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Abstract. Verifiable random functions (VRFs), firstly proposed by Micali, Rabin, and Vadhan (FOCS
99), are pseudorandom functions with the additional property that the owner of the seed SK can issue
publicly-verifiable proofs for the statements “f(SK , x) = y”, for any input x. Moreover, the output
of VRFs is guaranteed to be unique, which means that y = f(SK , x) is the only image that can be
proven to map to x. Due to their properties, VRFs are a fascinating primitive that have found several
theoretical and practical applications. However, despite their popularity, constructing VRFs seems to
be a challenging task. Indeed only a few constructions based on specific number-theoretic problems are
known and basing a scheme on a general assumption is still an open problem. Towards this direction,
Brakerski, Goldwasser, Rothblum, and Vaikuntanathan (TCC 2009) recently showed that verifiable
random functions cannot be constructed from one-way permutations in a black-box way.

In this paper we put forward the study of the relationship between VRFs and well-established cryp-
tographic primitives. As our main result, we prove that VRFs cannot be based on the existence of
trapdoor permutations (TDPs) in a black-box manner.

Our result sheds light on the nature of VRFs and can be considered interesting for at least two reasons:

– First, given the separation result of Brakerski et al., one may think as though VRFs would naturally
belong to the “public-key world”, and thus it is interesting to figure out their relationship with
other public-key primitives. In this sense, our result shows that VRFs are much stronger because
we imply separations of VRFs from most of the primitives in this world: basically everything that
is implied by TDPs is strictly weaker. These primitives include e.g., public-key encryption (even
CCA-secure), oblivious transfer, and key-agreement.

– Second, the notion of VRFs is closely related to other two primitives: weak verifiable random
functions (weak-VRFs) and verifiable pseudorandom generators (VPRGs). Weak-VRFs, defined
by Brakerski et al., are a relaxation of VRFs in which the pseudorandomness holds only with
respect to random inputs. VPRGs, introduced by Dwork and Naor (FOCS 2000), are pseudorandom
generators that allow the owner of the seed to prove the correctness of subsets of the generated bits.
It is well known that “regular” PRFs can be constructed from pseudorandom generators and from
weak-PRFs in a black-box way. It was thus an open problem (already recognized by Dwork and
Naor in their paper) whether similar approaches could be applicable to the “verifiable” analogous
of such primitives. Since weak-VRFs and VPRGs are implied by TDPs, we give a negative answer
to this problem showing that the case of verifiable random functions is essentially different.
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1 Introduction

Verifiable random functions (VRF) were introduced by Micali, Rabin, and Vadhan in [29]. VRFs
are random functions with the additional property that they provide a proof verifying the input-
output relationships. Formally, a VRF is defined by a key pair (SK ,PK ) such that: the secret seed
SK allows the evaluation of the function y←F (SK , x) on any input x and the generation of a proof
πx. This proof is publicly verifiable i.e., given the public key PK one can efficiently verify (using
πx) that the statement “F (SK , x) = y” holds. For security, VRFs must satisfy two properties:
pseudorandomness and uniqueness. Roughly speaking, pseudorandomness states that the function
looks random at any input x for which no proof has been issued. Uniqueness guarantees that for
any x, there exists only one image y for which a valid proof can be produced (even if the public
key is maliciously-chosen).

In some sense a VRF can be seen as the public-key equivalent of a pseudorandom function. This
fascinating primitive has many applications, both theoretical and practical: 3-rounds resettable
zero-knowledge [30], non-interactive lottery systems and micropayment schemes [31], a verifiable
transaction escrow scheme [24], and updatable zero-knowledge sets [26]. However, despite their
popularity, constructing VRFs seems to be challenging, because only a few schemes are known so far,
e.g., [29,27,9,12,1,21] (see Section 1.3 for a brief description of these works). Furthermore, all known
schemes are based on specific number-theoretic problems such as RSA or different assumptions
relying on bilinear maps. Constructing a VRF based on general assumptions is still an open problem.

In modern cryptography, almost all cryptographic primitives base their security on unproven
computational assumptions that are considered reasonable by the community3. In particular, the ex-
istence of one-way functions (OWF) is one of the major open problems in cryptography. A common
methodology for proving the security of a cryptographic primitive, and for better understanding its
relation to other primitives, are black-box reduction techniques that can be described as follows:
Let P and Q be two primitives. A construction of P from Q is black-box if the primitive P has
only oracle access to Q (i.e., P does not have access to the code of this primitive, but can evaluate
it). A security reduction of P to Q is black-box if for any (efficient) adversary A that breaks P
there exists an (efficient) algorithm S that has black-box access to A and breaks Q. This approach
has been extensively formalized in [35] by Reingold et al. who gave different “flavors” of black-box
reductions depending on the “degree” of black-box access. In this introduction we use the generic
definition as sketched above and provide a more formal description in Section 2.

Black-box constructions and black-box proofs give clearly a limited view on the relation between
the different primitives as no conclusions beyond the black-box access can be made. Nevertheless,
the approach is well established as most of the cryptographic proofs are black-box and it is strong
enough to show that many cryptographic primitives, such as pseudorandom functions, digital signa-
tures, private-key encryption, are equivalent to the existence of one-way functions (OWFs), which
is considered to be one of the most basic assumptions. On the other hand, other primitives (e.g.,
public-key encryption) are believed to exist only under stronger assumptions (e.g., the existence
of trapdoor permutations). Though such primitives and/or assumptions look different, it might be
possible that many of them are related or even equivalent. Therefore, identifying the minimal as-
sumptions on which one can base the security of a primitive is considered one of the most important
goals for a better and deeper understanding of the cryptography world.

3 If one makes exception of a few cases that are proven secure in an information-theoretic sense.
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On the negative side, Impagliazzo and Rudich introduced in [23] a methodology for proving sep-
arations between primitives in the sense of black-box constructions, e.g. proving that Q does not im-
ply P in a black-box way. In their work they ruled out any black-box construction of key-agreement
protocols (KA) from one-way functions. Gertner et al. show in [15] that the breakthrough result of
Impagliazzo and Rudich can be seen as defining two separated worlds in which the cryptographic
primitives can be divided: the “private cryptography” world that contains all those primitives that
are equivalent to OWFs, such as digital signatures, pseudorandom generators (PRGs), PRFs and
private-key encryption; the “public cryptography” world that contains harder primitives such as
trapdoor permutations, public-key encryption (PKE), KA and oblivious transfer (OT).

It is worth to mention that another methodology, called meta-reductions, for separating prim-
itives in a black-box sense is known and put forward in e.g., [33,8,7,14,34]. The basic idea of this
approach is to build “a reduction against the reduction”. For example, [33,8,7] consider the impos-
sibility of reductions from secure encryption or signatures to a given RSA instance. Since we do
not follow this approach here, we refer the interested reader to one of the cited papers.

1.1 Our results

We investigate the relationship between verifiable random functions and well-studied cryptographic
primitives. The first step towards this goal was recently given in [4] by Brakerski, Goldwasser,
Rothblum, and Vaikuntanathan who separated VRFs from one-way permutations. The authors
introduce the notion of weak verifiable random functions (wVRFs) that can be seen as the public
key analogue to weak-PRFs: pseudorandomness only holds with respect to randomly chosen inputs.
Moreover, they construct wVRFs from (enhanced) trapdoor permutations and show that wVRFs
are essentially equivalent to non-interactive zero knowledge proof (NIZK) systems in the common
reference string model. In the private key setting, it is well known that “regular” PRFs can be
constructed from weak PRFs in a black-box way [32,28]. Thus, a natural direction to study the
relation between the primitives is to build a VRF out of any wVRF. In Appendix B, however, we
give an intuitive argument why this is difficult.

Another work that is closely related to this topic is the study of verifiable pseudorandom gen-
erators (VPRGs) due to Dwork and Naor [13]. Roughly speaking, a VPRG is a pseudorandom
generator that allows the owner of the seed to prove the correctness of subsets of the generated bits
while the other bits remain indistinguishable from random. Dwork and Naor constructed VPRGs
from trapdoor permutations. Again, in the case of “regular” PRFs we know how to turn a PRG into
a PRF in a black-box way [17]. Dwork and Naor left the question open if a simliar transformation
can be found in the public key setting [13], namely:

Is it possible to construct a VRF from VPRGs and/or weak-VRFs in a black-box way?

In this paper, we give a negative answer to this question and, more generally, we show that no
black-box constructions of VRFs from (enhanced) trapdoor permutations exist.

Theorem 1 (informal) There exists no black-box reduction of verifiable random functions to trap-
door permutations.

Our result is actually more general than the above indicates; it separates the weaker primitive of ver-
ifiable unpredictable functions (VUFs) from the stronger primitive of adaptive trapdoor functions.
The difference between VRFs and VUFs is that the output is not pseudorandom but unpredictable.
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Fig. 1. This figure shows the relations among the different primitives.

