1; : : : ; Nq.n/º, any mes-
sage m1; m2; : : : ; mN , and for any choice c1; c2; : : : ; ck 2 ¹1; : : : ; N º with
k 2 ¹1; : : : ; N º, the advantage for any efficient distinguisher D in distin-
guishing the distributions

RealSreal;R�real
.N; k;m1; : : : ; mN ; c1; : : : ; ck/

and
IdealSideal;R�ideal

.N; k;m1; : : : ; mN ; c1; : : : ; ck/

is negligible in n.

Blind signatures under aborts 193

� Receiver’s security. We say that an OTNk�1 is receiver secure if for any ef-
ficient real-world malicious sender S�real, there exists an efficient ideal-world
sender S�ideal such that for any polynomial Nm.q/, any N 2 ¹1; : : : ; Nm.q/º,
any message m1; m2; : : : ; mN , for any choice c1; c2; : : : ; ck 2 ¹1; : : : ; N º
with k 2 ¹1; : : : ; N º, the advantage for any efficient distinguisher D in dis-
tinguishing the distributions

RealSreal;R�real
.N; k;m1; : : : ; mN ; c1; : : : ; ck/

and
IdealSideal;R�ideal

.N; k;m1; : : : ; mN ; c1; : : : ; ck/

is negligible in n.

6.2 Construction

Our construction, depicted in Figure 2, is a modification of the OTNk�1 protocol of
Camenisch et al. and consists of a black-box construction using any unique (not
necessarily selective-failure) blind signature scheme. The sender in the first step
of the protocol generates a key-pair for the blind signature scheme and sends it
to the receiver. The receiver, in return, hands N distinct commitments (for values
1; 2; : : : ; N , represented as n-bit-strings each) over to the sender. These commit-
ments serve as “messages” for the signature generation. Note that distinctiveness
of the commitments holds with high probability by the binding property.

After the sender has verified that all commitments are distinct, it encrypts each
message in its database by XOR-ing the message mi with H.i; si /, where i is the
index of the i -th commitment comi , and si is the unique signature of message
comi under pkBS. The sender can easily compute this signature locally by running
the signature issue protocol with the help of the signing key and an honest user
instance for “message” comi .

After having finished the initialization phase, both parties engage in a transfer
phase that consists of a run of the unique blind signature scheme. In the case that
the receiver wishes to obtain the i -th messagemi , it has to choose the commitment
comi (as the message to be signed) during the signature issue protocol.

From a high-level point of view unforgeability guarantees that the receiver can-
not receive more messages than interactions took place (sender’s security) and
blindness guarantees that the sender cannot tell which message has been signed
(receiver’s security).

194 M. Fischlin and D. Schröder

Sender SI.m1; : : : ; mN / Initialization Receiver RI

.pkSF; skSF/ KGSF.1
n/

pkSF
����������������! parse pkSF as .pkBS; pkcom/

for i D 1; : : : ; N
.decomi ; comi / Com.pkcom; i/

check that comi ¤ comj com1; : : : ; comN
 ����������������

s.t. comi ¤ comj for all i ¤ j
for all i ¤ j

for i D 1; : : : ; N
si h�.skBS/;U.pkBS; comi /i

Ci H.i; si /˚mi
C1; : : : ; CN

����������������!set S0 skBS set R0 .pkSF; .comi ; Ci /i /

output S0 output R0

Sender ST.Si �1/ Transfer Receiver RT.Ri�1; Ri /

parse Si�1 as skBS parse Ri�1 as .pkSF; .comi ; Ci /i /

execute �.skBS/
Unique-BS

 ����������������
����������������!

execute scj U.pkBS; comcj /

if VfBS.pkBS; comci ; sci / D 0

then mci ?
else mci Cci ˚H.i; sci /

output Si D Si�1 output Ri D .Ri�1; m0ci /

Figure 2. A k-out-of-N oblivious transfer protocol using a random oracle H and
any unique blind signature scheme BS.

Blind signatures under aborts 195

6.3 Security of our construction

The security of the oblivious transfer protocol follows from the security of the
unique blind signature scheme and from the security of the commitment scheme.

Theorem 6.1. If the unique blind signature scheme BS is unforgeable then the
OTNk�1 scheme depicted in Figure 2 is sender-secure in the random oracle model.

