
GORAM – Group ORAM for Privacy and Access
Control in Outsourced Personal Records1

Matteo Ma↵ei Giulio Malavolta Manuel Reinert Dominique Schröder

Saarland University, CISPA
{maffei,malavolta,reinert,schroeder}@cs.uni-saarland.de

August 25, 2015

1An extended abstract of this paper has been published at IEEE S&P 2015 [1].

Abstract

Cloud storage has rapidly become a cornerstone of many IT infrastructures, constituting a
seamless solution for the backup, synchronization, and sharing of large amounts of data. Putting
user data in the direct control of cloud service providers, however, raises security and privacy
concerns related to the integrity of outsourced data, the accidental or intentional leakage of
sensitive information, the profiling of user activities and so on. Furthermore, even if the cloud
provider is trusted, users having access to outsourced files might be malicious and misbehave.
These concerns are particularly serious in sensitive applications like personal health records and
credit score systems.

To tackle this problem, we present GORAM, a cryptographic system that protects the se-
crecy and integrity of outsourced data with respect to both an untrusted server and malicious
clients, guarantees the anonymity and unlinkability of accesses to such data, and allows the data
owner to share outsourced data with other clients, selectively granting them read and write per-
missions. GORAM is the first system to achieve such a wide range of security and privacy
properties for outsourced storage. In the process of designing an e�cient construction, we de-
veloped two new, generally applicable cryptographic schemes, namely, batched zero-knowledge
proofs of shu✏e and an accountability technique based on chameleon signatures, which we con-
sider of independent interest. We implemented GORAM in Amazon Elastic Compute Cloud
(EC2) and ran a performance evaluation demonstrating the scalability and e�ciency of our
construction.

Contents

1 Introduction 3
1.1 Our Contributions . 3
1.2 Outline . 4

2 System Settings 5
2.1 Group ORAM . 5
2.2 Security and Privacy Properties . 6
2.3 The Attacker Model . 6

3 Our Construction (GORAM) 6
3.1 Prerequisites . 7
3.2 Description of the Algorithms . 9
3.3 Batched Zero-Knowledge Proofs of Shu✏e . 12

4 Accountable Integrity (A-GORAM) 15
4.1 Prerequisites . 15
4.2 Construction . 15

5 Scalable Solution (S-GORAM) 17

6 Security and Privacy for Group ORAM 18
6.1 Security and Privacy of Group ORAM . 18

7 Security and Privacy Results 22

8 Implementation and Experiments 23
8.1 Cryptographic Instantiations . 23
8.2 Computational Complexity . 24
8.3 Java Implementation . 24
8.4 Experiments . 24

9 Case Study: Personal Health Records 28

10 Related Work 30

11 Conclusion and Future Work 31

A Cryptographic Building Blocks 36

B Predicate Encryption and Rerandomization 41
B.1 The KSW Predicate Encryption Scheme . 41
B.2 Rerandomizing KSW Ciphertexts . 44
B.3 Proving Knowledge of Secret Keys in Groth-Sahai 44

C Formal Definitions 45
C.1 Secrecy . 45
C.2 Integrity . 46
C.3 Tamper Resistance . 46
C.4 Obliviousness . 47
C.5 Anonymity . 47

1

C.6 Accountability . 48

D Full Cryptographic Proofs 48
D.1 Correctness . 48
D.2 Security Proofs . 49

E Algorithms for GORAM with Accountable Integrity 74

F Proof of Soundness for the Batched Zero-Knowledge Proof of Shu✏e 75

2

1 Introduction

Cloud storage has rapidly gained a central role in the digital society, serving as a building block
of consumer-oriented applications (e.g, Dropbox, Microsoft SkyDrive, and Google Drive) as well
as particularly sensitive IT infrastructures, such as personal record management systems. For
instance, credit score systems rely on credit bureaus (e.g., Experian, Equifax, and TransUnion
in US) collecting and storing information about the financial status of users, which is then
made available upon request. As a further example, personal health records (PHRs) are more
and more managed and accessed through web services (e.g., private products like Microsoft
HealthVault and PatientsLikeMe in US and national services like ELGA in Austria), since this
makes PHRs readily accessible in case of emergency even without the physical presence of the
e-health card and eases their synchronization across di↵erent hospitals.

Despite its convenience and popularity, cloud storage poses a number of security and privacy
issues. The first problem is related to the secrecy of user data, which are often sensitive (e.g.,
PHRs give a complete picture of the health status of citizens) and, thus, should be concealed
from the server. A crucial point to stress is that preventing the server from reading user data
(e.g., through encryption) is necessary but not su�cient to protect the privacy of user data.
Indeed, as shown in the literature [2, 3], the capability to link consecutive accesses to the same file
can be exploited by the server to learn sensitive information: for instance, it has been shown that
the access patterns to a DNA sequence allow for determining the patient’s disease. Hence the
obliviousness of data accesses is another fundamental property for sensitive IT infrastructures:
the server should not be able to tell whether two consecutive accesses concern the same data or
not, nor to determine the nature of such accesses (read or write). Furthermore, the server has
in principle the possibility to modify client’s data, which can be harmful for several reasons:
for instance, it could drop data to save storage space or modify data to influence the statistics
about the dataset (e.g., in order to justify higher insurance fees or taxes). Therefore another
property that should be guaranteed is the integrity of user data.

Finally, it is often necessary to share outsourced documents with other clients, yet in a
controlled manner, i.e., selectively granting them read and write permissions: for instance,
PHRs are selectively shared with the doctor before a medical treatment and a prescription is
shared with the pharmacy in order to buy a medicine. Data sharing complicates the enforcement
of secrecy and integrity properties, which have to be guaranteed not only against a malicious
server but also against malicious clients. Notice that the simultaneous enforcement of these
properties is particularly challenging, since some of them are in seeming contradiction. For
instance, access control seems to be incompatible with the obliviousness property: if the server
is not supposed to learn which file the client is accessing, how can he check that the client has
the rights to do so?

1.1 Our Contributions

In this work, we present GORAM, a novel framework for privacy-preserving cloud-storage.
Users can share outsourced data with other clients, selectively granting them read and write
permissions, and verify the integrity of such data. These are hidden from the server and access
patterns are oblivious. GORAM is the first system to achieve such a wide range of security and
privacy properties for storage outsourcing. More specifically, the contributions of this work are
the following:

3

• We formalize the problem statement by introducing the notion of Group Oblivious RAM
(GORAM). GORAM extends the concept of Oblivious RAM [4] (ORAM) 1 by considering
multiple, possibly malicious clients, with read and/or write access to outsourced data, as
opposed to a single client. We propose a formal security model that covers a variety of
security and privacy properties, such as data integrity, data secrecy, obliviousness of access
patterns, and anonymity.

• We first introduce a cryptographic instantiation based on a novel combination of
ORAM [5], predicate encryption [6], and zero-knowledge (ZK) proofs (of shu✏e) [7, 8].
This construction is secure, but building on o↵-the-shelf cryptographic primitives is not
practical. In particular, clients prove to the server that the operations performed on the
database are correct through ZK proofs of shu✏e, which are expensive when the entries
to be shu✏ed are tuples of data, as opposed to single entries.

• As a first step towards a practical instantiation, we maintain the general design, but we
replace the expensive ZK proofs of shu✏e with a new proof technique called batched ZK
proofs of shu✏e. A batched ZK proof of shu✏e significantly reduces the number of ZK
proofs by “batching” several instances and verifying them together. Since this technique
is generically applicable in any setting where one is interested to perform a zero-knowledge
proof of shu✏e over a list of entries, each of them consisting of a tuple of encrypted blocks,
we believe that it is of independent interest. This second realization greatly outperforms
the first solution and is suitable for databases with relatively small entries, accessed by a
few users, but it does not scale to large entries and many users.

• To obtain a scalable solution, we explore some trade-o↵s between security and e�ciency.
First, we present a new accountability technique based on chameleon signatures. The
idea is to let clients perform arbitrary operations on the database, letting them verify
each other’s operation a-posteriori and giving them the possibility to blame misbehaving
parties. Secondly, we replace the relatively expensive predicate encryption, which enables
sophisticated role-based and attribute-based access control policies, with the more e�-
cient broadcast encryption, which su�ces to enforce per-user read/write permissions, as
required in the personal record management systems we consider. This approach leads to
a very e�cient solution that scales to large files and thousands of users, with a combined
communication-computation overhead of only 7% (resp. 8%) with respect to state-of-the-
art, single-client ORAM constructions for reading (resp. writing) on a 1GB storage with
1MB block size (for larger datasets or block sizes, the overhead is even lower).

We have implemented GORAM in Amazon Elastic Compute Cloud (EC2) and conducted
a performance evaluation demonstrating the scalability and e�ciency of our construction. Al-
though GORAM is generically applicable, the large spectrum of security and privacy properties,
as well as the e�ciency and scalability of the system, make GORAM particularly suitable for
the management of large amounts of sensitive data, such as personal records.

1.2 Outline

Section 2 introduces the notion of Group ORAM. We discuss the general cryptographic instan-
tiation in Section 3, the accountability-based construction in Section 4, and the e�cient scheme
with broadcast encryption in Section 5. Section 6 formalizes the security properties of Group
ORAM and Section 7 states the security and privacy results. We implemented our system and

1ORAM is a technique originally devised to protect the access pattern of software on the local memory and
then used to hide the data and the user’s access pattern in storage outsourcing services.

4

conducted an experimental evaluation, as discussed in Section 8. Section 9 presents a case study
on PHRs. The related work is discussed in Section 10. Section 11 concludes and outlines future
research directions.