Therefore, VUFs can also be seen as “unique signatures”, where, for every public key, each message
can have at most one valid signature4.

Adaptive trapdoor functions (ATDFs), recently introduced by Kiltz, Mohassel, and O’Neill in
[25], are essentially are strictly stronger than trapdoor functions as the adversary is given access to
an inversion oracle.

Implications of our result. Our result sheds light on the nature of VRFs (see Figure 1) and
explains why this primitive is hard to achieve. First, given the separation result of Brakerski et
al., one can naturally think of VRFs as though they belong to the “public cryptography” world.
Then, if we consider the relationship between VRFs and the other public-key primitives, our result
highlights that VRFs are much stronger as they cannot be implied by most of the primitives
in this world: basically everything which is implied by TDPs, e.g. semantically-secure public-key
encryption, oblivious transfer, key-agreement. Moreover, since ATDPs imply CCA-secure PKE
[25], then VRFs are separated even from it. On the positive side we observe that we can obtain
a construction of VRFs from identity-based encryption with unique key derivation following the
idea of Abdalla et al. [1]5. Combining this positive result with our impossibility result confirms the
impossibility result of IBE from TDPs [3].

Second, our result points out the hardness of achieving the uniqueness property in the context
of digital signatures: While signature schemes are equivalent to OWFs, unique signatures cannot
be instantiated from (adaptive) TDPs in a black-box way.

Finally, since both weak-VRFs and VPRGs are implied by TDPs, our result rules out the
possibility of constructing VRFs from weak-VRFs and/or VPRGs. Thus, it seems that there is
no hope that the approaches used in the private key world to build PRFs from weak-PRFs and
PRGs can be adopted to the case of the public verifiable primitives. This shows that the verifiable
analogous of these primitives are essentially different.

4 At this stage, it is interesting to observe unique and deterministic signatures are two distinct primitives. Indeed
a deterministic signature scheme can be obtained from any probabilistic one by generating the randomness via a
PRF. However this generic transformation is not strong enough to obtain a unique signature, because uniqueness
must hold even with respect to maliciously-generated public keys. Moreover, the signature could be easily re-
randomizable. Consider for example the signature σ = σ′‖0 and let the verification algorithm ignore the last bit.
Then it is obvious that uniqueness could be easily violated by flipping the last bit.

5 Precisely, the unique key derivation algorithm immediately implies a VUF, which can then be turned into a VRF
using the original idea of Micali, Rabin and Vadhan.
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1.2 Overview of the Techniques

Our starting point is the so-called “two oracles” technique of Hsiao and Reyzin [22]. The main idea
of this technique is to construct two oracles, say O and B, such that O is used in the constructions,
whereas both oracles O and B can be accessed by the adversaries. This approach is slightly weaker
than the single oracle technique because it “only” rules out fully-black-box reductions (instead of
any black-box reduction). Although the technique of [22] is sufficient in most of the cases, we will
finally show that our approach can be easily changed in order to obtain a single oracle, and thus
to get a relativizing separation.

Our Oracles. In our case the oracle O is an ideal random trapdoor permutation oracle that is
modeled as a triple of random functions (g, e, d) such that: g(·) maps trapdoors to public keys;
e(ek, ·) is a random permutation for every public key ek and d(td, ·) is the inverse of e(ek, ·) when
g(td) = ek. Due to the fact that O is truly random, O is secure even in the sense of adaptive
trapdoor permutations. The oracle B is a designed to break any black-box construction of VUF
based on O.

Therefore, the core of our separation theorem is the definition of the weakening oracle B. The
proof then consists of two main parts:

(i) showing an efficient adversary that can break the unpredictability of the VUF by making a
polynomial number of queries to B;

(ii) showing an ATDP construction that is secure against any adversary that makes at most
polynomially-many oracle queries.

The design of B is rather technical. In particular, the main difficulty is to prevent an attacker
from exploiting B to break the one-wayness of an ATDP. A näıve construction would be an oracle
that takes as input a VUF public key and returns y∗←F (SK , x∗), i.e., the evaluation of the function
on a random point x∗. This oracle would clearly break the unpredictability of the VUF, but it would
also be too strong. Consider, for instance, an adversary A that is given as input a public key ek∗

of a trapdoor permutation and that is challenged to invert it on a random point b∗. Now, A might
encode (ek∗, b∗) into PK in a way such that the evaluation of F (SK , x∗) requires to invert b∗. But
then the attacker would learn all informations about b∗’s inverse. To prevent these “dangerous”
queries we modify B such that it takes as input a certain number of triples (xi, yi, πi), where πi is a
valid proof for “F (SK , xi) = yi”. The idea follows from the intuition that the attacker can encode
b∗ (and ek∗) into PK in only two ways:

(i) F (SK , ·) needs to invert b∗ on a large fraction of the inputs,

(ii) F (SK , ·) needs to invert b∗ only on a negligible fraction of the inputs.

Now, suppose that A encodes b∗ into PK as defined in the first case. In order to query the oracle,
A has to provide valid proofs. But if A can compute all such proofs, then the attacker must already
know b∗’s inverse. Otherwise, if b∗ is encoded into PK as described in the second case, then the
probability that evaluating F (SK , x∗) on a random input x∗ requires to invert b∗ is negligible.
Hence, returning y∗ does not reveal any useful informations to A. Although this idea seems very
promising, it raises another issue. In fact A might overcome this limitation by choosing all the xi’s
from the small fraction that does not require to invert b∗. We solve this issue by defining a two-steps
oracle B = (B1,B2) such that B1 chooses the values xi’s and B2 is the actual oracle as described
above, such that it works properly only if the inputs xi’s are chosen by B1.

4



Finally, an important detail towards the definition of B is that it simulates the run of FO(SK , x∗)
using a different oracle O′ and a different secret key SK ′ such that SK ′ still corresponds to PK
under O′. The idea is that, if O′ is close enough to O (as it should be the case while trying to break
the VUF), then evaluating FO

′
(SK ′, x∗) produces the same output as FO(SK , x∗). On the other

hand, with high probability O and O′ are not close when an ATDP adversary invokes B.

1.3 Other Related work

Verifiable Random Functions. Goldwasser and Ostrovsky introduce the notion of unique
signatures (calling them invariant signatures) in [19] and they show that in the common random
string model they are equivalent to non-interactive zero-knowledge proofs. Later, Micali, Rabin and
Vadhan formally define VRFs and propose a construction (in the plain model) in [29]. The authors
follow two main steps: (1) they construct a verifiable unpredictable function (VUF) based on the
RSA problem and then (2) they show a generic transformation to convert a VUF into a VRF
using the Goldreich-Levin theorem [18] (that extracts one random bit from polynomially-many
unpredictable bits). Next, Lysyanskaya propose a VUF relying on a strong version of the Diffie-
Hellman assumption in [27]. The hope following this two-steps approach is that a VUF should be
easier to realize than a VRF. Unfortunately, the second step is very inefficient.

The subsequent works suggest direct and (more) efficient constructions of VRFs without relying
on the Goldreich-Levin transformation. Dodis suggests an instantiation on the sum-free general-
ized DDH assumption in [9], and Dodis and Yampolskiy give a construction based on the bilinear
Diffie-Hellman inversion assumption in [12]. Abdalla, Catalano, and Fiore [1] show the relationship
between VRFs and a certain class of identity-based encryption schemes. Moreover, the authors
propose a construction based on the weak bilinear Diffie-Hellman inversion assumption. All the
schemes mentioned so far share the limitation of supporting only a small domain (i.e., of super-
polynomial size). The only exception is the recent scheme by Hohenberger and Waters, who give
the first construction having a large input space [21]. Another closely related work is one of Dodis
and Puniya [11] who construct NIZK from verifiable random permutations (VRPs), that are the
verifiable analog of pseudorandom permutations. The author also show how to convert a VRF into
a VRP.

Black-Box Separations. As already mentioned, Impagliazzo and Rudich introduce the black-
box separation methodology in [23]. This work inspired many researchers to follow their approach
and to study the relationships between cryptographic primitives. We briefly recall the main results.

Gertner et al. show a black-box separation between public-key encryption (PKE) and oblivious-
transfer (OT) in [15]. They show in addition, that TDPs cannot be constructed from PKE and
that TDPs cannot be constructed from injective trapdoor functions (in the sense of black-box
reductions). Next, Gertner, Malkin and Reingold prove that TDFs cannot be reduced (using black-
box techniques) to PKE. They show that, in some sense, it is not possible to derandomize a
trapdoor predicate (i.e., the encryption algorithm). Recently, Gertner, Malkin, and Myers gave
in [16] an important result on the relationship between semantically-secure public-key encryption
(PKE) and PKE secure against chosen-ciphertext attacks. They rule out any black-box construction
of a CCA1-secure PKE scheme from a semantically-secure one.