Proof. In the following, we build for any malicious real-world receiver R�real an
ideal-world receiver R�ideal that works as follows. The algorithm R�ideal first gener-
ates a key-pair .skSF; pkSF/ KGSF.1

n/ for any unique blind signature scheme
according to Construction 4.3. It forwards pkSF to R�real and receives in return N
commitments comi . Afterwards, R�real checks whether all commitments are dis-
tinct, and if so, it picks N random strings Ci ¹0; 1ºn and sends these values to
R�real to obtain the initial state R0.

During the transfer phase the ideal-world sender R�ideal simulates the honest
signer of the unique blind signature scheme and engages in k executions of the
signature issue protocol with R�real. In order to answer the random oracle queries,
the algorithm R�ideal stores an initially empty associative array HTŒ�� together with a
counter ctr. Whenever R�real invokes its random oracle H.�/ on a value x, then the
algorithm R�ideal returns HTŒx�. In the case that this entry in undefined, then R�ideal
proceeds as follows:

If x D .i; si / and VfBS.pkBS; comi ; si / D 1 and i 2 Œ1; N � then
ctr ctrC 1; If ctr > k, then abort
Obtain mi from the ideal functionality
HTŒx� mi ˚ Ci

else HTŒx� ¹0; 1º`.

Finally, at the end of the simulation, the algorithm R�real outputs its final state
which R�ideal also outputs and stops.

It follows easily from the construction of R�ideal that the algorithm is efficient
because R�real runs in polynomial time and because the overhead of the key gen-
eration, of the simulation of the honest signer algorithm, as well as the overhead
of computing the verification equation, can all be performed efficiently. It is also
clear that R�ideal performs a perfect simulation of the real-world experiment as long
as R�ideal does not abort. Thus, there does not exist a distinguisher that is able to
distinguish the real-world experiment from the ideal-world experiment with no-
ticeable probability.

In the following we show that R�ideal does not cause R�real to abort with notice-
able probability. To do so, let us assume towards contradiction that the algorithm

196 M. Fischlin and D. Schröder

R�ideal causes R�real to abort. But then we are able to build a forger F that breaks the
unforgeability of BS with noticeable probability. Algorithm F performs a similar
simulation of the environment but with two differences. Firstly, the algorithm F
does not generate the keys for the blind signature scheme, but forwards the mes-
sages between its (external) signing oracle and R�real. Secondly, it does not abort if
ctr > k, but it outputs all kC 1 tuples .comi ; si /, where .i; si / is the query sent by
R�real to its random oracle. Observe that according to our protocol, all commitments
have to be distinct and that R�real can engage in at most k transfer protocols. Thus,
F outputs k C 1 different messages together with k C 1 valid signatures after at
most k executions of the signature issue protocol. This, however, contradicts the
assumption that the blind signature scheme BS is unforgeable.

Theorem 6.2. If BS is a secure blind signature scheme and C is a secure, length-
invariant commitment scheme, then the OTNk�1 scheme depicted in Figure 2 is
receiver-secure in the random oracle model.

Proof. The proofs follows the one in [6] closely. We have to show that for any ef-
ficient cheating real-world sender S�real, there exists an efficient ideal-world sender
S�ideal such that the outputs of both algorithms are (computational) indistinguish-
able. This ideal-world algorithm S�ideal works as follows.

On input a set of messages .m1; m2; : : : ; mN /, algorithm S�ideal executes a black-
box simulation of S�real on these messages and answers each random-oracle query
by returning random values (but consistently). Let pkSF D .pkBS; pkcom/ be the
first outgoing message produced by S�real. The attacker S�ideal now computes N
distinct commitments comi Com.pkcom; 0

n/ and feeds them into S�real. Now,
consider all random-oracle queries .i; si / with 1 � i � N made by S�real. For
each query .i; si /, algorithm S0real checks whether VfBS.pkBS; comj ; sj / D 1 for
some 1 � j � N and if so, it stores qj H.j; sj /. During the last move of
the initialization phase the algorithm S�real outputs the values C1; : : : ; CN . Next,
algorithm S�ideal sets m0i Ci ˚ qi for all 1 � i � N if qi is defined, or if qi is
not defined, it sets m0i ¹0; 1º

n to a random value and submits .m01; : : : ; m
0
N / to

the trusted party.
In the following we have to handle the k transfer steps. To handle these queries,

S�ideal sets R0 .pkSF; comi ; Ci / for i D 1; : : : ; N and simulates the environment
of S�real during the i -th transfer by running Ri RT.Ri�1; 1/, i.e., by always
executing the honest receiver algorithm that wishes to receive the message m1.
Observe that S�ideal does not get the choices .c1; c2; : : : ; ck/ as input, thus it cannot
run RT on the real choice ci . At the end of the i -th transfer phase, algorithm RT

may output ?. In this case, algorithm S�ideal submits bi D 0 to the trusted party
indicating that this execution should be aborted, and otherwise, it sends bi D 1.