2 System Settings

We detail the problem statement by formalizing the concept of Group ORAM (Section 2.1), pre-
senting the relevant security and privacy properties (Section 2.2), and introducing the attacker
model (Section 2.3).

2.1 Group ORAM

We consider a data owner O outsourcing her database DB = d1, . . . , dm to the server S. A set
of clients C1, . . . , Cn can accesses parts of the database, as specified by the access control policy
set by O. This is formalized as an n-by-m matrix AC, defining the permissions of the clients
on the files in the database: AC(i, j) (i.e., the j-th entry of the i-th row) denotes the access
mode for client i on data dj . Each entry in the matrix is an element of the set {?, r , rw} of
access modes, denoting no access, read access, and write access, respectively.

At registration time, each client Ci receives a capability capi, which gives Ci access to DB as
specified in the corresponding row of AC. Furthermore, we assume the existence of a capability
capO, which grants permissions for all of the operations that can be executed by the data owner
only.

In the following we formally characterize the notion of Group ORAM. Intuitively, a Group
ORAM is a collection of two algorithms and four interactive protocols, used to setup the
database, add clients, add an entry to the database, change the access permissions to an entry,
read an entry, and overwrite an entry. In the sequel, we let hA, Bi denote a protocol between
the ppt machines A and B, |a| the length of the vector a of access modes, and a(i) the element
at position i in a. In all our protocols |DB| is equal to the number of columns of AC.

Definition 1 (Group ORAM). A Group ORAM scheme is a tuple of (interactive) ppt algo-
rithms GORAM = (gen, addCl, addE, chMode, read, write), such that:
(capO, DB) gen(1�, n) : The gen algorithm initializes the database DB := [] and the access

control matrix AC := [], and generates the access capability capO of the data owner.
The parameter n determines the maximum number of clients. This algorithm returns
(capO, DB), while AC is a global variable that maintains a state across the subsequent
algorithm and protocol executions.

{capi, deny} addCl(capO,a) : The addCl algorithm is run by the data owner, who possesses
capO, to register a new client, giving her access to the database as specified by the vector
a. If |a| is equal to the number of columns of AC, a is appended to AC as the last row
and the algorithm outputs a fresh capability capi that is assigned to that row. Otherwise,
it outputs deny.

{DB’, deny} hCaddE(capO,a, d), SaddE(DB)i : This protocol is run by the data owner, who pos-
sesses capO, to append an element d to DB, assigning the vector a of access modes. If |a|

is equal to the number of rows of AC then d is appended to DB, a is appended to AC as
the last column, and the protocol outputs the new database DB0; otherwise it outputs deny.

hCchMode(capO,a, j), SchMode(DB)i : This protocol is used by the data owner, who possesses capO,
to change the access permissions for the j-th entry as specified by the vector a of access
modes. If j  |DB| and |a| is equal to the number of rows of AC, then the j-th column of
AC is replaced by a.

5

{d, deny} hCread(capi, j), Sread(DB)i : The interactive read protocol is used by the owner of
capi to read the j-th entry of DB. This protocol returns either d := DB(j) or deny if
|DB| < j or AC(i, j) = ?.

{DB0, deny} hCwrite(capi, j, d), Swrite(DB)i : The interactive write protocol is used by the owner
of the capability capi to overwrite the j-th entry of DB with d. This protocol succeeds and
outputs DB0 if and only if AC(i, j) = rw, otherwise it outputs deny.

2.2 Security and Privacy Properties

Here we briefly outline the fundamental security and privacy properties achieved by a Group
ORAM. We refer to Section 6 for a precise formalization of these properties based on crypto-
graphic games.

Secrecy: clients can only read entries they hold read permissions on.

Integrity: clients can only write entries they hold write permissions on.

Tamper-resistance: clients, eventually colluding with the server, cannot modify an entry they
do not hold write permission on without being detected by the data owner.

Obliviousness: the server cannot determine the access pattern on the data given a clients’
sequence of operation.

Anonymity: the server and the data owner cannot determine who performed a given operation,
among the set of clients that are allowed to perform it.

Accountable Integrity: clients cannot write entries they do not hold write permission on
without being detected.

2.3 The Attacker Model

We consider an adversarial model in which the data owner O is honest, the clients C1, . . . , Cn
may be malicious, and the server S is assumed to be honest-but-curious (HbC)2 and not to
collude with clients. These assumptions are common in the literature (see, e.g., [9, 10]) and
are well justified in a cloud setting, since it is of paramount importance for service providers
to keep a good reputation, which discourages them from visibly misbehaving, while they may
have an incentive in passively gathering sensitive information given the commercial interest of
personal data.

Although we could limit ourselves to reason about all security and privacy properties in
this attacker model, we find it interesting to state and prove some of them even in a stronger
attacker model, where the server can arbitrarily misbehave. This allows us to characterize which
properties unconditionally hold true in our system, i.e., even if the server gets compromised
(cf. the discussion in Section 6).

3 Our Construction (GORAM)

In this section, we first show how to realize a Group ORAM using a novel combination of ORAM,
predicate encryption, and zero-knowledge proofs (Section 3.1 and Section 3.2). Since even the
usage of the most e�cient zero-knowledge proof system still yields an ine�cient construction, we

2I.e., the server is regarded as a passive adversary, following the protocol but seeking to gather additional
information

6

introduce a new proof technique called batched ZK proofs of shu✏e (Section 3.3) and instantiate
our general framework with this primitive.

3.1 Prerequisites

In the following, we describe the database layout, the basic cryptographic primitives, and the
system assumptions.

Layout of the database. The layout of the database DB follows the one proposed by Stefanov
et al. [5]. To store N data entries, we use a binary tree T of depth D = O(log N), where each
node stores a bucket of entries, say b entries per bucket. We denote a node at depth d and
row index i by Td,i. The depth at the root ⇢ is 0 and increases from top to bottom; the row
index increases from left to right, starting at 0. We often refer to the root of the tree as ⇢
instead of T0,0. Moreover, Path-ORAM [5] uses a so-called stash as local storage to save entries
that would overflow the root bucket. We assume the stash to be stored and shared on the
server like every other node, but we leave it out for the algorithmic description. The stash
can also be incorporated in the root node, which does not carry b but b + s entries where s is
the size of the stash. The extension of the algorithms is straight-forward (only the number of
downloaded entries changes) and does not a↵ect their computational complexity. In addition
to the database, there is an index structure LM that maps entry indices i to leaf indices li. If
an entry index i is mapped in LM to li then the entry with index i can be found in some node
on the path from the leaf li to the root ⇢ of the tree. Finally, to initialize the database we fill
it with dummy elements.

Cryptographic preliminaries. We informally review the cryptographic building blocks and
introduce a few useful notations. (For formal definitions, we refer to Appendix A.)

We denote by ⇧SE = (GenSE, E , D) a private-key encryption scheme, where GenSE is the
key-generation algorithm and E (resp. D) is the encryption (resp. decryption) algorithm. Anal-
ogously, we denote by ⇧PKE = (GenPKE, Enc, Dec) a public-key encryption scheme. We also
require a publicly available function Rerand to rerandomize public-key ciphertexts. We require
that both encryption schemes fulfill the IND-CPA-security property [11].

A predicate encryption scheme [6] ⇧PE = (PrGen, PrKGen, PrEnc, PrDec) consists of a setup
algorithm PrGen, a key-generation algorithm PrKGen, and an encryption (resp. decryption)
algorithm PrEnc (resp. PrDec). In a predicate encryption scheme, one can encrypt a message
m under an attribute x. The resulting ciphertext can only be decrypted with a secret key
that encodes a predicate f such that f(x) = 1. The choice of predicates determines who
can decrypt which ciphertext, which makes predicate encryption a flexible cryptographic tool
to enforce access control policies. We further use a predicate-only encryption scheme ⇧PO =
(PoGen, PoKGen, PoEnc, PoDec). The di↵erence from ⇧PE is that the attribute x is encrypted
only. As for public-key encryption, we require rerandomization functions PrRR and PoRR for
⇧PE and ⇧PO. We require that both ⇧PE and ⇧PO are (selectively) attribute-hiding [6]. This
security notion says that the adversary learns nothing about the message and the associated
attribute (except the information that is trivially leaked by the keys that the adversary has).

Intuitively, a zero-knowledge (ZK) proof system ZKP is a proof system that combines
two fundamental properties. The first property, soundness, says that it is (computationally)
infeasible to produce a ZK proof of a wrong statement. The second property, zero-knowledge,
means that no information besides the validity of the proven statement is leaked. A non-
interactive zero-knowledge proof is a zero-knowledge protocol consisting of one message sent
by the prover to the verifier. A zero-knowledge proof of knowledge additionally ensures that
the prover knows the witnesses to the given statement. We denote by PK {(~x) : F} a zero-
knowledge proof of knowledge of the variables in ~x such that the statement F holds. Here, ~x

7

xw d

c1 c2 c3 c4

E

PoEnc(opk , ·) PrEnc(mpk , ·, ·)

 j

xr, kj

E(kj , ·)

cj
Auth

cj
Key cj

Data

Enc(pk , ·) Enc(pk , ·) Enc(pk , ·)Enc(pk , ·)

Figure 1: The structure of an entry with index j, payload d, write access regulated by the
attribute xw, and read access regulated by the attribute xr.

is the set of witnesses, existentially quantified in the statement, and the proof does not reveal
any of them. For instance, the proof PK {(r) : c = Rerand(pk , d, r)} shows that two public-key
ciphertexts c and d, encrypted with the same public key pk , encrypt the same plaintext, i.e., c
is obtained by rerandomizing d with the secret randomness r.