Boneh et al. prove a separation between identiy-based encryption (IBE) schemes and trapdoor
permutations in [3]. Vahlis show that there is no black-box construction of correlation-secure trap-
door permutations (CP-TDPs) from classic TDPs in [38]. Given the results in [2] and [36], that
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show how to construct CCA secure encryption schemes from IBE and CP-TDFs respectively, the
two works [3,38] are interesting as they rule out another possibility of basing CCA encryption on
trapdoor permutations in a black-box way, which is still an open problem. Finally we mention the
work of Dodis, Oliveira and Pietrzak [10] who used black-box separation techniques to show that
no real hash function can instantiate the full-domain-hash signature scheme in the standard model.

Relation to Augmented Black-Box Constructions [6]. As already mentioned, black-box
separations make no statement beyond black-box access. A natural question is if one of the well
known non-black-box techniques, such as zero knowledge proofs, could be used in order to instan-
tiate a certain primitive. Recently, Brakerski, Katz, Segev, and Yerukhimovich propose a model of
augmented black-box constructions to cover this class of powerful constructions [6] (see [39] for a
comprehensive version). The basic idea is to give the construction access to an oracle O that guar-
antees the existence of some base primitive and a pair of oracles (P,V) that allow zero-knowledge
proofs relative to O. Since VRFs are a primitive that provide a kind of proofs of correctness, one
may ask whether the separation still holds in the augmented model or not. We notice that VRFs
exist in the augmented model, and a potential scheme is the following. The private key SK is a seed
s for a pseudo-random function fs and the corresponding public key PK is a common reference
string CRS and a commitment C = Com(s; r) to the seed s of fs. The evaluation algorithm F of
the VRF computes y = fs(m), while the prover uses the P oracle to compute a non-interactive
zero-knowledge (NIZK) proof π for the relation R(x,w) = (y, (s, r)) showing that y = fs(m) and
C = Com(s; r). The verification algorithm V on input PK,m, (y, π) use the V oracle to check the
NIZK proof. Although it is not hard to see that this construction satisfies the pseudorandomness,
showing uniqueness is more tricky. However, in this augmented model the uniqueness follows easily
because the definition assumes that soundness holds perfectly. This construction, however, is not
reasonable in any real model without having access to a zero-knowledge oracle. The reason is that
all non-interactive zero-knowledge proofs require a trusted setup, like the CRS, or random oracles.
VRFs, in contrast, are only interesting without any setup assumptions. Note that this construction
only works when we assume that soundness holds perfectly, because it bars the adversary from
generating fake proofs. It would be interesting to extend their model to the case where soundness
does not hold perfectly and see what happens in this case. This study, however, is beyond the focus
of this paper.

2 Preliminaries

Before presenting our results we briefly recall some basic definitions. In what follows we denote by
λ ∈ N the security parameter. An algorithm A is said to be PPT if it is a probabilistic Turing
machine that runs in time polynomial in λ. Informally, we say that a function is negligible if it
vanishes faster than the inverse of any polynomial. We usually refer to such a function as negl(λ).

If S is a set, then x
$← S indicates that x is chosen uniformly at random over S (which in particular

assumes that S can be sampled efficiently).
In our proofs we will use the following fact:

Lemma 1 (Probabilistic lemma). Let X1, . . . , Xn+1 be independent Bernoulli random variables
such that Pr[Xi = 1] = p and Pr[Xi = 0] = 1− p for i = 1, . . . , n+ 1 and some p ∈ [0, 1]. Let E be
the event that the first n variables are sampled at 1 and Xn+1 is sampled at 0. Then, Pr[E ] ≤ 1

e·n .

In particular this lemma show that such probability does not depend on p.
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2.1 Adaptive Trapdoor Permutations

In this section we give the formal definitions of the primitives that we use in our work. We begin
with the definition of adaptive trapdoor permutations as defined in [25]. This primitive is similar
to a trapdoor permutation, but in the security definition the adversary is provided with an oracle
that inverts the function on arbitrary images (except for the challenge value).

Definition 1 (Adaptive Trapdoor Permutations [25]). A trapdoor permutation is a triple of
efficient algorithms ATDP = (G,E,D) where:

– G is a probabilistic algorithm that on input 1λ generates a pair of keys (ek, td)
– E(ek, ·) implements a function fek(·) that is a permutation over {0, 1}λ
– D(td, ·) uses the trapdoor key to evaluate the inverse of the function fek(·).

We say that a triple ATDP = (G,E,D) is an adaptive trapdoor permutation (ATDP) if it satisfies
the following adaptive one-wayness property. Consider the following experiment:

Experiment AdaptiveATDP
A

(ek, td)←G(1λ);

a
$← {0, 1}λ; b←E(ek, a);

a′←AD(td,·)(ek, b);
A wins if a′ = a and b was not asked to the D(td, ·) oracle.

ATDP is adaptive one-way if any PPT adversary A has at most negligible probability of succeeding
in the experiment AdaptiveATDP

A .

When the adversary is not given access to the inversion oracle then we obtain the standard
notion of one-wayness of trapdoor permutations. Moreover, observe that the definitions above easily
generalize to the case when the implemented function is not necessarily a permutation.

2.2 Verifiable Random Functions

Next, we review verifiable random functions (VRF). Such functions are similar to pseudorandom
functions, but differ in two main aspects: Firstly, the output of the function is publicly verifiable,
i.e., there exists an algorithm Π that returns a proof π which shows that y is the output of the
function on input x. Secondly, the output of the function is unique, i.e., there cannot exist two
images (and proofs) that verify under the same preimage. More formally we have:

Definition 2 (Verifiable Random Functions). A family of functions F = {fs : {0, 1}n(λ) →
{0, 1}m(λ)}s∈{0,1}seed(λ) is a family of Verifiable Random Functions if there exists a tuple of algo-
rithms (KG,F,Π, V ) with the following functionalities:

KG(1λ) is a probabilistic algorithm that on input the security parameter λ, outputs a pair of keys
(PK ,SK ).

F (SK , x) is a deterministic algorithm that evaluates fs(x).
Π(SK , x) is an algorithm that outputs a proof π related to x.
V (PK , x, y, π) is a (possibly) probabilistic algorithm that outputs 1 if π is a valid proof for the

statement “fs(x) = y”. Otherwise it outputs 0.

A tuple (KG,F,Π, V ) is said to be a VRF if it satisfies the following properties:

7



Domain Range Correctness For all x ∈ {0, 1}n(λ) we have that F (SK , x) ∈ {0, 1}m(k) holds
with all but negligible probability (over the choices of (PK ,SK )).

Completeness For all x ∈ {0, 1}n(k) if Π(SK , x) = π and F (SK , x) = y then V (PK , x, y, π)
outputs 1 with overwhelming probability (over the choices of (PK ,SK ) and the coin tosses of
V ).

Uniqueness There exist no values (unless with negligible probability over the coin tosses of V )
(PK , x, y1, y2, π1, π2) such that y1 6= y2 and V (PK , x, y1, π1) = V (PK , x, y2, π2) = 1.

Pseudorandomness For all PPT adversaries A = (A1,A2) we require that the probability A
succeeds in the experiment pseudofA is at most 1

2 + negl(λ), where the experiment is defined in
Figure 2.

Experiment pseudofA
(PK ,SK )←KG(1λ);

(x∗, state)←AFunc(SK ,·)1 (PK )

b
$← {0, 1};

y0←F (SK , x); y1
$← {0, 1}m(k)

b′←AFunc(SK ,·)2 (state, yb)
Output 1 iff b′ = b

and x∗ was not asked to the Func(SK , ·) oracle.

Experiment predictfA
(PK ,SK )←KG(1λ);

(x∗, y∗)←AFunc(SK ,·)(PK )
Output 1 iff y∗ = F (SK , x∗) and

x∗ was not asked to the Func(SK , ·) oracle.

Fig. 2. This Figure show the experiment of pseudorandomness and unpredictability. In both experiments the oracle
Func(SK , ·) computes F (SK , ·) and Π(SK , ·) and returns their output.

Verifiable unpredictable functions (VUF) are similar to VRFs, except that unpredictability must
hold instead of pseudorandomness:

Definition 3 (Verifiable Unpredictable Functions). A tuple (KG,F,Π, V ) is a verifiable un-
predictable function if the probability that any PPT adversary A = (A1,A2) succeeds in the experi-

ment predictfA, defined in Figure 2, is at most negligible.

2.3 Black-Box Reductions

We briefly recall the formal definition of fully black-box reductions.

Definition 4 ([35]). There exists a fully black-box (fully-BB) reduction from a primitive P to a
primitive Q if there exist PPT oracle machines G and S such that:

– Correctness. For every implementation f of the primitive Q, Gf is a correct implementation
of P .

– Security. For every implementation f of Q and every machine A, if A breaks Gf in the sense
of P , then SA,f breaks f in the sense of Q.