Blind signatures under aborts 197

Algorithm S�ideal simulates the transfer phase perfectly, i.e., queries of the form
.i; si / with 1 � i � N and VfBS.pkBS; i; s/ D 1 are answered with Ci ˚m0i ; other
queries are answered with random values (but consistently). Finally, after having
terminated k transfer queries, S�real outputs some state Sk which S�ideal also outputs
and stops.

We use a standard hybrid argument (analogously to [6]) to analyze the advan-
tage of an distinguisher D in distinguishing between the experiments RealS�real;Rreal

and ldealS�ideal;Rideal
. By S�ideal;i we denote an algorithm that simulates the environ-

ment of S�real identical to S�ideal except that it uses Ri RT.Ri�1; 1/ for the first
i transfer executions, and which uses Ri RT.Ri�1; ci / for the remaining k � i
transfers. We further denote by Game i the output of the corresponding experi-
ment, i.e., it contains the final state of S�ideal;i as well as the state of the honest ideal
receiver Rideal.c1; : : : ; ck/ after interacting with the trusted party T . Obviously,
Game 0 corresponds to the real-world experiment, i.e., Game 0 D RealS�real;Rreal

and Game k equals to our ideal-world experiment, i.e., Game k D IdealS�ideal;Rideal
.

The hybrid argument says that if there exists an efficient algorithm D that is able to
distinguish the distributions RealS�real;Rreal

and ldealS�ideal;Rideal
with noticeable advan-

tage �, then there must exist an index 0 � i � k such that D distinguishes Game i
and Game (i+1) with probability at least �

k
.

Next observe that the proof of Theorem 4.4, which says that every blind signa-
ture scheme is selective-failure blind when executed with an a-priori commitment,
still holds. To see this, note that we distinguish between two cases in this proof.
Firstly, if no execution aborts then we can break blindness of the underlying blind
signature scheme and, secondly, if at least one execution aborts then it is possi-
ble to break secrecy of the commitment scheme (see the proof of Claim 2). In
the proof of Claim 2 the adversary receives the commitments of the messages (in
random order) at the outset.

In the last step of the proof we have to show that we can use an algorithm D, that
distinguishes between the games Game i and Game (i+1), to break selective-failure
blindness of BS. To do so, we construct an algorithm ASF that runs a black-box
simulation of S�real, that extracts the message and answers all random oracle queries
as described for S�ideal. The algorithm ASF simulates the first j -th queries running
algorithm RT.�; 1/, setting m0j D ? if the transfer fails, and otherwise mj D mcj .

During the .i C 1/-st execution, the algorithm ASF behaves as follows. It out-
puts the tuple .pkBS; m0 D Com.pkcom; ci /;m1 D Com.pkcom; 1// according to
the first step of the (selective-failure) blindness experiment. In the next step of
the experiment, ASF interacts with two honest user instances U.pkBS; mb/ and
U.pkBS; m1�b/ for a randomly chosen bit b in the following way. It relays the en-
tire communication between S�real and the first user oracle U.pkBS; mb/, whereas
it simply aborts the execution with the second oracle.

198 M. Fischlin and D. Schröder

Algorithm ASF eventually receives the signatures .s0; s1/, encoding the answer
right or both. In the case that the issuing in the first execution succeeds, i.e., if
s0 ¤ ?, it sets m0iC1 D mciC1 . Otherwise let m0iC1 D ?. We remark that here
selective-failure blindness (as opposed to regular blindness) is necessary in order
to obtain the information about the left execution.

Analogously to our description above, ASF answers the remaining i C 2 � j �
k transfers with the algorithm RT.�; cj /, settingm0j D mcj if the transfer succeeds,
and otherwise m0j D ?. Finally, when algorithm S�real outputs its final state Sk ,
then ASF runs the distinguisher D on input .Sk; .m01; : : : ; m

0
k
//. Note that if b D 0,

then this tuple is distributed according to Game i and in the case that b D 1 it is
distributed like Game (i+1). Thus, algorithm ASF returns the output of D and wins
the game with probability at least 1

2
C

�
k

.