Structure of an entry and access control modes. Abstractly, database entries are tuples
of the form E = (c1, c2, c3, c4) where c1, . . . , c4 are ciphertexts obtained using a public-key
encryption scheme (see Figure 1). In particular, c1 is the encryption of an index j identifying
the j-th entry of the database; c2 is the encryption of a predicate-only ciphertext cjAuth, which
regulates the write access to the payload stored at j using the attribute xw; c3 is the encryption
of a ciphertext cjKey, which is in turn the predicate encryption of a private key kj with attribute

xr, regulating the read access; c4 is the encryption of the ciphertext cjData, which is the encryption
with the private key kj of the data d stored at position j in the database. We use the convention
that an index j > |DB| indicates a dummy entry and we maintain the invariant that every client
may write each dummy entry.

Intuitively, in order to implement the access control modes ?, r , and rw on a data index j,
each client Ci is provided with a capability capi that is composed of three keys, the secret key
corresponding to the top level public-key encryption scheme, a secret key for the predicate-only
encryption scheme, and a secret key for the predicate encryption scheme. More specifically, if
Ci’s mode for j is ?, then capi allows for decrypting neither cjAuth nor cjKey. If Ci’s mode for j is

r , then capi allows for decrypting cjKey but not cjAuth. Finally, if Ci’s mode for j is rw , then capi

allows for decrypting both cjAuth and cjKey. Intuitively, in order to replace an entry, a client has

to successfully prove that she can decrypt the ciphertext cjAuth.

System assumptions. We assume that each client has a local storage of O(log N). Notice that
the leaf index mapping has size O(N), but the local client storage can be decreased to O(log N)
by applying a standard ORAM construction recursively to it, as proposed by Shi et al. [12].
Additionally, the data owner stores a second database ADB that contains the attributes xw

and xr associated to every entry in DB as well as predicates fi associated to the client identities
Ci. Intuitively, ADB implements the access control matrix AC used in Definition 1. Since also
ADB has size O(N), we use the same technique as the one employed for the index structure.
We further assume that clients establish authenticated channels with the server. These channels
may be anonymous (e.g., by using anonymity networks [13] and anonymous credentials for the
login [14]–[17]), but not necessarily.

8

Algorithm 1 (capO, DB) gen(1�, n).

Input: security parameter 1�, number of clients n
Output: the capability of the data owner capO

1: (pk , sk) GenPKE(1�)
2: (opk , osk) PoGen(1�, n)
3: (mpk , psk) PrGen(1�, n)
4: give pk to the server S

5: initialize DB on S, ADB := {}, cntC := 0, cntE := 0
6: return capO := (cntC , cntE , sk , osk , psk)

Algorithm 2 {capi, deny} addCl(capO,a).

Input: the capability of O capO and an access control list a for the client to be added
Output: a capability capi for client Ci in case of success, deny otherwise
1: parse capO as (cntC , cntE , sk , osk , psk)
2: if |a| 6= cntE then return deny
3: end if
4: cntC := cntC + 1
5: compute fi s.t. the following holds for 1  j  |a| and all (xw,j , xr,j) := ADB(j)

if a(j) = ? then fi(xw,j) = fi(xr,j) = 0
if a(j) = r then fi(xw,j) = 0 and fi(xr,j) = 1
if a(j) = rw then fi(xw,j) = fi(xr,j) = 1

6: ADB := ADB[Ci 7! fi]
7: oskfi PoKGen(osk , fi), skfi PrKGen(psk , fi)
8: return capi := (sk , oskfi , skfi)

3.2 Description of the Algorithms

Implementation of (capO, DB) gen(1�, n) (Algorithm 1). Intuitively, the data owner
initializes the cryptographic schemes (lines 1.1–1.3) as well as the rest of the infrastructure (lines
1.4–1.5), and finally outputs O’s capability (line 1.6).3 Notice that this algorithm takes as input
the maximum number n of clients in the system, since this determines the size of the predicates
ruling access control, which the predicate(-only) encryption schemes are parameterized by.

Implementation of {capi, deny} addCl(capO,a) (Algorithm 2). This algorithm allows
O to register a new client in the system. Specifically, O creates a new capability for the new
client Ci according to the given access permission list a (lines 2.5–2.8). If O wants to add
more clients than n, the maximum number she initially decided, she can do so at the price of
re-initializing the database. In particular, she has to setup new predicate-and predicate-only
encryption schemes, since these depend on n. Secondly, she has to distribute new capabilities
to all clients. Finally, for each entry in the database, she has to re-encrypt the ciphertexts cAuth

and cKey with the new keys.

Implementation of {DB0, deny} hCaddE(capO,a, d), SaddE(DB)i (Algorithm 3). In this
algorithm, O adds a new entry that contains the payload d to the database. Furthermore, the
new entry is protected according to the given access permission list a. Intuitively, O assigns the
new entry to a random leaf and downloads the corresponding path in the database (lines 3.4–3.5).
It then creates the new entry and substitutes it for a dummy entry (lines 3.6–3.9). Finally, O

3For simplifying the notation, we assume for each encryption scheme that the public key is part of the secret
key.

9

Algorithm 3 {DB0, deny} hCaddE(capO,a, d), SaddE(DB)i.

Input: the capability of O capO, an access control list a and the data d for the entry to be
added

Output: a changed database DB0 on S in case of success, deny otherwise
1: parse capO as (cntC , cntE , sk , osk , psk)
2: if |a| 6= cntC then return deny
3: end if
4: cntE := cntE + 1, j := cntE , lj {0, 1}

D, LM := LM[j 7! lj]
5: let E1, . . . , Eb(D+1) be the path from ⇢ to TD,lj downloaded from S (Ei = (c1,i, c2,i, c3,i, c4,i))
6: let k be such that Dec(sk , c1,k) > |DB|

7: compute (xw,j , xr,j) s.t. the following holds for 1  i  |a| and all fi := ADB(Ci)
if a(i) = ? then fi(xw,j) = fi(xr,j) = 0
if a(i) = r then fi(xw,j) = 0, fi(xr,j) = 1
if a(i) = rw then fi(xw,j) = fi(xr,j) = 1

8: ADB := ADB[j 7! (xw,j , xr,j)]
9: Ek := (c1,k, c2,k, c3,k, c4,k) where

kj GenSE(1�) c1,k Enc(pk , j)

cjAuth PoEnc(opk , xw,j) c2,k Enc(pk , cjAuth)

cjKey PrEnc(mpk , xr,j , kj) c3,k Enc(pk , cjKey)

cjData E(kj , d) c4,k Enc(pk , cjData)
10: for all 1  `  b(D + 1), ` 6= k do
11: select r` uniformly at random
12: E0

`
 Rerand(pk , E`, r`)

13: end for
14: upload E01, . . . , E

0

k�1, Ek, E0k+1, . . . , E
0

b(D+1) to S

rerandomizes the entries so as to hide from S which entry changes, and finally uploads the
modified path to S (lines 3.10–3.14).

Eviction. In all ORAM constructions, the client has to rearrange the entries in the database in
order to make subsequent accesses unlinkable to each other. In the tree construction we use [5],
this is achieved by first assigning a new, randomly picked, leaf index to the read or written
entry. After that, the entry might no longer reside on the path from the root to its designated
leaf index and, thus, has to be moved. This procedure is called eviction (Algorithm 4).

This algorithm assigns the entry to be evicted to a new leaf index (line 4.1). It then locally
shu✏es and rerandomizes the given path according to a permutation ⇡ (lines 4.2–4.4). After
replacing the old path with a new one, the evicted entry is supposed to be stored in a node along
the path from the root to the assigned leaf, which always exists since the root is part of the
permuted nodes. A peculiarity of our setting is that clients are not trusted and, in particular,
they might store a sequence of ciphertexts in the database that is not a permutation of the
original path (e.g., they could store a path of dummy entries, thereby cancelling the original
data).

Integrity proofs. To tackle this problem, a first technical novelty in our construction is, in the
read and write protocols, to let the client output the modified path along with a proof of shu✏e
correctness [18, 8], which has to be verified by the server (s = 1, lines 4.6–4.7). As the data
owner is assumed to be honest, she does not have to send a proof in the chMode protocol (s = 0,
line 4.9).

10

Algorithm 4 (E001 , . . . , E00
b(D+1), ⇡, [P]) Evict(E1, . . . , Eb(D+1), s, j, k).

Input: a list of entries E1, . . . , Eb(D+1), a bit s, an index j, and a position k in the list
Output: a permuted and rerandomized list of entries E001 , . . . , E00

b(D+1), a permutation ⇡, and a

proof of shu✏e correctness (if s = 1)
1: lj {0, 1}

D, LM := LM[j 7! lj]
2: compute a permutation ⇡ s.t. ⇡(k) = 1 and for all other ` 6= k, ⇡ pushes ` down on the path

from ⇢ (= E1, . . . , Eb) to the current leaf node (= EbD+1, . . . , Eb(D+1)) as long as the index
of the `-th entry still lies on the path from ⇢ to its designated leaf node.