3 The Black-Box Separation

We first give a high-level overview of the main ideas of our proof before going into the details
afterwards. Our starting point is the “two oracles” separation technique of Hsiao and Reyzin [22].
In the context of VRFs, we have to construct two oracles O and B relative to which ATDPs exist
while VUFs do not. In particular, the constructions are restricted black-box access only to O, while
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the adversary may access both O and B. Since this type of impossibility result does not rule out
relativizing reductions, we show at the end of this section how to build a single oracle B.

The core of our separation are the two oracles, O and B. The oracle O = (g, e, d) realizes a
random trapdoor permutation (we give a formal definition together with the full proof in Section
3.2). The second oracle is a weakening oracle such that relative to 〈O,B〉 a secure construction of
adaptive trapdoor permutations exists while any given candidate (and correct) VUF construction
(KGO, FO, ΠO, V O) is insecure6. To prove this result, we build an adversary that wins the un-
predictability game with non-negligible probability. Since the description of the oracle B is rather
technical, we first describe the high-level intuitions that guides us to the design of B.

3.1 Towards the definition of B

Towards the definition of such B, the main difficulty is to design an oracle that is strong enough to
help predicting a value of the VUF while simultaneously being too weak to invert the ATDP.

A näıve approach for B would be the one that immediately breaks the VUF, by taking the
VUF’s public key PK and a value x as input; it then would return FO(SK , x). Of course, any
VUF construction breaks down in the presence of such oracle. So, it would remain to show that an
ATDP is still secure in the presence of such 〈O,B〉, which unfortunately is not the case. To see this,
consider the following VUF defined through KGO, FO, ΠO, V O (where ΠO(SK , ·) = FO(SK , ·)):

KGO(1λ)

td ∈ {0, 1}λ
ek←g(td)
return (SK ,PK ) = (td, ek)

FO(SK , x)

y←d(td, x)
return y

V O(PK , x, y)

return 1 iff e(ek, y) = x

Observe that this construction is sound and unique (but trivially insecure). Now, we construct
an adversary A against the ATDP that exploits the above defined B to invert the challenge (ek∗, b∗).
This attacker inverts the challenge by simply submitting (PK = ek∗, x = y∗) to B! This means that
the oracle B that we sketched before is too strong and reveals too much information.

As one can guess, the problem are those queries to B that are “dangerous” in the sense that they
try to extract useful information to invert the TDP. Starting from this (toy) example we modify B
to prevent such “dangerous queries”. The first important observation is that our adversary against
the unpredictability only needs to predict some value, rather than a specific one. This means, the
attacker only needs to find y∗ for a fresh x∗ ∈ {0, 1}n. Therefore, our first modification consists
of changing the input that is provided to B. Basically, we let B choose x∗ on which it evaluates
y∗←FO(SK , x∗). This new definition of B still allows us to break the security of the VUF and it
also avoids direct inversion queries as the attack can no longer query x directly to B.

However, this modification is not sufficient to avoid that an ATDP adversary exploits her access
to B. The problem is that an attacker A might encode its challenge (ek∗, b∗) into the public key
PK . For instance, A could create and submit a public key such that any function evaluation will
require to invert b∗ according to the permutation e(ek∗, ·). We show how to prevent such queries
starting from the following basic intuition.

Assume that a value b ∈ {0, 1}λ is (someway) encoded into the public key PK and recall that
we denote by x the input of FO(SK , ·). Then we have two mutually exclusive cases:

6 By 〈O,B〉 we mean that the algorithm A〈O,B〉 gets access to both oracles.
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1. FO(SK , ·) inverts b on a large fraction of the x’s;
2. FO(SK , ·) inverts b only on a negligible fraction of the x’s (even on no x in the most extreme

case).

Now, recall that a VUF attacker is allowed to query the function (and see the corresponding proofs)
for inputs of her choice. Therefore, if she queries the function oracles on a sufficiently large number
of the x’s, then she will learn the inverses of all the “frequent” b’s of type 1 with high probability.
On the other hand, for any b of type 2, the probability that running FO(SK , x) on a random x
asks to invert b is negligible.

Ensuring A has access to the function oracles. The above intuition suggests us to require
any algorithm querying B to provide in input sufficiently many triples (xi, yi, πi) such that πi is a
valid proof for “FO(SK , xi) = yi”. This way, if a ATDP adversary embeds a “type 1” b into PK ,
then it must know its inverse in order to provide the above triples. Or, if a “type 2” b is encoded
into PK , then with high probability the attacker A will not gain any further information on its
inverse from seeing the evaluation of FO(SK , x∗) for a random x∗.

Although such restriction seems to capture the right intuition, we observe that it is not itself
sufficient to prevent the adversary from exploiting B. To see this, assume that A encodes its
challenge (ek∗, b∗) into PK such that b∗ is of type 1, namely FO(SK , x) queries d(td∗, b∗) on a large
fraction of the x’s. Then, if the attacker A is allowed to choose the inputs x1, . . . , x` provided to
B, then it might take all of them from the small fraction that does not require to invert b∗. In this
case our previous argument would fail.

Therefore, in order to prevent these dangerous queries, we deny A choosing the inputs x1, . . . , x`.
That is, we define a two-steps oracle B = (B1,B2) where B1 chooses ` random inputs, and B2
evaluates the VUF only if it gets as input values and proofs for x’s that were chosen by B1. For
this we will require that B1 is essentially a random function that, given as input a VUF public key
and a collection of oracle circuits implementing a VUF, it outputs ` random strings.

Furthermore, observe that this restriction is not a problem for the attacker that we build against
the VUF, because it has access to the function oracles, F (SK , ·) and Π(SK , ·), that compute these
values and proofs for her. On the other hand, an ATDP adversary now has restricted power as it
does not know b∗’s inverse.

Avoiding Malicious Keys. Finally, the last type of dangerous queries that we have to handle
are those ones where the attacker queries B on an “invalid” public key PK .

By “invalid” we mean that PK is not the output of an honest execution of the key generation
algorithm KGO(SK ). The problem is again that an evaluation of FO(SK , x) can reveal “sensitive”
informations about the trapdoor permutation. Indeed, observe that an execution of FO must use
the d(·, ·) oracle in a significant way or the VUF cannot be secure.7 Thus, one may think about
designing B in such a way that it rejects any queries that involve invalid public keys. However, this
solution is still dangerous as B might be used to test the validity of public keys.

We solve the issue by defining B such that it computes the answer using a different key SK ′ and a
different oracle O′′ but that the new function FO

′′
(SK ′, ·) behaves in almost all cases as the original

one FO(SK , ·). More precisely, the oracle B evaluates FO
′′
(SK ′, ·) using a key SK ′ (that is most

likely different from SK ) and an oracle O′′ which is also different from the real oracle O. The key
SK ′ is computed such that it corresponds to the “real” key PK under O′′ (i.e. PK←KGO′′(SK ′)).

7 For instance, if FO does not use the oracles, then an exponentially-strong adversary could always evaluate the
circuit associated to F .
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The idea is to construct O′′ such that is close to O. Then we can show that evaluating FO
′′
(SK ′, x)

is basically the same as evaluating FO(SK , x).

The hope is that O′′ differs from O in the points that may represent dangerous queries. If this
is the case, then we are done as computing FO

′′
(SK ′, x) will not reveal sensitive informations on

the real ATDP. More precisely, our oracle B selects uniformly at random a secret key SK ′ and an
oracle O′′ such that PK = KGO

′′
(SK ′) and O′′ agrees with O on those points that are already

known to the adversary.

Discovering all ATDP public keys. In order to correctly simulate a run of FO
′′

it is important
that our oracle has discovered all the ATDP public keys ek that may be needed while running FO

′′
.

More precisely it needs to know all the public keys that were generated during the honest execution
of KGO(SK ). So, to discover these public keys we define B such that it runs V O on all the received
triples (xi, yi, πi) and collect all the queries made by the algorithm. Since by Assumption 1 KG can
generate at most q of such ek’s, it is sufficient to repeat the above step on sufficiently many triples,
say qc for some constant c that we will specify later. This allows us to discover all the public keys
with high probability.

3.2 The Formal Separation Theorem

In this section we formalize the techniques that we use to prove our result. The core of our proof
is the description of two oracles O and B. The first oracle O = (g, e, d) implements a perfectly
random trapdoor permutation and it is obvious that a secure ATDP exists relative to O (where
the security follows from the randomness of the function). As discussed in the previous section, a
secure VUF relative to O exists as well. Therefore, we follow the strategy of defining a “weakening”
oracle B whose main task is to break the security of a given VUF construction. This approach is
formalized in the following theorem:

Theorem 1 (formally restated). Let O = (g, e, d) be a random trapdoor permutation oracle.
Then, there exists an oracle B such that for every VUF construction (KGO, FO, ΠO, V O) which is
correct and unique we have:

(i) there is an adversary A such that AO,B breaks the security of the VUF with non-negligible
probability;

(ii) there exists an ATDP construction (GO, EO, DO) relative to O such that no adversary AO,B
can break its security with non-negligible probability.