A Alternative definition for multi-execution selective-failure
blindness

As mentioned before, an alternative way to define multi-execution selective-failure
blindness is to let the adversary associate a particular execution to a message-
signature pair. We refer to this definition as multi-execution selective-failure blind-
ness (according to prediction) or, for short, prediction security. Analogously,
we call a multi-execution selective-failure blind (according to ordering) signature
scheme as an ordering-secure blind signature scheme as defined in Section 3.3:

Definition A.1. A blind signature scheme BS D .KGBS; h� ;Ui ;VfBS/ is called
multi-execution selective-failure blind (according to prediction) if it is unforgeable
(as in Definition 2.2) and the following holds:

� Prediction security. For any efficient algorithm �� (working in modes find,
issue and reveal) the probability that experiment PMSFBlindBS

��
.n/ returns 1

is negligibly close to 1
q�r

, where q is the number of protocol executions and
r the number of reveal queries. The experiment is defined as follows.

Experiment PMSFBlindBS
��
.n/

.pkBS;M; ˇfind/ ��.find; 1n/, where
M D .m1; : : : ; mq/ with mi 2 ¹0; 1ºn

Select a random permutation � over ¹1; 2; : : : ; qº

ˇissue ��h�;U.pkBS;m�.1//i
1
;:::;h�;U.pkBS;m�.q//i

1
;Reveal.�;�;strev/.issue; ˇfind/

and let ��.1/; : : : ; ��.q/ denote the (possibly undefined) local outputs
of U.pkBS; m�.1//; : : : ;U.pkBS; m�.q//, immediately stored in strev

once an execution finishes (strev is initially set to .?; : : : ;?/);
Reveal.�; �; strev/ is an oracle which on input i returns .�.i/; strev

i /.

Blind signatures under aborts 199

Return to �� all signatures v D .�1; : : : ; �q/ iff all executions have
yielded valid signatures; otherwise return a vector v 2 ¹0; 1ºq , where
the i -th entry is 1 if the i -th signature is valid, and 0 otherwise.

.i; j / ��;Reveal.�;�;strev/.reveal; v; ˇissue/

Return 1 iff �.i/ D j , and �� has never queried Reveal about i ,
and r � q � 2.

We next show that this definition is equivalent to multi-execution selective-
failure blindness (according to ordering). For one direction we give a direct proof
and the other direction follows easily from the equivalence to the two-execution
case for ordering-based security:

Proposition A.2. An ordering-secure blind signature scheme is also prediction-
secure.

Proof. The proof idea is as follows. Suppose that there exists an adversary break-
ing the prediction property of the scheme BS. This adversary reveals some execu-
tions and outputs a pair .i; j / predicting �.i/ D j . We then build an algorithm
which determines the order of two executions i; i 0 by exploiting the prediction
�.i/ D j and comparing j with the remaining image �.i 0/ D j 0.

Description of adversary ��. More precisely, let A be an adversary breaking
multi-execution selective-failure blindness (according to prediction) of BS with a
probability noticeable greater than 1

q�r
. By q we denote the number of protocol

executions and by r the number of reveal oracle queries made by A. We construct
an algorithm �� against the ordering property, which runs a black-box simulation
of A and works as follows.

In the first step of this simulation the algorithm A outputs a vector M of q
messages together with a public key pkBS. The attacker �� outputs this pair and
has now access to q external user instances as well as to a reveal oracle. The
i -th user instance is initialized with the pair .pkBS; m�.i//. It relays the entire
communication between its external user instances, between its reveal oracle, and
A. During these executions, A may try to invoke the reveal oracle more than q�2
times. If this happens, �� stops before passing on the .q� 1/-st query and outputs
the two indices corresponding to the two unrevealed executions in random order.

At the end of the q executions, algorithm �� is given a vector .m1; �1/; : : : ;
.mq; �q/ of q message-signature pairs, or, if at least one execution aborted, a vec-
tor v 2 ¹0; 1ºq . The i -th entry of the vector v indicates if the i -th protocol instance
yielded a valid signature. It forwards the given vector to A which, at the end of
the simulation, returns two values .i; j / trying to predict �.i/ D j .