3: E01, . . . , E
0

b(D+1) := E⇡�1(1), . . . , E⇡�1(b(D+1))

4: let E001 , . . . , E00
b(D+1) be the rerandomization of E01, . . . , E

0

b(D+1) as described in 3.10–3.13

(including k)
5: if s = 1 then

6: P := PK

(
(⇡, r1, . . . , rb(D+1)) :

8`. E` = Rerand(pk , E⇡�1(`), r`)

)

7: return E001 , . . . , E00
b(D+1), ⇡, P

8: else
9: return E001 , . . . , E00

b(D+1), ⇡
10: end if

Implementation of hCchMode(capO,a, j), SchMode(DB)i (Algorithm 5). In this protocol, O

changes the access mode of the j-th entry in DB according to the new access permission list
a. Intuitively, she does so by downloading the path where the entry resides on (lines 5.4–5.5),
changing the entry accordingly (lines 5.6–5.11), and uploading a modified and evicted path
to the server (lines 5.12–5.13). Näıvely, O could simply re-encrypt the old key with the new
attributes. However, if a client keeps a key for index j locally and his access on j is revoked,
then he can still access the payload. Hence, O also picks a new key and re-encrypts the payload.

Implementation of {d, deny} hCread(capi, j), Sread(DB)i (Algorithm 6). Intuitively, the
client downloads the path which index j is assigned to and searches for the corresponding entry
(lines 6.4–6.6). She then evicts the downloaded path, subject to the restriction that some
dummy entry afterwards resides in the top position of the root node (lines 6.7–6.8). C uploads
the evicted path together with a proof of shu✏e correctness to S who verifies the proof and
replaces the old with the new path in case of successful verification (line 6.9).

Obliviousness in presence of integrity proofs. C could in principle stop here since she has read
the desired entry. However, in order to fulfill the notion of obliviousness (Definition 19), the
read and write operations must be indistinguishable. In single-client ORAM constructions, C

can make write indistinguishable from read by simply modifying the content of the desired entry
before uploading the shu✏ed path to the server. This approach does not work in our setting,
due to the presence of integrity proofs. Intuitively, in read, it would su�ce to produce a proof
of shu✏e correctness, but this proof would not be the same as the one used in write, where
one element in the path changes. Hence another technical novelty in our construction is the
last part of the read protocol (lines 6.10–6.14), which “simulates” the write protocol despite the
presence of integrity proofs. This is explained below, in the context of the write protocol.

Implementation of {DB0, deny} hCwrite(capi, j, d), Swrite(DB)i (Algorithm 7). Firstly, C

reads the element that she wishes to change (line 7.1). Secondly, C evicts the path with the
di↵erence that here the first entry in the root node is the element that C wants to change, as
opposed to a dummy entry like in read (line 7.8). It is important to observe that the shu✏e
proof sent to the server (line 4.6) is indistinguishable in read and write since it hides both the

11

Algorithm 5 hCchMode(capO,a, j), SchMode(DB)i.

Input: the capability of O capO, an access control list a, and an index j
Output: deny if the algorithm fails
1: parse capO as (cntC , cntE , sk , osk , psk)
2: if |a| 6= cntC or j > cntE then return deny
3: end if
4: lj := LM(j)
5: let E1, . . . , Eb(D+1) be the path from ⇢ to TD,lj downloaded from S (Ei = (c1,i, c2,i, c3,i, c4,i))

6: let k be s.t. Dec(sk , c1,k) = j
7: compute (xw,j , xr,j) according to 3.7 and subject to all fi in ADB, also add them to ADB

(3.8)
8: (x0

w,j
, x0

r,j
) := ADB(j)

9: let f be s.t. f(x0
w,j

) = f(x0
r,j

) = 1

10:

skf PrKGen(psk , f) cjKey Dec(sk , c3,k)

k0
j
 PrDec(skf , c

j

Key) cjData Dec(sk , c4,k)

d D(k0
j
, cjData)

11: compute E0
k

as in 3.9
12: (E001 , . . . , E00

b(D+1), ⇡) := Evict(E1, . . . , Ek�1, E0k, Ek+1, . . . , Eb(D+1), 0, j, k)

13: upload E001 , . . . , E00
b(D+1) to S

permutation and the randomness used to rerandomize the entries. So far, we have shown how
C can upload a shu✏ed and rerandomized path to the server without modifying the content of
any entry.

In write, C can now replace the first entry in the root node with the entry containing the
new payload (lines 7.12–7.13). In read, this step is simulated by rerandomizing the first entry
of the root node, which is a dummy entry (line 6.12).

The integrity proofs PAuth and PInd produced in read and write are indistinguishable
(lines 6.11 and 6.13 for both): in both cases, they prove that C has the permission to write
on the first entry of the root node and that the index has not changed. Notice that this proof
can be produced also in read, since all clients have write access to dummy entries.

Permanent Entries. Some application scenarios of GORAM might require determined entries
of the database not to be modifiable nor deletable, not even by the data owner herself (for
instance, in the case of PHRs, the user should not be able to cancel diagnostic results in order
to pay lower insurance fees). Even though we did not explicitly describe the construction, we
mention that such a property can be achieved by assigning a binary attribute (modifiable or
permanent) to each entry and storing a commitment to this in the database. Every party that
tries to modify a given entry, including the data owner, has to provide a proof that the respective
attribute is set to modifiable. Due to space constraints we omit the algorithm, but it can be
e�ciently instantiated using El Gamal encryption and ⌃-protocols.

3.3 Batched Zero-Knowledge Proofs of Shu✏e

A zero-knowledge proof of a shu✏e of a set of ciphertexts proves in zero-knowledge that a new
set of ciphertexts contains the same plaintexts in permuted order. In our system the encryption
of an entry, for reasonable block sizes, yields in practice hundreds of ciphertexts, which means
that we have to perform hundreds of shu✏e proofs. These are computable in polynomial-time

12

Algorithm 6 {d, deny} hCread(capi, j), Sread(DB)i.

Input: the capability of the client executing the protocol capi and the index j to be read
Output: the data payload d in case of success, deny otherwise
1: parse capi as (sk , oskf , skf)
2: if j > |DB| then return deny
3: end if
4: lj := LM(j)
5: let E1, . . . , Eb(D+1) and k be as in lines 5.5–5.6
6: extract d from Ek as in line 5.10
7: let ` be s.t. Dec(sk , c1,`) > |DB|

8: (E001 , . . . , E00
b(D+1), ⇡, P):=Evict(E1, . . . , Eb(D+1), 1, j, `)

9: upload E001 , . . . , E00
b(D+1) and P to S

10: cjAuth Dec(sk , c002,1)

11: PAuth := PK
n

(oskf) : PoDec(oskf , c
j

Auth) = 1
o

12: E0001 := (c0001,1, c
000
2,1, c

000
3,1, c

000
4,1) where

r1, . . . , r4 are selected uniformly at random
c000
l,1 Rerand(pk , c00

l,1, rl) for l 2 {1, 3, 4}

c0002,1 Enc(pk , PoRR(opk , cjAuth, r2))

13: PInd := PK
�
(r1) : c001,1 = Rerand(pk , c0001,1, r1)

14: upload E0001 , PAuth, PInd, and the necessary information to access cjAuth to S

but, even using the most e�cient known solutions (e.g., [8, 19]), not fast enough for practical
purposes. This problem has been addressed in the literature but the known solutions typically
reveal part of the permutation (e.g., [20]), which would break obliviousness and, thus, are not
applicable in our setting.

To solve this problem we introduce a new proof technique that we call batched zero-knowledge
proofs of shu✏e, based on the idea of “batching” several instances and verifying them together.
Our interactive protocol takes advantage of the homomorphic property of the top layer public-
key encryption scheme in order to batch the instances. On a high level, we represent the path,
which the client proves the shu✏e of, as an n-by-m matrix where n is the number of entries (i.e.,
the path length) and m is the number of blocks of ciphertexts per entry. The common inputs of
the prover P and the verifier V are the two matrices A and A0 characterizing the path stored on
the database and the path shu✏ed and re-randomized by the client, respectively. P additionally
knows the permutation ⇡ and the randomnesses R used for rerandomizing the entries.

Intuitively, the batching algorithm randomly selects a subset of columns (i.e., block indices)
and computes the row-wise product of the corresponding blocks for each row. It then computes
the proof of shu✏e correctness on the resulting single-block ciphertexts. The property we would
like to achieve is that modifying even a single block in a row should lead to a di↵erent product
and, thus, be detected. Notice that näıvely multiplying all blocks together does not achieve the
intended property, as illustrated by the following counterexample:

✓
Enc(pk , 3) Enc(pk , 4)
Enc(pk , 5) Enc(pk , 2)

◆ ✓
Enc(pk , 2) Enc(pk , 6)
Enc(pk , 5) Enc(pk , 2)

◆

In the above matrices, the rows have not been permuted but rather changed. Still, the row-wise
product is preserved, i.e., 12 in the first and 10 in the second. Hence, we cannot compute the
product over all columns. Instead, as proved in the long version, the intended property can be
achieved with probability at least 1

2 if each column is included in the product with probability 1
2 .

13

Algorithm 7 {DB0, deny} hCwrite(capi, j, d), Swrite(DB)i.

Input: the capability of the client executing the protocol capi, the index j to be written, and
the payload d

Output: deny if the algorithm fails
1: execute 6.1–6.6
8: (E001 , . . . , E00

b(D+1), ⇡, P):=Evict(E1, . . . , Eb(D+1), 1, j, k)
9: execute 6.9–6.11

12: E0001 := (c0001,1, c
000
2,1, c

000
3,1, c

000
4,1) where

r1, r2, r3 are selected uniformly at random
c0001,1 Rerand(pk , c001,1, r1)

c0002,1 Enc(pk , PoRR(opk , cjAuth, r2))

c0003,1 Enc(pk , PrRR(mpk , cjKey, r3))

cjData E(kj , d)

c0004,1 Enc(pk , cjData)
13: execute 6.13–6.14

Algorithm 8 Batched ZK Proofs of Shu✏e.

Input of P: A, A0, ⇡, R
Input of V: A, A0

1: V randomly selects ~a {0, 1}
m and sends it to P.