We formally prove this theorem defining the oracles O and B in the following paragraphs. After-
wards, we prove the theorem by stating two separate lemmata. The first one, given in Section 4,
shows the insecurity of the VUF, whereas the second lemma (Section 5) proves the existence of a
secure ATDP.

The Oracle O. We prove our separation in a relativized model where each algorithm has access
to a random trapdoor permutation oracle O = (g, e, d) where g, e and d are sampled uniformly at
random from the set of all functions with the following conditions:

– g : {0, 1}λ → {0, 1}λ takes a trapdoor key td and outputs a public key ek.

– e : {0, 1}λ × {0, 1}λ → {0, 1}λ is a function that takes in input a public key ek and a value a
and outputs b. For every ek ∈ {0, 1}λ, e(ek, ·) is required to be a permutation over {0, 1}λ.
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– d : {0, 1}λ × {0, 1}λ → {0, 1}λ is a function that on input a pair (td, b) outputs the unique
a ∈ {0, 1}λ such that e(g(td), a) = b.

Since the permutation is defined over {0, 1}λ, it is easy to see that the oracle is also an enhanced
TDP.

Notation. We write AO to denote that an algorithm A is given access to an oracle O. We will use
square brackets to denote queries and mappings. For instance, we write [e(ek, a)] to denote a query
to e with input ek and a. Otherwise e(ek, a) refers the actual value of the function e on the given
input. We write [e(ek, a) = b] to denote that there is a mapping between a and b in the function
e(ek, ·). Also, for ease of presentation, we will sometimes abuse the notation and write O(α) to
denote the answer of O on a query α which depends on the type of α. For example if α = [e(ek, a)],
then O(α) = e(ek, a).

Let Ok (with k ∈ {1, 2}) be a partial (aka suboracle) oracle. We define the set of all public keys
that are contained into the queries of Ok as

Z(Ok) = {ek : [g(·) = ek] ∈ Ok or [e(ek, ·) = ·] ∈ Ok}.

Suboracles. Let O1 and O2 be two (possibly partial) trapdoor permutation oracles. We write
O1 �cO2 to denote the oracle that answers with O1 only if O2 is not defined. Otherwise, it answers
with O2. If O1 = (g1, e1, d1) and O2 = (g2, e2, d2) are two trapdoor permutation oracles as defined
above, then its composition is defined by composing each algorithm, namely:

O1 �c O2 = (g1 �c g2, e1 �c e2, d1 �c d2)

This definition needs some more explanation. We want that the oracle obtained from the composi-
tion of two oracles preserves the properties of the two individual oracles. In particular, we require
that (e1 �c e2)(ek, ·) is a permutation for any valid ek. The problem is that the permutations e1
and e2 may contain collisions, namely there exist ek and two distinct values a, a′ ∈ {0, 1}λ such
that e2(ek, a) = e1(ek, a

′). To handle such collisions we use the same technique suggested in [38].
We define e = e1 �c e2 as follows: let ek, a, b be values such that [e2(ek, a) = b] ∈ O2. We set
e(ek, a) = b. If there exists a value a′ 6= a such that [e1(ek, a

′) = b] ∈ O1, then let b′ = e1(ek, a)
and set e(ek, a′) = b′. The composition d = d1 �c d2 is defined to be consistent with g and e.

VUF in the presence of our oracle. For a simpler exposition we make some general assumptions
on any VUF construction with access to the oracle O = (g, e, d). First, we consider a slightly relaxed
definition of the VUF algorithms (KG,F,Π, V ) as follows. The algorithm KG(SK ) takes as input
a secret key SK ∈ {0, 1}n and outputs PK ∈ {0, 1}n. The input of F and Π are the secret key SK
and a value x ∈ {0, 1}n. The output of F is the function value y ∈ {0, 1}n, whereas the output from
Π is the corresponding π, respectively. Finally, V is given in input the public key PK , an input
x, an output y and a proof π and outputs 1 if it accepts the proof, or 0 otherwise. In the above
description n is a function of λ.

Recall that we assume towards contradiction that there exists a black-box reduction of VUFs to
ATDPs. Then we denote by (KGO, FO, ΠO, V O) the corresponding VUF construction. According
to our notation, each algorithm has access to the (g, e, d) oracles and they have to use them in a
“significant” way to implement a secure primitive. Also, by definition of black-box reduction, this
construction is a correct VUF implementation, that satisfies completeness and uniqueness according
to Definition 2.
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Assumption 1 For a simpler exposition, in our proofs we use the following assumptions:

– each algorithm makes at most q = poly(λ) oracle queries during its execution;
– every query d(td, ·) is followed by a query g(td);
– the proof algorithm is deterministic;
– the verification algorithm is deterministic;
– the completeness of the VUF holds in a perfect sense.

Before proceeding with the description of the breaking oracle, we briefly justify these assumptions.
The first condition is reasonable because the running time of the attacker is polynomially bounded
and moreover, it allows us to easily quantify the advantage of our adversaries. The second one avoids
queries of the adversary to d(·, ·) using a trapdoor key without knowing the corresponding public
key. This assumption is also common and has been previously used in e.g., [3]. The assumption that
the proof algorithm is deterministic is not a restriction as we can turn any VRF with a probabilistic
proof algorithm into one having a deterministic algorithm. The basic idea is to use a PRF (applied to
the input and the private seed of the VRF) to derive the randomness. Completeness and uniqueness
follow easily from the VRF (note that uniqueness only holds w.r.t. to the output of the function and
not w.r.t. the proof). The rest follows easily applying a standard hybrid argument. The assumptions
on deterministic verification and perfect completeness has already been addressed in [4]. Therefore,
we omit it here.

A formal definition of B. In this section we provide a formal description of our oracle B, which
is composed by the following two algorithms (B1,B2):

Algorithm B1:
Input: A collection of oracle circuits V UFO = (KGO, FO, ΠO, V O) implementing a VUF, and

a VUF public key PK
Output: x1, . . . , x` ∈ {0, 1}n.
Computation: To each input (V UFO,PK ), the algorithm B1 associates a random function

f : {0, 1}n → {0, 1}n. For i = 1 to `, it computes xi = f(i), and finally it returns x1, . . . , x`.

Algorithm B2:
Input: A collection of oracle circuits V UFO = (KGO, FO, ΠO, V O) implementing a VUF, a

VUF public key PK and a set {(xi, yi, πi)}`i=1 such that xi ∈ {0, 1}n, yi ∈ {0, 1}m, and πi is
in the range of Π(·, ·).

Output: x∗ ∈ {0, 1}n, y∗ ∈ {0, 1}m.
Computation: The oracle performs the following computation:

– Step 1: Invoke (x′1, . . . , x
′
`) ← B1(V UFO,PK ) and check that the values x1, . . . , x`

received as input are equal to (x′1, . . . , x
′
`) returned by B1. Otherwise, output ⊥.

– Step 2: For all i = 1 to ` run the verification algorithm V O(PK , xi, yi, πi) and collect
into a partial oracle OQ all the queries that are made during each run. If there is some
j such that the verification algorithm does not accept, stop and output ⊥.

– Step 3: Find a secret key SK ′ and a partial oracle O′ such that:
1. KGO

′
(SK ′) = PK , FO

′
(SK ′, xi) = yi and ΠO

′
(SK ′, xi) = πi.

2. O′ ⊇ OQ and |O′| ≤ |OQ|+ q where q is the same value defined in Assumption 1.
– Step 4: Define O′′ = O �c O′
– Step 5: Choose x∗ uniformly at random in {0, 1}n such that x∗ 6= xi for all i = 1 to `.

Run y∗←FO′′(SK ′, x∗) and π∗←ΠO′′(SK ′, x∗).
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– Step 6: Run V O
′′
(PK , x∗, y∗, π∗). If V O

′′
asks a query α such that O′′(α) 6= O(α), then

return ⊥. Otherwise output y∗.

Complexity of B. Based on Assumption 1, we evaluate the cost of each query to B in terms of
queries to the oracle O. Since the function f chosen by B1 is be completely independent of O, we
do not count its cost. Instead a query to B2 counts `q + 3q + |O′| queries to O in total. This cost
is obtained as follows: Step 2 makes `q queries as it evaluates V ` times, Step 3 is made offline,
Step 4 counts |O′| queries that are needed to perform the �c operation and finally Step 5 and Step
6 require 2q and q queries respectively.

Supporting a relativizing separation. Our theorems and proofs consider families of VUF that
use only the oracle O. However, our results can be extended to the case of VUFs that also use
the oracle B. Although giving the construction access to B does not seem to make sense (for the
purpose of a fully black-box separation), this is useful if we want to show that there is a single
oracle (i.e., the combination of O and B) relative to which the separation holds. In particular, this
implies that our result also relativizes.