200 M. Fischlin and D. Schröder

In case that r < q�2 then �� queries its reveal oracle q�2�r times by picking
each unqueried index with the same probability (but not i). If one of the q � 2� r
revealed values is equal to j , then �� stops and returns the two unrevealed indices
.i; i 0/ in a randomly chosen order. Otherwise, the algorithm �� outputs .i; i 0/ iff
j < j 0 and .i 0; i/ else, where j 0 ¤ j denotes the last unrevealed image under �
which is not equal to the prediction j .

Analysis of adversary ��. First note that the probability that A returns two
values .i; j / such that �.i/ D j is

ı.n/ �
1

q � r
C �.n/;

where 0 � r � q � 2 denotes the number of oracle queries made by A, and �.n/
is noticeable. The success probability �.n/ of �� is composed of two different
events:

�.n/ WD Prob
�
Succ.��/ ^ Succ.A/

�
C Prob

�
Succ.��/ ^ :Succ.A/

�
:

The first event Succ.��/^Succ.A/ is the case where �� and A are both successful.
As the algorithm �� performs a perfect simulation from A’s point of view, the
overall probability of this event is ı.n/.

The second event Succ.��/^:Succ.A/, where only �� is successful, consists
of two parts. First, we have the case that A tries to invoke the reveal oracle more
than q � 2 times. Second, there is the case that �� finds an index which is equal
to j , which means that �� discovers that �.i/ ¤ j . Note that, given A does
not win and r � q � 2, the probability that �� picks an index which returns j is
1 � 1

q�r�1
. As the algorithm �� in both cases returns the two unrevealed indices

in a random order, the overall success probability of �� is bounded from below by
.1 � ı.n// � .1 � 1

q�r�1
/ � 1
2

. Putting things together we get

�.n/ D Prob
�
Succ.��/ ^ Succ.A/

�
C Prob

�
Succ.��/ ^ :Succ.A/

�
� ı.n/ � 1C .1 � ı.n// �

�
1 �

1

q � r � 1

�
�
1

2

�
1

2
C
ı.n/

2
�

1

2.q � r � 1/
C

1

2.q � r � 1/.q � r/

�
1

2
C
�.n/

2
C

1

2.q � r/
�

1

2.q � r � 1/
C

1

2.q � r � 1/.q � r/

�
1

2
C
�.n/

2
;

which is noticeably greater than 1
2

.

Blind signatures under aborts 201

The following corollary shows the remaining direction for the equivalence of
the two notions:

Corollary A.3. A prediction-secure blind signature scheme is also ordering-
secure.

Proof. It is easy to see that a prediction-secure blind signature scheme (for multi-
ple executions) is also selective-failure blind (for two executions).

Then, a selective-failure blind signature scheme (for two executions) is also
ordering-secure (for many executions) by Proposition 3.5.

Acknowledgments. We thank Jonathan Katz, Heike Schröder, and the anony-
mous reviewers for valuable comments. This work is partially supported by the
Emmy Noether Program Fi 940/2-1 and the Heisenberg Professorship Fi 940/3-1
of the German Research Foundation (DFG).

Bibliography

[1] M. Abdalla, C. Namprempre and G. Neven, On the (im)possibility of blind message
authentication codes, in: Topics in Cryptology – Cryptographer’s Track, Lecture
Notes in Computer Science, Springer (2006), 262–279.

[2] M. Abe, A secure three-move blind signature scheme for polynomially many sig-
natures, in: Advances in Cryptology – Eurocrypt’01, Lecture Notes in Computer
Science 2045, Springer (2001), 136–151.

[3] N. Asokan, V. Shoup and M. Waidner, Optimistic fair exchange of digital signatures,
in: Advances in Cryptology – Eurocrypt’98, Lecture Notes in Computer Science
1403, Springer (1998), 591–606.

[4] A. Boldyreva, Efficient threshold signatures, multisignatures and blind signatures
based on the gap-Diffie-Hellman-group signature scheme, in: Public-Key Cryptog-
raphy (PKC)’03, Lecture Notes in Computer Science 2567, Springer (2003), 31–46.

[5] J. Camenisch, M. Koprowski and B. Warinschi, Efficient blind signatures without
random oracles, in: Security in Communication Networks, Lecture Notes in Com-
puter Science 3352, Springer (2004), 134–148.

[6] J. Camenisch, G. Neven and A. Shelat, Simulatable adaptive oblivious transfer,
in: Advances in Cryptology – Eurocrypt’07, Lecture Notes in Computer Science,
Springer (2007), 573–590.