2: P computes for all 1  i  n the partial ciphertext products
✓i =

Q
m

j=1 ajAi,j and ✓0
i
=
Q

m

j=1 ajA0i,j
and the corresponding partial randomness sum

ri =
P

m

j=1 ajRi,j

where aj is the j-th bit of ~a. V also computes ~✓ and ~✓0.

3: V and P run the protocol for the proof of shu✏e correctness [8] on ~✓, ~✓0, ⇡, and ~r.

Although a probability of 1
2 is not su�cient in practice, repeating the protocol k times increases

the probability to (1� 1
2k

).
The detailed construction is depicted in Algorithm 8. In line 8.1, V picks a challenge, which

indicates which column to include in the homomorphic product. Upon receiving the challenge,
in line 8.2, P and V compute the row-wise multiplication of the columns indicated by the
challenge. Finally, V and P run an o↵-the-shelf shu✏e proof on the resulting ciphertext lists
(line 8.3).

It follows from the protocol design that our approach does not a↵ect the completeness of
the underlying proof of shu✏e correctness, the same holds true for the zero-knowledge and
proof of knowledge properties. Furthermore, any malicious prover who does not apply a correct
permutation is detected by the verifier with probability at least 1/2.

Finally, the protocol can be made non-interactive by using the Fiat-Shamir heuristic [21].
To summarize, our new approach preserves all of the properties of the underlying shu✏e

proof while being significantly more e�cient. Our proof system eliminates the dependency of
the number of proofs with respect to the block size, making it dependent only on k and on the
complexity of the proof itself.

14

4 Accountable Integrity (A-GORAM)

In this section we relax the integrity property by introducing the concept of accountability. In
particular, instead of letting the server check the correctness of client operations, we develop
a technique that allows clients to detect a posteriori non-authorized changes on the database
and blame the misbehaving party. Intuitively, each entry is accompanied by a tag (technically,
a chameleon hash along with the randomness corresponding to that entry), which can only
be produced by clients having write access. All clients can verify the validity of such tags
and, eventually, determine which client inserted an entry with an invalid tag. This makes the
construction more e�cient and scalable, significantly reducing the computational complexity
both on the client and on the server side, since zero-knowledge proofs are no longer necessary
and, consequently, the outermost encryption can be implemented using symmetric, as opposed
to asymmetric, cryptography. Such a mechanism is supposed to be paired with a data versioning
protocol in order to avoid data losses: as soon as one of the clients detects an invalid entry, the
misbehaving party is punished and the database is reverted to the last safe state (i.e., a state
where all entries are associated with a valid tag).

4.1 Prerequisites

In the following, we review some additional cryptographic primitives and explain the structure
of the log file.

Cryptographic preliminaries. Intuitively, a chameleon hash function is a randomized
collision-resistant hash function that provides a trapdoor. Given the trapdoor it is possible
to e�ciently compute collisions. A chameleon hash function is a tuple of ppt algorithms
⇧CHF = (GenCHF, CH, Col). The setup algorithm GenCHF takes as input a security parameter 1�

and outputs a key pair (cpk , csk), where cpk is the public key and csk is the secret key. The
chameleon hash function CH takes as input the public key cpk , a message m, and randomness
r; it outputs a hash tag t. The collision function Col takes as input the secret key csk , a
message m, randomness r, and another message m0; it outputs a new randomness r0 such that
CH(cpk , m, r) = CH(cpk , m0, r0). For our construction, we use chameleon hash functions pro-
viding key-exposure freeness [22]. Intuitively, this property states that no adversary is able to
find a fresh collision, without knowing the secret key csk , even after seeing polynomially many
collisions.

We denote by ⇧DS = (GenDS, sign, verify) a digital signature scheme. We require a signature
scheme that is existentially unforgeable. Intuitively, this notion ensures that it is infeasible for
any adversary to output a forgery (i.e., a fresh signature � on a message m without knowing
the signing key) even after seeing polynomially many valid (�, m) pairs.

Structure of the log file. We use a log file Log so as to detect who has to be held accountable
in case of misbehavior. Log is append-only and consists of the list of paths uploaded to the
server, each of them signed by the respective client.

4.2 Construction

Structure of entries. The structure of an entry in the database is depicted in Figure 2. An
entry E is protected by a top-level private-key encryption scheme with a key K that is shared by
the data owner O and all clients C1, . . . , Cn. Under the encryption, E contains several elements,
which we explain below:

• j is the index of the entry;

15

d

E

PrEnc(mpk , ·, ·)PrEnc(mpk , ·, ·)

xw, csk

sign(skO, ·)

j

xr, kj

E(kj , ·)
CH(cpk , j || cAuth || cKey

|| cData || cpk , r)

E(K, ·)

cAuth cKey cData rcpk t �

Figure 2: The structure of an entry in the database.

• cAuth is a predicate encryption ciphertext that encrypts the private key csk of a chameleon
hash function under an attribute xw, which regulates the write access;

• cKey and cData are unchanged;

• cpk is the public key of a chameleon hash function, i.e., the counterpart of csk encrypted
in cAuth;

• r is some randomness used in the computation of t;

• t is a chameleon hash tag, produced by hashing the concatenation of j, cAuth, cKey, cData,
and cpk under randomness r using the public key cpk ;

• � is a signature on the chameleon hash tag t, signed by the data owner O.

Intuitively, only clients with write access are able to decrypt cAuth, and thus to retrieve
the key csk required to compute a collision for the new entry d0 (i.e., to find a randomness r0

such that the chameleon hash t for the old entry d and randomness r is the same as the one
for d0 and r0). The fundamental observation is that the modification of an entry is performed
without changing the respective tag. Consequently, the signature � is the same for the old and
for the new entry. Computing a collision is the only way to make the tag t, originally signed
by the data owner, a valid tag also for the new entry d0. Therefore verifying the signature and
the chameleon hash su�ces to make sure that the entry has been only modified by authorized
clients.

Basic Algorithms. The basic algorithms follow the ones defined in Section 3.2, except for
natural adaptions to the new entry structure. Furthermore, the zero-knowledge proofs are no
longer computed and the rerandomization steps are substituted by re-encryptions. Finally,
clients upload on the server signed paths, which are stored in the Log.

Entry Verification. We introduce an auxiliary verification function that clients run in order
to verify the integrity of an entry. During the execution of any protocol below we maintain
the invariant that, whenever a client i (or the data owner himself) parses an entry j that he
downloaded from the server, he executes Algorithm 9. If the result is ?, then the client runs
blame(capi, Log, j).

Blame. In order to execute the function blame(capi, Log, j), the client must first retrieve Log
from the server. Afterwards, she parses backwards the history of modifications by decrypting
the paths present in the Log. The client stops only when she finds the desired entry indexed
by j in a consistent state, i.e., the data hashes to the associated tag t and the signature is
valid. At this point the client moves forwards on the Log until she finds an uploaded path
where the entry j is supposed to lay on (the entry might be associated with an invalid tag or

16

Algorithm 9 The pseudo-code for the verification of an entry in the database which is already
decrypted.

Input: An entry (j, cAuth, cKey, cData, r, cpk , t, �) and the verification key vkO of O.
Output: > if verification succeeds, ? otherwise.
1: if t = CH(cpk , j || cAuth || cKey || cData || cpk , r) and > = verify(�, vkO, t) then
2: return >
3: else
4: return ?
5: end if

missing). The signature on the path uniquely identifies the client, whose identity is added to
a list L of misbehaving clients. Finally, all of the other clients that acknowledged the changes
of the inconsistent entry are also added to L, since they did not correctly verify its chameleon
signature.

Discussion. As explained above, the accountability mechanism allows for the identification of
misbehaving clients with a minimal computational overhead in the regular clients’ operation.
However, it requires the server to store a log that is linear in the number of modifications to
the database and logarithmic in the number of entries. This is required to revert the database
to a safe state in case of misbehaviour. Consequently, the blame algorithm results expensive
in terms of computation and communication with the server, in particular for the entries that
are not regularly accessed. Nonetheless, blame is supposed to be only occasionally executed,
therefore we believe this design is acceptable in terms of service usability. Furthermore, we can
require all the parties accessing the database to synchronize on a regular basis so as to verify
the content of the whole database and to reset the Log, in order to reduce the storage on the
server side and, thus, the amount of data to transfer in the blame algorithm. Such an approach
could be complemented by an e�cient versioning algorithm on encrypted data, which is however
beyond the scope of this work and left as a future work. Finally, we also point out that the
accountable-integrity property, as presented in this section, sacrifices the anonymity property,
since users have to sign the paths they upload to the server. This issue can be easily overcome
by using any anonymous credential system that supports revocation [23].

5 Scalable Solution (S-GORAM)

Even though the personal record management systems we consider rely on simple client-based
read and write permissions, the predicate encryption scheme used in GORAM and A-GORAM
support in principle a much richer class of access control policies, such as role-based access
control (RBAC) or attribute-based access control (ABAC) [6]. If we stick to client-based read
and write permissions, however, we can achieve a more e�cient construction that scales to
thousands of clients. To this end, we replace the predicate encryption scheme with a broadcast
encryption scheme [24], which guarantees that a specific subset of clients is able to decrypt a
given ciphertext. This choice a↵ects the entry structure as follows (cf. Figure 2):

• cKey is the broadcast encryption of kj ;

• cAuth is the broadcast encryption of csk .