To support this, we need a couple of changes. First, when counting the cost of a B query we
add the cost of each recursive query to itself (each query in the recursion tree counts 1). Second, B2
in Step 2 must collect also B queries, and it later uses these queries in Step 3 to choose the partial
oracle consistently. Finally, the last modification is needed in our simulator S defined in the proof
of Lemma 3: every time B is called during a run of S, this query is to be made to the B simulated
by S.

4 Insecurity of VUFs relative to our oracles

In this section we formally show that for every candidate black-box construction (KGO, FO, ΠO, V O)
of a VUF from ATDP there is an efficient adversary A that breaks the unpredictability of the VUF
with non-negligible probability 1− δ by making a polynomial number of oracle queries to 〈O,B〉.

Let q be the maximum number of oracle queries that can be made by the VUF algorithms
(according to Assumption 1) and c ∈ N be a sufficiently large constant specified below. Without
loss of generality, in the following proof we assume q ≥ 2 and we fix c such that δ ≤ 3

eqc−1 and our
adversary has non-negligible advantage at least 1− δ. Also we set ` = qc.

Our adversary A works as follows:

Input: A VUF public key PK and access to the function oracles F (SK , ·), Π(SK , ·).
Output: x∗, y∗ ∈ {0, 1}n.
Algorithm: Our algorithm performs the following steps:

1. Query B1 on input (KGO, FO, ΠO, V O),PK and obtain x1, . . . , x`.
2. Query the VUF oracles F (SK , ·), Π(SK , ·) on xi for all i = 1 to `. Let {y1, π1, . . . , y`, π`} be

the values obtained from such queries.
3. Query B2 on input (KGO, FO, ΠO, V O),PK and {x1, y1, π1, . . . , x`, y`, π`}.
4. If B2 returns ⊥, then halt and fail. Otherwise, if B2 returns (x∗, y∗), then output (x∗, y∗).

Then we are able to state the following lemma:

Lemma 2. The adversary A defined above with input PK and oracle access to 〈O,B〉 wins the
unpredictability experiment with probability at least 1− 3

eqc−1 and makes at most 2qc+1 + 4q oracle
queries.
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As one can see our adversary A is very simple as it mainly relies on the oracle B. In particu-
lar, it is easy to see that A always succeeds when B outputs a “good” pair (x∗, y∗) such that
V O(PK , x∗, y∗, ΠO(SK , x∗)) accepts. Therefore, we need to show that the following facts happen
with non-negligible probability: (i) B does not fail (i.e., it does not output ⊥) and (ii) B correctly
evaluates FO

′′
(SK ′, x∗) = FO(SK ′, x∗).

First of all we count the number of oracle queries made by A. Observe that A makes one call
to B1 and one call to B2. Recall that a query to B counts `q + 3q + |O′| queries to O respectively.
Since we set ` = qc, |OQ| ≤ qc+1, and because |O′| ≤ |OQ|+ q we conclude that A makes at most
2qc+1 + 4q oracle queries.

Now we bound the probability that the oracle B2 outputs ⊥. Since our adversary invokes B1
and B2 with the same public key and oracle circuits, Step 1 cannot output ⊥. So, this can happen
only in Step6, namely when the verification equation V O

′′
(PK , x∗, FO

′′
(SK , x∗)) asks a query α

such that O′′(α) 6= O(α). More formally, let us call Eα such event for a specific query α. For a fixed
α we can distinguish between two cases in which α involves a public key ek that is in Z(OQ) or
not. Namely,

Pr[Eα] = Pr[Eα|ek /∈ Z(OQ)] Pr[ek /∈ Z(OQ)] + Pr[Eα|ek ∈ Z(OQ)] Pr[ek ∈ Z(OQ)]
≤ Pr[ek /∈ Z(OQ) ∧ Eα] + Pr[Eα|ek ∈ Z(OQ)]

(1)

For each public key ek that appears in a run of V O
′′
(PK , x∗, FO

′′
(SK , x∗)) we can have two different

cases: either it was generated in the run of the KG algorithm run by the challenger or not. More
precisely, let Gek be the event that a query [g(·) = ek] appears during the run of KG made by the
challenger to generate PK , then we have:

Pr[ek /∈ Z(OQ) ∧ Eα] = Pr[ek /∈ Z(OQ)|Eα ∧Gek] Pr[Eα ∧Gek]+
Pr[ek /∈ Z(OQ)|Eα ∧ ¬Gek] Pr[Eα ∧ ¬Gek]

(2)

By carefully looking at the definition of B2, it is not hard to notice that if ek was not generated
by KG, then for any query α involving ek it must be O′′(α) = O(α), namely Pr[Eα ∧ ¬Gek] = 0.
Hence, putting together the latter observation with equations (1) and (2), we obtain:

Pr[Eα] ≤ Pr[ek /∈ Z(OQ)|Eα ∧Gek] + Pr[Eα|ek ∈ Z(OQ)].

Claim 1 Pr[ek /∈ Z(OQ)|Eα ∧Gek] ≤ q
eqc .

Proof. This event in fact occurs when the public key ek involved in the query α was not collected in
the Step 2 of the B2 oracle algorithm. Notice that α can be of the form [g(·) = ek] or [e(ek, ·) = ·].
We show that such queries only occur with probability at most q

eqc .

Fix a public key ek among those ones that are generated during KGO(SK ) run by the real
Challenger. By our Assumption 1 we know that KGO makes at most q queries toO, thus there are at
most q of such ek’s. Since in Step 2 we run the verification algorithm on ` = qc randomly independent
inputs we can apply the result of Lemma 1 to bound the probability that ek is not collected in Step
2 (and appears in the query α), which is at most 1

eqc . Then, applying the union bound over all the

possible public keys ek generated by KGO(SK ) we obtain that Pr[ek /∈ Z(OQ)|Eα∧Gek] ≤ q
eqc . ut

Claim 2 Pr[Eα|ek ∈ Z(OQ)] ≤ 2q
eqc .
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Proof. Observe that a query α involving a “known” public key ek may have different answers under
O and O′′ due to the definition of the composition operator �c and the fact that O′ is defined on
some points that are not in OQ.

In particular, if α is of the form [g(td)] such that [g(td) = ek] ∈ O′′ and [g(td) = ek′] ∈ O with
ek 6= ek′, then it must be [g(td) = ek] ∈ O′ \ OQ.

On the other hand, if α = [e(ek, a)] and, [e(ek, a) = b] ∈ O and [e(ek, a) = b′] ∈ O′′ with b 6= b′,
then we distinguish between two different cases:

– [e(ek, a) = b′] ∈ O′ \ OQ. It means that this is one of the additional points chosen by B2 into
Step 3.

– There exists a′ such that [e(ek, a′) = b′] ∈ O and [e(ek, a′) = b] ∈ O′. This is a collision created
by the �c operator to preserve the permutation property of e(ek, ·).

This means that for queries α involving an ek ∈ Z(OQ) we have that O and O′′ differ in
at most 2 points. Thus, applying Lemma 1 and the union bound over all such α we obtain that
Pr[Eα|ek ∈ Z(OQ)] ≤ 2q

eqc . ut

Proof (Proof of Lemma 2). To complete the proof, let F be the event that B2 fails and outputs ⊥.
Since our adversary queries (B1,B2) with the correct input, the only place where B2 might fail is
Step 6, thus by the above claims we have Pr[F ] = Pr[Eα] ≤ 3q

eqc .

Now we show that when F does not occur, then B2 successfully returns a pair (x∗, y∗) that is
accepted by the verification algorithm (run with the real oracle) and thus allows A to break the
unpredictability of the VUF.

First of all, observe that if the oracle O′′ is a correct trapdoor permutation oracle, then the
VUF defined through the algorithms (KGO

′′
, FO

′′
, ΠO

′′
, V O

′′
) is complete and thus the verification

algorithm V O
′′
(PK , x∗, FO

′′
(SK ′, x∗), ΠO

′′
(SK ′′, x∗)) outputs 1.

Next, assume that the event Eα does not occur. Then it easy to see that the verification algorithm
V O

′′
(PK , x∗, FO

′′
(SK , x∗), ΠO

′′
(SK , x∗)) does not need any queries α such that O(α) 6= O′′(α).

This in particular means that running this algorithm with access to O would produce the same
output:

V O
′′
(PK , x∗, FO

′′
(SK ′, x∗), ΠO

′′
(SK ′, x∗)) = V O(PK , x∗, FO

′′
(SK ′, x∗), ΠO

′′
(SK ′, x∗))

Thus, V O(PK , x∗, FO
′′
(SK ′, x∗), ΠO

′′
(SK ′, x∗)) accepts as well. Then, recall that by our as-

sumption (KGO, FO, ΠO, V O) is a VUF implementation that is complete and unique. In particu-
lar, by the uniqueness the verification algorithm V O does not accept two different values for the
same x∗ and thus it follows that FO

′′
(SK ′, x∗) = FO(SK , x∗). Therefore, the probability that A

outputs (x∗, y∗) and wins the unpredictability game is at least

1− Pr[F ] ≥ 1− 3

eqc−1

ut

Finally, observe that our adversaryA runs in polynomial time, thus it does not need any PSPACE or-
acle to be made efficient.
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5 Security of ATDPs relative to our oracles

In this section we show the existence of a trapdoor permutation (GO, EO, DO) that is adaptive
one-way even against adversaries that have access to B. The construction is straightforward as each
algorithm forwards its input to the corresponding oracle, namely: GO(td) = g(td), EO(ek, a) =
e(ek, a) and DO(td, b) = d(td, b).