[7] R. Canetti, Security and composition of multiparty cryptographic protocols, Journal
of Cryptology 13 (2000), 143–202.

202 M. Fischlin and D. Schröder

[8] D. Chaum, Blind signatures for untraceable payments, in: Advances in Cryptology –
Crypto’82, Plemum, New York (1983), 199–203.

[9] I. Damgȧrd, T. Pedersen and B. Pfitzmann, On the existence of statistically hiding
bit commitment schemes and fail-stop signatures, Journal of Cryptology 10 (1997),
163–194.

[10] M. Fischlin, Round-optimal composable blind signatures in the common reference
string model, in: Advances in Cryptology – Crypto’06, Lecture Notes in Computer
Science 4117, Springer (2006), 60–77.

[11] A. Fujioka, T. Okamoto and K. Ohta, A practical secret voting scheme for large
scale elections, in: ASIACRYPT ’92: Proceedings of the Workshop on the Theory
and Application of Cryptographic Techniques, Lecture Notes in Computer Science,
Springer (1993), 244–251.

[12] J. Garay, P. MacKenzie, M. Prabhakaran and K. Yang, Resource fairness and
composability of cryptographic protocols, in: Theory of Cryptography Conference
(TCC)’06, Lecture Notes in Computer Science 3876, Springer (2006), 404–428.

[13] S. Garg, V. Rao, A. Sahai, D. Schröder and D. Unruh, Round optimal blind sig-
natures, in: Advances in Cryptology – CRYPTO 2011, Lecture Notes in Computer
Science 6841, Springer (2011), 630–648.

[14] O. Goldreich, The Foundations of Cryptography, vol. 2, Cambridge University Press,
2004.

[15] S. Goldwasser and R. Ostrovsky, Invariant signatures and non-interactive zero-
knowledge proofs are equivalent, in: CRYPTO, Lecture Notes in Computer Science,
Springer (1992), 228–245.

[16] C. Hazay, J. Katz, C.-Y. Koo and Y. Lindell, Concurrently-secure blind signatures
without random oracles or setup assumptions, in: Theory of Cryptography Confer-
ence (TCC)’07, Lecture Notes in Computer Science 4392, Springer (2007), 323–341.

[17] O. Horvitz and J. Katz, Universally-composable two-party computation in two
rounds, in: Advances in Cryptology – Crypto’07, Lecture Notes in Computer Sci-
ence, Springer (2007), 111–129.

[18] A. Juels, M. Luby and R. Ostrovsky, Security of blind digital signatures, in: Ad-
vances in Cryptology – Crypto’97, Lecture Notes in Computer Science 1294,
Springer (1997), 150–164.

[19] A. Kiayias and H.-S. Zhou, Concurrent blind signatures without random oracles,
preprint (2006). http://eprint.iacr.org/2005/435.pdf.

[20] A. Kiayias and H.-S. Zhou, Equivocal blind signatures and adaptive UC-security, in:
Theory of Cryptography, Lecture Notes in Computer Science 4948, Springer (2008),
340–355.

[21] M. Naor, Bit commitment using pseudo-randomness, Journal of Cryptology 4
(1991), 151–158.

Blind signatures under aborts 203

[22] M. Naor and B. Pinkas, Computationally secure oblivious transfer, Journal of Cryp-
tology 18 (2005), 1–35.

[23] T. Okamoto, Efficient blind and partially blind signatures without random oracles, in:
Theory of Cryptography Conference (TCC)’06, Lecture Notes in Computer Science
3876, Springer (2006), 80–99.

[24] D. Pointcheval and J. Stern, Security arguments for digital signatures and blind sig-
natures, Journal of Cryptology 13 (2000), 361–396.

[25] M. Rabin, How to Exchange Secrets by Oblivious Transfer, Aiken Computation Lab-
oratory, Report no. TR-81, 1981.

[26] D. Schröder and D. Unruh, Round optimal blind signatures, preprint (2011). http:
//eprint.iacr.org/2011/264.pdf.

Received June 25, 2009; revised January 14, 2011; accepted August 18, 2011.

Author information

Marc Fischlin, Cryptography and Complexity Theory, Department of Computer Science,
Technische Universität Darmstadt, Germany.
E-mail: marc.fischlin@gmail.com

Dominique Schröder, Department of Computer Science, University of Maryland,
A. V. Williams Building, College Park, MD 20742, USA.
E-mail: schroeder@me.com