The subset of clients that can decrypt cKey (resp. cAuth) is then set to be the same subset
that holds read (resp. write) permissions on the given entry. By applying the aforementioned
modifications on top of A-GORAM, we obtain a much more e�cient and scalable instantiation,

17

b: {0,1},

write(DB, db, j)

b’
WIN iff b = b’

capO

CHALLENGER ADVERSARY

((d0, d1), j)

read, write,
chMode, addEntry,

addClient

DB

corruptClient

Figure 3: Game for Secrecy.

called S-GORAM, that achieves a smaller constant in the computational complexity (linear in
the number of clients). For more details on the performance evaluation and a comparison with
A-GORAM, we refer to Section 8.

6 Security and Privacy for Group ORAM

In order to prove the security of our constructions, we formalized the security and privacy
properties of a Group ORAM by cryptographic games, which are intuitively introduced below.
The formal definitions can be found in the appendix.

6.1 Security and Privacy of Group ORAM

Secrecy. Intuitively, a Group ORAM preserves the secrecy of outsourced data if no party is
able to deduce any information about the content of any entry she does not have access to.
We formalize this intuition through a cryptographic game, which is illustrated in Figure 3.
Intuitively, the challenger initializes an empty database locally and it hands it over to the
adversary so as to give him the possibility to adaptively and arbitrarily fill the content of the
database. Additionally, the adversary is given the possibility of spawning and corrupting a
polynomial number of clients, allowing him to perform operations on the database on their
behalf. Hence, this property is proven in a strong adversarial model, without placing any
assumption on the server’s behavior. At some point of the game the adversary outputs two
data and a database index, the challenger flips a coin and it randomly inserts either one of the
two payloads in the desired database entry. In order to make the game not trivial, it must be
the case that the adversary should not have corrupted any client that holds read permission on
such index. We define the adversary to win the game if he correctly guesses which of the two
entries has been written. Since the adversary can always randomly guess, we define the system
to be secrecy-preserving if the adversary cannot win the game with probability non-negligibly
greater than 1

2 .

Integrity. A Group ORAM preserves the integrity of its entries if none of the clients can
modify an entry to which she does not have write permissions. The respective cryptographic
game is depicted in Figure 4. Intuitively, the challenger initializes an empty database DB and
a copy DB’, providing the adversary with the necessary interfaces to fill the content of DB and
to generate and corrupt clients. Every time the adversary queries an interface, the challenger
interacts with the respective client playing the server’s role and additionally executes locally
the same operation on DB’ in an honest manner. Note that here the adversary cannot directly
operate on the database but he can only operate through the clients: this constraint reflects
the honesty assumption of the server. At some point of the execution, the adversary outputs

18

WIN!iff read(DB,%j*)%≠ read(DB’,%j*)%

CHALLENGER

ADVERSARY

j*

corruptClient!

update!DB’

read,!write,!chMode,!
addEntry,!addClient!

DB

capO

Figure 4: Game for Integrity.

WIN!iff read(DB,%j*)%≠ read(DB’,%j*)%

capO

CHALLENGER
ADVERSARY

j*

read,!write,!chMode,!
addEntry,!addClient!

DB

update!DB’

corruptClient!

Figure 5: Game for Tamper-resistance.

an index of the database (that none of his corrupted clients can write on) and the challenger
compares the two entries stored in DB and DB’, if they are not the same we say that the
adversary wins the game. Since that would imply that a client could potentially be able to
modify the content of an entry she does not have access to, we say that the system is integrity-
preserving if any possible adversary cannot win the game with non-negligible probability.

Tamper-resistance. Intuitively, a Group ORAM is tamper-resistant if the server, even col-
luding with a subset of malicious clients, is not able to convince an honest client about the
integrity of some maliciously modified data. Notice that this property refers to a strong adver-
sarial model, where the adversary may arbitrarily misbehave and collude with clients. Naturally,
tamper-resistance holds true only for entries which none of the corrupted clients had ever access
to. The respective cryptographic game is depicted in Figure 5. The game is described exactly
as in the previous definition except for the fact that the database is this time handed over to
the adversary at the very beginning of the experiment so as to allow him to operate directly
on it. The challenger maintains a local copy of the database where it performs the same opera-
tions that are triggered by the adversary but in an honest way. The winning conditions for the
adversary are the same as stated above and we say that the system is tamper-resistant if no
adversary can win this game with probability greater than a negligible value. Note that there
exists a class of attacks where the adversary wins the game by simply providing an old version
of the database, which are inherent to the cloud storage setting. We advocate the usage of stan-
dard techniques to deal with this kind of attacks (e.g., a gossip protocol among the clients for
versioning of the entries [25]) and hence, we rule them out in our formal analysis by implicitly
assuming that the information provided by the adversary are relative to the most up to date
version of the database that he possesses locally.

Obliviousness. Intuitively, a Group ORAM is oblivious if the server cannot distinguish be-
tween two arbitrary query sequences which contain read and write operations. In the crypto-
graphic game depicted in Figure 6, the adversary holds the database on his side and he gets
access to the interfaces needed to adaptively and arbitrarily insert content in the database. Thus
the server may arbitrarily misbehave but it is not allowed to collude with clients: the adversary
can only spawn a polynomial number of them, but he cannot corrupt them. In this game the

19

CHALLENGER

ADVERSARY b: {0,1},
capO

b’
WIN!iff b = b’

chMode,!addEntry,!addClient!

read,!write!
query!

DB

Figure 6: Game for Obliviousness.

b: {0,1}

read(DB, j; capb) or

write(DB, d, j; capb) b’

CHALLENGER ADVERSARY

read, write,
chMode, addEntry

((cap0, cap1), j) or
((cap0, cap1), j, d)

capO

WIN iff b = b’

DB

Figure 7: Game for Anonymity.

challenger o↵ers an additional interface where the adversary can input two arbitrary queries,
i.e., on behalf of arbitrary clients and on arbitrary indices of the database. This interface can
be used by the adversary polynomially many times, thus creating the two query sequences at
the core of the obliviousness definition. In the beginning of the game the challenger flips a
coin and then it always executes either one of the two queries, depending on the outcome of
the initial random coin. In order to win, the adversary has to tell the value of the random
coin of the challenger, thus distinguishing which query sequence has been executed. This would
then mean that the adversary has been able to link some access to a specific memory location,
hence we say that a system is oblivious if the adversary does not win the game with probability
non-negligibly greater than 1

2 .

Anonymity. A Group ORAM is anonymity-preserving if the data owner cannot e�ciently link
a given operation to a client, among the set of clients having access to the queried index. In
the cryptographic game depicted in Figure 7, the setting is equivalent to the secrecy definition
except that the challenger also hands over the capability of the data owner to the adversary.
Clearly the adversary does not need to corrupt clients since he can spawn them by himself.
Additionally, the challenger provides the adversary with an interface that he can query with an
operation associated with two arbitrary capabilities. To make the game not trivial, it must hold
that both of the capabilities hold the same read and write permissions on the entry selected by
the adversary. Based on some initial randomness, the challenger always executes the desired
command with either one of the two capabilities and the adversary wins the game if and only
if he can correctly determine which capability has been selected. Since this would imply a de-
anonymization of the clients, we say that the system is anonymity-preserving if the adversary
cannot win the game with probability non-negligibly greater than 1

2 .

Accountable Integrity. The server maintains an audit log Log, which holds the evidence of
client operations on the database DB. Specifically, each path uploaded to the server as a result
of an eviction procedure is signed by the client and appended by the server to the log. After
detecting an invalid or missing entry with index j, the client retrieves Log from the server and

20

WIN iff read(DB, j*) ≠ read(DB’, j*) AND
(∃ i ∈ L: i ∉ corruptClient OR L = [])

CHALLENGER

ADVERSARY

j*

corruptClient

updateDB’

read, write,
chMode, addEntry,

addClient

DB

capO

Figure 8: Game for Accountable Integrity.

Property Server Collusion

Secrecy malicious 3
(Accountable) Integrity HbC 7
Tamper-resistance malicious 3
Obliviousness malicious 7
Anonymity malicious 3

Table 1: Security and privacy properties together with their minimal assumptions.

performs the algorithm blame(capi, Log, j). The output is a list of identities, which correspond
to misbehaving parties.

We define the accountable integrity property through a cryptographic game, illustrated in
Figure 8. The game is the same as the one for integrity, except for the winning condition,
which is adjusted according to the accountability requirements. Intuitively, the adversary wins
the game if he manages to modify the entry in the index he provided and the challenger is
not able to identify at least one of the corrupted clients that contributed to modify that entry
or it erroneously blames some honest party. This means that the blaming procedure always
returns at least one of the misbehaving parties and never an honest one. The literature defines
this notion of accountability as fairness (never blame honest parties) and completeness (blame
at least one dishonest party) [26]. We say that a system preserves accountable integrity if the
adversary cannot win the game with more than negligible probability.

Discussion. Table 1 summarizes the security and privacy properties presented in this sec-
tion, along with the corresponding assumptions. The HbC assumption is in fact only needed
for integrity, since the correctness of client operations is checked by the server, thus avoiding
costly operations on the client side. We will see in Section 4 that the HbC assumption is still
needed for the accountable integrity property, since the server maintains a log of accesses, which
allows for blaming misbehaving parties. All other properties hold true even if the server is ma-
licious as long as it does not collude with clients. Furthermore, secrecy, tamper-resistance, and
anonymity hold true even if the server is malicious and colludes with clients. The non-collusion
assumption is due to the obliviousness property, which is meant to protect the access patterns
from the server. Extending this property to non-authorized clients and devising corresponding
enforcement mechanisms is beyond the scope of this paper and left as an interesting future
work.

21

Property G. A-G. S-G.