By the randomness of the oracle O, it is easy to see that the above construction is a secure ATDP
when the adversary is given access only to O. Therefore, in order to prove its security relative to
the oracle B, we will show that B does not help to break the one-wayness of (GO, EO, DO), namely
that B can be simulated to the adversary A.

Let n = poly(λ) be the VUF security parameter, q̂ and ρ be two additional parameters (that
we will specify in the proof) that are both polynomial in λ. Now we can state the following lemma:

Lemma 3. Let ρ = poly(λ) and let (GO, EO, DO) be an adaptive trapdoor permutation where each
algorithm forwards its input to g, e, and d respectively. Then, for every adversary A that has access
to 〈O,B〉 and makes at most q oracle queries there is a sufficiently large λ such that the probability
that A succeeds in the adaptive one-wayness experiment against the above construction is at most
negligible in λ.

5.1 Defining the Simulator

Recall that the main idea is to show that A can simulate the oracle B locally. To do so, we show
that for every A, there exists a simulator S that gets the same input as A, but which does not have
access to B. We then show that the success probability of S is close to that of A.

Intuition for the simulator. In the first step, the simulator generates a random trapdoor
permutation oracle OS locally, except for the portion concerning the permutation e(ek∗, ·). In
particular OS is defined progressively by choosing its answers uniformly at random. Moreover, we
construct S such that it collects into a partial oracle O∗ all the queries of the form [e(ek∗, ·)] that
A makes during the simulation. This way, S knows all the trapdoors of all the public keys (but
ek∗) and is therefore able to evaluate all inversion queries d(td, ·) where g(td) 6= ek∗.

The first three steps of the algorithm B2 can easily be simulated as in the real case. The first
difference comes up into Step 4 where S has to define the oracle O′′.The difficulty here is that the
simulator does not know the entire O and thus it cannot compute the composition O �c O′. We
solve this problem using an idea similar to the one used in [38]. Namely, we define O′′ such that it is
consistent with the partial oracles that are known to S so far (i.e., OS ,O∗ and O′) and we forward
all other queries to O. This solves most of the problematic cases due to the fact that the adversary
A only knows queried mappings (which are also known to S since it has stored all of them).

One remaining issue are those queries [d(td′, b)] such that td′ is the trapdoor that is “virtually”
associated to ek∗ (i.e., [g(td′) = ek∗] ∈ O′) and there is no known mapping [e(ek∗, ·) = b] in O∗.
Indeed, recall that the simulator does not know the real trapdoor td∗ such that [g(td∗) = ek∗] ∈ O,
and also notice that forwarding these unknown queries to O would inevitably lead to an inconsistent
mapping. Assume for example that α = [d(td′, b)] is answered with O(α) = a. Then we have a
mapping [e(ek∗, a) = b] ∈ O′′, but it is very unlikely that [e(ek∗, a) = b] is in O. Such inconsistencies
could potentially be discovered in Step 6 which would cause the simulation to output ⊥ while it
should not.
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Fortunately, we show how to handle such queries by using the external inversion oracle I(ek∗, ·).
Finally, the last remaining problem is the query α = [d(td′, b∗)]. We cannot answer this query
correctly (at least as long as the inverse of b∗ has not been discovered before), however we will
show that this case only happens with negligible probability. The main idea is that either A cannot
provide an accepting input to B2 or (in the case that we have passed all the checks and have reached
Step 5) the probability that this query occurs is very small.

Formal description of the simulator. We define the simulator S as follows:

Input: A public key ek∗ and a value b∗ ∈ {0, 1}λ. S has also access to the inversion oracle I(ek∗, ·)
that answers queries for b 6= b∗.

Output: a∗ ∈ {0, 1}λ.

Algorithm: the simulator performs the following steps:

1. S generates a random trapdoor permutation OS which is defined on any queries except
those of the form e(ek∗, ·).

2. Run the algorithm AI,〈O,B〉(ek∗, b∗) and simulate A’s oracle queries as follows:

O and I queries: Letting α denote the queries A, then we distinguish between two cases:

- If α = [I(ek∗, ·)] or α = [e(ek∗, ·)], then forward α to the oracles I and O respectively
and output the received answer.

- Else, answer with OS(α). Collect into a partial oracle O∗ all the mappings of the
form [e(ek∗, a) = b] that are discovered during the simulation through A’s queries to
e(ek∗, ·) or I(ek∗, ·).

B1 queries: The B1 oracle can be easily simulated as the real one.
B2 queries: On input V UFO,PK and {(xi, yi, πi)}`i=1 proceed as follows:

– Step 1 and Step 2 are simulated as the real ones.
– Step 3 is simulated offline without making any oracle queries. To achieve, this, the

simulator finds an O′ which is consistent with the currently known O∗.
– The simulation of Step 4 differs slightly. Indeed S defines O′′ = (O ∪ I) �c Õ where
Õ = (OS ∪ O∗) �c O′. More precisely, if Õ(α) is defined then O′′(α) outputs Õ(α),
otherwise it works as follows. If α = [d(td′, b)] such that [g(td′) = ek∗] then we can
safely set O′′(α) = I(ek∗, b). This is done for all b 6= b∗. In the special case where
α = [d(td′, b∗)], then the simulator answers O′′(α) with a random value. Answer all
other queries with O.

– Step 5: Choose a random x∗ and run y∗←FO′′(SK ′, x∗) and π∗←ΠO′′(SK ′, x∗).
– Step 6: Run V O

′′
(PK , x∗, y∗, π∗) and check that all queries made by V O

′′
are consis-

tent with the oracle simulated to A.

3. If during the simulation a query [g(td)] occurs such that S answered it with ek∗ and [g(td) =
ek∗] ∈ O, then compute a∗←d(td, b∗), output a∗, and stop.

4. If during the simulation a query [e(ek∗, a)] has been asked such that [e(ek∗, a) = b∗] ∈ O,
then output a and stop.

5.2 Analyzing the Simulator

We now analyze the success probability of our simulator. To do so we first formalize the setting
and we define the relevant events that may occur during our simulation.
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Consider the input of the simulator (ek∗, b∗) and the public key PK provided by A in a query
to B. For every x ∈ {0, 1}n let hitx be the event that a query [d(td∗, b∗)] (with g(td∗) = ek∗)
occurs during the execution of either FO(SK , x) or ΠO(SK , x). In this case, observe that a query
[e(ek∗, ·) = b∗] must appear while running V O(PK , x, FO(SK , x), ΠO(SK , x)). Otherwise, if such
a query would not appear in the verification, then it would not be “important”8 for the verification
algorithm (and thus we might change its answer without changing the output of the algorithm).

Without loss of generality, we can distinguish between two types of such public keys PK :

type-1. A public key is of type-1 if it induces FO to call d(td∗, b∗) on a non-negligible fraction of
the inputs, meaning that for a random x ∈ {0, 1}n we have Pr[hitx] ≥ 1

q .

type-2. A public key is of type-2 if it causes FO to call d(td∗, b∗) only on a negligible fraction of the
inputs, meaning that for a random x ∈ {0, 1}n and all sufficiently large λ we have Pr[hitx] < 1

q .

Recall that q = poly(λ) here is an upper bound on the number of oracle queries made by A. Also,
we define some “good” and “bad” events that may occur during our simulation:

– Good1 is the event that a query [g(td)] occurs during the simulation and [g(td) = ek∗] ∈ O.
– Good2 is the event that a query [e(ek∗, a) = b∗] appears during the simulation. Note that

this may happen for two reasons: either [e(ek∗, a)] is asked by A and S answers with b∗ or
[e(ek∗, a) = b∗] is found during the collection stage in Step 2.

– Bad1 is the event that A queries (the simulated) B2 on a tuple (V UFO,PK , x1, . . . , x`) such
that (x1, . . . , x`) = B1(V UFO,PK ), but the adversary never made such query to B1.

– Bad2 is the event that [g(td)] occurs during the simulation and S answers with ek∗ in OS .
– Bad3 is the event that O′′ contains a mapping [e(ek∗, a′) = b] while [e(ek∗, a) = b] ∈ O where
a 6= a′.

– Bad∗ is the event that in Step 5 α = [d(td′, b∗)] is answered with a random value.