Secrecy 3 3 3
Integrity 3 Accountable Accountable
Tamper-resistance 3 7 7
Obliviousness 3 3 3
Anonymity 3 7 7
Access control ABAC ABAC R/W

Table 2: Security and privacy properties achieved by each construction where G. stands for
GORAM.

7 Security and Privacy Results

In this section, we show that the Group ORAM instantiations presented in Section 3, in Sec-
tion 4, and in Section 5 achieve the security and privacy properties stated in Section 6.1. The
proofs are reported in Appendix D. A brief overview of the properties guaranteed by each
construction is shown in Table 2. As previously discussed, dropping the computationally ex-
pensive integrity checks in favor of an accountability mechanism is crucial to achieve e�ciency.
It follows that A-GORAM and S-GORAM provide accountable integrity as opposed to integrity
and tamper resistance. Having an accountable system trivially implies the loss of anonymity,
as defined in Section 6.1, although it is still possible to achieve pseudonym-based anonymity by
employing anonymous credentials. The other privacy properties of our system, namely secrecy
and obliviousness, are fulfilled by all of our instantiations. Moreover, by replacing predicate en-
cryption with broadcast encryption (S-GORAM), we sacrifice the possibility to enforce ABAC
policies, although we can still handle client-based read/write permissions.

Before we present the security and privacy results, we start with a soundness result for the
batched ZK proof of shu✏e, which we prove in Appendix F.

Theorem 1 (Soundness). Let ZKP be a zero-knowledge proof system for a proof of shu✏e
correctness. Then the batched ZK proof of shu✏e defined in Algorithm 8 is sound with probability
at least 1/2.

The following theorems characterize the security and privacy properties achieved by each
cryptographic instantiation presented in this paper.

Theorem 2 (GORAM). Let ⇧PE and ⇧PO be an attribute-hiding predicate and predicate-only
encryption scheme, ⇧PKE (resp. ⇧SE) be a CPA-secure public-key (resp. private-key) encryption
scheme, and ZKP be a zero-knowledge proof system. Then GORAM achieves secrecy, integrity,
tamper-resistance, obliviousness, and anonymity.

Theorem 3 (A-GORAM). Let ⇧PE be an attribute-hiding predicate encryption scheme, ⇧SE

be a CPA-secure private-key encryption scheme, ⇧DS be an existentially unforgeable digital sig-
nature scheme, and ⇧CHF be a collision-resistant, key-exposure free chameleon hash function.
Then A-GORAM achieves secrecy, accountable integrity, and obliviousness.

Theorem 4 (S-GORAM). Let ⇧BE be an adaptively secure broadcast encryption scheme, ⇧SE

be a CPA-secure private-key encryption scheme, ⇧DS be an existentially unforgeable digital sig-
nature scheme, and ⇧CHF be a collision-resistant, key-exposure free chameleon hash function.
Then S-GORAM achieves secrecy, accountable integrity, and obliviousness.

22

8 Implementation and Experiments

In this section, we present the concrete instantiations of the cryptographic primitives that we
previously described (Section 8.1), we study their asymptotic complexity (Section 8.2), describe
our implementation (Section 8.3), and discuss the experimental evaluation (Section 8.4).

8.1 Cryptographic Instantiations

Private-key and public-key encryption. We use AES [27] as private-key encryption scheme
with an appropriate message padding in order to achieve the elusive-range property [28].4 Fur-
thermore, we employ the El Gamal encryption scheme [29] for public-key encryption as it fulfills
all properties that we require for GORAM, i.e., it is rerandomizable and supports zero-knowledge
proofs. We review the scheme below.

GenPKE(1�): Let p be a prime of length � such that p = 2q + 1 for a prime q. Furthermore,
let G be the subgroup of Zp of order q and g be a generator of G. Then, draw a random
x 2 Z⇤q and compute h = gx. Output the pair (sk , pk) = ((p, q, g, x), (p, q, g, h)).

Enc(pk , m): In order to encrypt a message m 2 G using the public key (p, q, g, h) pk , draw
a random r 2 Z⇤q and output the ciphertext c = (gr, mhr).

Dec(sk , c): In order to decrypt a ciphertext c = (c1, c2) using the secret key (p, q, g, x) sk ,
compute m = c2 · c�x1 .

Rerand(pk , c, r): In order to rerandomize a ciphertext c = (c1, c2) using the public key
(p, q, g, h) pk and randomness r 2 Z⇤q , output c0 = (c1 · gr, c2 · hr).

It is also possible to produce information with which one can decrypt a ciphertext c = (c1, c2)
without knowing the secret key by sending c�x1 .

Encryption schemes for access control. We utilize the predicate encryption scheme in-
troduced by Katz et al. [6]. Its ciphertexts are rerandomizable and we also show them to be
compatible with the Groth-Sahai proof system [7]. For the details, we refer to Appendix B.
Concerning the implementation, the predicate encryption scheme by Katz et al. [6] is not ef-
ficient enough since it relies on elliptic curves on composite-order groups. In order to reach a
high security parameter, the composite-order setting requires us to use much larger group sizes
than in the prime-order setting, rendering the advantages of elliptic curves practically useless.
Therefore, we use a scheme transformation proposed by David Freeman [30], which works in
prime-order groups and is more e�cient.

For implementing S-GORAM we use an adaptively secure broadcast encryption scheme by
Gentry and Waters [24].

Zero-knowledge proofs. We deploy several non-interactive zero-knowledge proofs. For prov-
ing that a predicate-only ciphertext validly decrypts to 1 without revealing the key, we use
Groth-Sahai non-interactive zero-knowledge proofs5 [7]. More precisely, we apply them in the
proofs created in line 6.11 (read and write, see Algorithm 6 and Algorithm 7). We employ
plaintext-equivalence proofs (PEPs) [19, 31] for the proofs in line 6.13. Furthermore, we use a
proof of shu✏e correctness [8] and batched shu✏e proofs in lines 6.8 and 7.8.

4It is clear the we cannot provably achieve elusive-range with AES, however, we still use it for practical
considerations.

5Groth-Sahai proofs are generally not zero-knowledge. However, in our case the witnesses fulfill a special
equation for which they are zero-knowledge.

23

Chameleon hashes and digital signatures. We use a chameleon hash function by Nyberg
and Rueppel [22], which has the key-exposure freeness property. We combine the chameleon
hash tags with RSA signatures [32].

Implementing permanent entries. We briefly outline how permanent entries can be im-
plemented using El Gamal encryption and equality of discrete logarithm proofs [33]. Let
cp = Enc(pk , permanent) = (gr, gpermanent

· hr) be the ciphertext associated to the entry that is
subject to change and pk = (g, h) be the public key of the El Gamal scheme. If permanent 6= 1
then the entry may not be removed from the database completely. Hence, if O attempts to
remove an entry from the tree, she has to prove to S that permanent = 1. The following zero-
knowledge proof serves this purpose, given that permanent is encoded in the exponent of the
message:

PK

(
(sk) :

loggr (gpermanent
· hr

· g�1) = sk = logg h

)
.

Naturally, the re-randomization step as well as the shu✏e proof step also apply to this ciphertext.

8.2 Computational Complexity

The computational and communication complexity of our constructions, for both the server and
the client, is O((B + G) log N) where N is the number of the entries in the database, B is the
block size of the entries in the database, and G is the number of clients that have access to
the database. O(B log N) originates from the ORAM construction and we add O(G log N) for
the access structure. Hence, our solution only adds a small overhead to the standard ORAM
complexity. The client-side storage is O(B log N), while the server has to store O(BN) many
data.

8.3 Java Implementation

We implemented the four di↵erent versions of GORAM in Java (GORAM with o↵-the-shelf
shu✏e proofs and batched shu✏e proofs, A-GORAM, and S-GORAM). Furthermore, we also
implemented A-GORAM and S-GORAM on Amazon EC2. For zero-knowledge proofs, we
build on a library [34] that implements Groth-Sahai proofs [7], which internally relies on jP-
BC/PBC [35, 36].

Cryptographic setup. We use MNT curves [37] based on prime-order groups for primes of
length 224 bits. This results in 112 bits of security according to di↵erent organizations [38]. We
deploy AES with 128 bit keys and we instantiate the El Gamal encryption scheme, the RSA
signature scheme, and the chameleon hash function with a security parameter of 2048 bits.
According to NIST [38], this setup is secure until 2030.

8.4 Experiments

We evaluated the four di↵erent implementations. As a first experiment, we measured the
computation times on client and server for the read and write operation for the constructions
without accountable integrity. We performed these experiments on an Intel Xeon with 8 cores
and 2.60GHz in order to show the e�ciency gained by using batched shu✏e proofs instead of
o↵-the-shelf zero-knowledge proofs of shu✏e correctness. We vary di↵erent parameters: the
database size from 1GB to 1TB, the block size from 4KB to 1MB, the number of clients from
1 to 10, the number of cores from 1 to 8, and for batched shu✏e proofs also the number of
iterations k from 1 to 128. We fix a bucket size of 4 since Stefanov et al. [5] showed that this
value is su�cient to prevent buckets from overflowing.

24

4 16 64 256 1024

100

1000

10000

Block size in KB

T
im

e
in

s
Client read/write Server

(a) GORAM.

4 16 64 256 1024
0

10

20

30

Block size in KB

T
im

e
in

s

Client read/write Server

(b) GORAMwith batched shu✏e proofs and k=3.

4 16 64 256 1024

0

1

2

Block size in KB

T
im

e
in

s

Client read Client write
Server

(c) A-GORAM.

4 16 64 256 1024

0

0.5

1

Block size in KB

T
im

e
in

s

Client read Client write
Server

(d) S-GORAM.