Except for Bad1 we notice that these events represent all the cases where our simulator and the real
B oracle may differ. The next step is to bound the probability that each of these events occurs during
the simulation. First observe that Pr[Bad1] is equivalent to the probability of predicting a random
function. Without loss of generality we assume that for any PPT machine that makes ρ = poly(λ)
oracle querie ssuch probability is negligible in λ: Pr[Bad1] ≤ ρ

2λ
. Also, let q̂ be the number of queries

made by the simulator to O. It is easy to notice that q̂ is bounded by a polynomial.

Claim 3 The probability of events Good1 and Bad2 is at most q
2λ

and q̂
2λ

respectively.

Proof. Due to the randomness of the oracle O, observe that for every query [g(td)] the probability
that [g(td) = ek∗] ∈ O is at most 1

2λ
. Similarly for Bad2, the probability that S chooses ek∗ as the

response to some query [g(td)] is again ≤ 1
2λ

. Since A is assumed to ask at most q such queries,
we can apply the union bound over all of them and in conclusion we obtain that Pr[Good1] ≤ q

2λ
.

Similarly, we have Pr[Bad2] ≤ q̂
2λ

. ut

Claim 4 The probability of the event Bad∗ is at most 1
q + 1

eq
c−1 .

Proof. Recall that we distinguish between two types of keys denoted by type-1 and type-2, re-
spectively. Let Γi be the event that the submitted public key PK is of type i. Then we can write

Pr[Bad∗] = Pr[Bad∗|Γ1] Pr[Γ1] + Pr[Bad∗|Γ2] Pr[Γ2]

8 By “important” we mean that it affects the output of the algorithm.
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and consider Pr[Bad∗|Γ1] and Pr[Bad∗|Γ2] separately.

If the given public key is of type-2, then by our previous observation, we know that the
probability that a query [d(td′, b∗)] has been asked in Step 5 is equal to Pr[hitx∗ |Γ2] which is < 1

q .

Thus, it follows that Pr[Bad∗|Γ2] < 1
q .

On the other hand, if the adversary submits a public key of type-1, then the probability that a
query d(td′, b∗) appears in Step 5 is≥ 1

q . However, observe that by our definition ofO′′, it is answered
with a random value only if a query [e(ek∗, a) = b∗] has never appeared in the previous steps. We can
show that the probability that in this case a query [e(ek∗, a) = b∗] did not appear before Step 5 is
very small. For instance, if Γ1 occurs, then we know that for any of the xi’s in Step 2 the probability
that [e(ek∗, a) = b∗] does not appear while evaluating V O(PK , xi, F

O(SK , xi), Π
O(SK , xi)) (for

i = 1, . . . , `) is at most 1 − Pr[hitxi |Γ1] ≤ 1 − 1
q . Therefore the probability that such a query does

not appear at all in Step 2 is ≤ (1− 1
q )q

c ≤ 1

eqc−1 . Putting together the two cases, in conclusion we

obtain Pr[Bad∗] <
1
q̂ + 1

eqc−1 . ut

Claim 5 The probability of events Good2 and Bad3 is at most q
2λ−q and q̂

2λ−q̂ respectively.

Proof. If the event Good2 occurs, then S is able to compute the inverse of b∗ for a random trapdoor
permutation. Since A makes at most q queries, it follows that Pr[Good2] ≤ q

2λ−q .

The event Bad3 covers the case in which we discover (during the simulation) a query α of the
form [e(ek∗, ·) = b] such that O(α) 6= O′′(α). More precisely, we assume that [e(ek∗, a′) = b] ∈ O′′
and [e(ek∗, a) = b] ∈ O for two distinct values a, a′.

If we consider [e(ek∗, a′) = b] we have two possibilities: either it is inO′ or it is not. If [e(ek∗, a′) =
b] /∈ O′ then, by the definition of O′′ (and the fact that OS is not defined on e(ek∗, ·)) it must hold
[e(ek∗, a′) = b] ∈ O∗, which means that there is no collision in this case. Otherwise, consider the
case when [e(ek∗, a′) = b] ∈ O′ and it is also in O∗. This case can never happen because O′ is defined
consistently with O∗. So, assume that [e(ek∗, a′) = b] /∈ O∗. If a query α = [e(ek∗, a) = b] appears
during the simulation it means that S finds the inverse of b in a random permutation in the case
when he already knows |O∗| ≤ q̂ points and he makes at most q̂ queries to the permutation. However
we know that the probability of this event is at most q̂

2λ−q̂ . Therefore it holds Pr[Bad3] ≤ q̂
2λ−q̂ . ut

Once we have bound the probabilities of all our events, we can show that S has negligible
probability of winning the one-wayness game.

First of all consider the case of an adversary that wants to fool the oracle B by providing a fake
input. By our bound on Bad1 we know that such probability is negligible. Formally we have:

Pr[A wins] = Pr[A wins|Bad1] Pr[Bad1] + Pr[A wins|¬Bad1] Pr[¬Bad1]
≤ Pr[A wins|¬Bad1](1− Pr[Bad1])

It is easy to see that if none of the events Good1,Good2,Bad2,Bad3,Bad
∗ occurs, then S simulates

A perfectly. Moreover, all these events are disjoint as each of them induces our algorithm to halt
the simulation. Therefore we have:

Pr[S wins|¬Bad1] ≥ Pr[A wins|¬Bad1]− Pr[Good1]− Pr[Good2]− Pr[Bad2]− Pr[Bad3]− Pr[Bad∗]

≥ Pr[A wins|¬Bad1]− q
2λ
− q

2λ−q −
q̂
2λ
− q̂

2λ−q̂ −
1
q −

1

eqc−1 .
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The probability that S wins the one-wayness game without access to B is at most q̂
2λ−q̂ . Thus,

in conclusion we obtain that an adversary A making at most q queries has the following probability
of succeeding:

Pr[A wins] ≤ Pr[A wins|¬Bad1](1− Pr[Bad1])

≤ (Pr[S wins|¬Bad1] + 2q̂
2λ

+ 2q̂
2λ−q̂ + 1

q + 1

eqc−1 )(1− ρ
2λ

)

≤ ( 2q̂
2λ

+ 3q̂
2λ−q̂ + 1

q + 1

eqc−1 )(1− ρ
2λ

)

that completes the proof of Lemma 3. ut
Note that so far we have measured the complexity of our algorithm only in terms of ora-

cle queries. In order to extend our black-box separation to all PPT adversaries, we can add a
PSPACE oracle. Specifically, our simulator S can perform the Step 3 of B2 by making a query
to the PSPACE oracle, which can be embedded into the oracle O using the techniques of Simon
[37].
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A Static Verifiable Unpredictable Functions

In this section we introduce a weaker notion that we call static verifiable unpredictable functions
and we show that it can be constructed using ATDPs.

Definition 5 (Static Verifiable Unpredictable Functions). A function f is static unpre-
dictable if the probability that any PPT adversary A = (A1,A2) succeeds the experiment staticfA is
at most negligible, where

Experiment staticfA
(x1, . . . , xq, state)←A1(1

λ)
(PK ,SK )←KG(1λ);
yi←F (SK , xi), πi←Π(SK , xi) for i = 1, . . . , q
(x∗, y∗)←A2(PK , state, (y1, π1), . . . , (yq, πq))

Output 1 iff y∗ = F (SK , x∗).
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A construction from ATDPs satisfying such definition can be obtained in two steps.
First, consider the following construction: the key generation produces a key-pair of the ATDP

(ek, td)←G(1λ) and publishes ek as PK and stores td as SK . The evaluation algorithm F (SK , x)
returns y ← D(SK , x) (the proof algorithm computes the same value). For verification, it simply
checks whether E(PK , y) = x. It is easy to see that this construction can be proved secure according
to a definition of unpredictability slightly weaker than the one given above. More precisely, the one
where x∗ is chosen (at random) by the challenger and given in input to A2.

Next, in order to obtain a static VUF we can apply the prefix technique as put forward by
Hohenberger and Waters in [20] and later generalized by Brakerski and Tauman Kalai in [5].

B Intuitive argument on the difficulty of building VRFs from weak-VRFs

We give here an intuitive argument why any black-box construction of VRF from a weak-VRF
must already be a VRF. To see this, recall that a weak-VRF is unique and the pseudorandomness
only holds w.r.t. random inputs. The first observation is that any construction must describe a
deterministic algorithm that takes as input a value x and outputs a unique and random value
x′ (which is the input of the wVRF). Moreover, such a transformation must also specify a proof
algorithm that proves the relation between x and x′. We now argue that these algorithms already
specify a VRF: Firstly, uniqueness follows immediately from the unique mapping between x and
x′. If this mapping would not be unique, then the transformed VRF could not be unique. Secondly,
the output of the construction must be random, otherwise it cannot be used as input to the
wVRF. But if the ouput is already random, then this construction would immediately fulfill the
pseudorandomness property. Thus, it seems that building a VRF out of any wVRF is as hard as
constructing a VRF directly.
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