Figure 9: The average execution time for the read and write protocol on client and server for
varying B where BN = 1GB and G = 4.

The second experiment focuses on the solution with accountability. Here we measure also the
overhead introduced by our realization with respect to a state-of-the-art ORAM construction,
i.e., the price we pay to achieve a wide range of security and privacy properties in a multi-client
setting. Another di↵erence from the first experiment is the hardware setup. We run the server
side of the protocol in Amazon EC2 and the client side on a MacBook Pro with an Intel i7
and 2.90GHz. We vary the parameters as in the previous experiment, except for the number of
clients which we vary from 1 to 100 for A-GORAM and from 1 to 10000 for S-GORAM, and
the number of cores which are limited to 4. In the experiments where the number of cores is
not explicitly varied, we use the maximum number of cores available.

Discussion. The results of the experiments are reported in Figure 9–14 and Table 3. As shown
in Figure 9a, varying the block size has a linear e↵ect in the construction without batched shu✏e
proofs. As expected, the batched shu✏e proofs improve the computation time significantly (Fig-
ure 9b). The new scheme even seems to be independent of the block size, at least for block sizes
less than 64KB. This e↵ect is caused by the parallelization. Still, the homomorphic multiplica-
tion of the public-key ciphertexts before the batched shu✏e proof computation depends on the
block size (line 8.2). Figure 9c and Figure 9d show the results for A-GORAM and S-GORAM.
Since the computation time is in practice almost independent of the block size, we can choose
larger block sizes in the case of databases with large files, thereby allowing the client to read
(resp. write) a file in one shot, as opposed to running multiple read (resp. write) operations.
We identify a minimum computation time for 128KB as this is the optimal trade-o↵ between
the index map size and the path size. The server computation time is low and varies between
15ms and 345ms, while client operations take less than 2 seconds for A-GORAM and less than

25

1 4 16 64 256 1024
0

50

100

150

200

Storage size in GB

T
im

e
in

s
Client read/write Server

(a) GORAM with B = 4KB.

1 4 16 64 256 1024
2

4

6

8

Storage size in GB

T
im

e
in

s

Client read/write Server

(b) GORAM with batched shu✏e proofs, B =
4KB, and k = 4.

1 4 16 64 256 1024

0

1

2

Storage size in GB

T
im

e
in

s

Client read Client write
Server

(c) A-GORAM with B = 128KB.

1 4 16 64 256 1024

0

1

2

Storage size in GB

T
im

e
in

s

Client read Client write
Server

(d) S-GORAM with B = 128KB.

Figure 10: The average execution time for the read and write protocol on client and server for
varying BN where G = 4.

1.3 seconds for S-GORAM. As we obtained the best results for 4KB in the experiments for
GORAM and 128KB for the others, we use these block sizes in the sequel.

The results obtained by varying the storage size (Figure 10) and the number of clients
(Figure 11) prove what the computational complexity suggests. Nevertheless, it is interesting
to see the tremendous improvement in computation time between GORAM with and without
batched shu✏e proofs. The results obtained by varying the iteration time of the batched
shu✏e proof protocol are depicted in Figure 13 and we verify the expected linear dependency.
Smaller values of k are more e�cient but higher values give a better soundness probability.
If we compare A-GORAM and S-GORAM in Figure 11c and Figure 11d we can see that S-
GORAM scales well to a large amount of users as opposed to A-GORAM. The good scaling
behavior is due to the used broadcast encryption scheme: it only computes a constant number of
pairings independent of the number of users for decryption while the opposite holds for predicate
encryption. Nevertheless, we identify a linear growth in the times for S-GORAM, which arises
from the linear number of exponentiations that are computed. For instance, in order to write
128KB in a 1GB storage that is used by 100 users, A-GORAM needs about 20 seconds while
S-GORAM only needs about 1 second. Even when increasing the number of users to 10000,
S-GORAM requires only about 4 seconds, a time that A-GORAM needs for slightly more than
10 users.

Figure 12 shows the results obtained by varying the number of cores. In GORAM most of
the computation, especially the zero-knowledge proof computation, can be easily parallelized.
We observe this fact in both results (Figure 12a and Figure 12b). In the e�cient construction

26

1 2 3 4 5 6 7 8 9 10
0

50

100

150

200

Number of clients

T
im

e
in

s
Client read/write Server

(a) GORAM with B = 4KB.

1 2 3 4 5 6 7 8 9 10
2

4

6

Number of clients

T
im

e
in

s

Client read/write Server

(b) GORAM with batched shu✏e proofs, B =
4KB, and k = 4.

10 40 70 100
0

5

10

15

20

Number of clients

T
im

e
in

s

Client read Client write
Server

(c) A-GORAM with B = 128KB.

100 101 102 103 104
0

2

4

Number of clients

T
im

e
in

s

Client read Client write
Server

(d) S-GORAM with B = 128KB.

Figure 11: The average execution time for the read and write protocol on client and server for
varying G where BN = 1GB.

we can parallelize the top-level encryption and decryption, the verification of the entries, and
the predicate ciphertext decryption. Also in this case parallelization significantly improves the
performance (Figure 12c and Figure 12d). Notice that we run the experiments in this case for
20 clients, as opposed to 4 as done for the other constructions, because the predicate ciphertext
decryption takes the majority of the computation time and, hence, longer ciphertexts take
longer to decrypt and the parallelization e↵ect can be better visualized.

Finally, Table 3 compares S-GORAM with the underlying Path-ORAM protocol. Naturally,
since Path-ORAM only uses symmetric encryption, no broadcast encryption, and no verification
with chameleon signatures, the computation time is much lower. However, the bottleneck of
both constructions is actually the amount of data that has to be downloaded and uploaded by
the client (Figure 14). The time required to upload and download data may take much more
time than the computation time, given today’s bandwidths. Here the overhead is only between
1.02% and 1.05%. For instance, assuming a mobile client using LTE (100Mbit/s downlink
and 50Mbit/s uplink in peak) transferring 2 and 50 MB takes 480ms and 12s, respectively.
Under these assumptions, considering a block size of 1MB, we get a combined computation and
communication overhead of 8% for write and 7% for read, which we consider a relatively low
price to pay to get a wide range of security and privacy properties in a multi-client setting.

27

1 2 4 8
0

200

400

600

800

Number of cores

T
im

e
in

s
Client
Server

(a) GORAM with B = 4KB, and G = 4.

1 2 4 8
0

10

20

30

Number of cores

T
im

e
in

s

Client
Server

(b) GORAM with batched shu✏e proofs, B =
4KB, G = 4, and k = 4.

1 2 4
2

4

6

8

10

Number of cores

T
im

e
in

s

Client read
Client write

(c) A-GORAM with BN = 1GB, B = 128KB,
and G = 20.

1 2 4

1

1.5

2

Number of cores

T
im

e
in

s

Client read
Client write

(d) S-GORAM with BN = 1GB, B = 128KB,
and G = 20.

Figure 12: The average execution time for the read and write protocol on client and server for
a varying number of cores where BN = 1GB.

9 Case Study: Personal Health Records

We briefly discuss a potential application of GORAM, namely, a privacy-preserving personal
health record (PHR) management system. As the patient should have the control of her own
record, the patient is the data owner. The server is some cloud storage provider, which may
be chosen by the patient or directly by the state for all citizens (e.g., ELGA in Austria). The
healthcare personal (doctors, nurses, pharmacies, and so on) constitutes the clients.

We discuss now possible real-world attacks on PHRs and how the usage of GORAM prevents
them. One typical threat is the cloud provider trying to learn customer information (e.g., to
sell it or to use it for targeted advertising). For instance, as previously discussed, monitoring
the accesses to DNA sequences would allow the service provider to learn the patient’s disease:
these kinds of attacks are not possible because of obliviousness and data secrecy. Another
possible attack could be a pharmacy that tries to increase its profit by changing a prescription

Scheme Client Read Client Write Server

S-GORAM 0.981s 1.075s 0.068s
Path-ORAM 0.042s 0.042s 0.002s

Table 3: Comparison of the computation times between Path-ORAM [5] (single-client!) and
S-GORAM on 1GB storage size, 128KB block size and 100 clients.

28

1 2 3 4 5 10 16 32 64 128
0

20

40

60

80

Number of iterations k of the shu✏e proof

T
im

e
in

s Client
Server

Figure 13: The average execution time for the read and write protocol on client and server for
GORAM with batched shu✏e proofs and varying k where BN = 1GB, B = 8KB, and G = 4.

4 16 64 256 1024
0

10

20

30

40

50

B in KB

D
at

a
in

M
B

S-GORAM
Path-ORAM

4 16 64 256 1024
1.02

1.03

1.04

1.05

B in KB

O
ve

rh
ea

d
in

%

Overhead

Figure 14: The up-/download amount of data compared between Path-ORAM [5] and S-
GORAM for varying B while BN = 1GB and G = 4.

for a cheap medicine into one that prescribes an expensive medicine. However, in GORAM
pharmacies would not have write access to prescriptions, and hence, these cannot be changed
or, in A-GORAM, the misbehaving pharmacy can be blamed by the data owner. A common
procedure in order to sign a contract with a health insurance is the health check. The patient
might want to hide health information from the insurance in order to get a lower fee. To this end,
the patient could simply try to drop this information. Dropping of entries in the database is,
however, either prevented by making such documents permanent or, in A-GORAM, by letting
the insurance, who sees that some documents are missing, blame the patient. Using the backup
strategy, the missing documents can be restored.

Finally, we think that GORAM with batched shu✏e proofs (even more so A-GORAM and
S-GORAM) is a practical solution for the management of today’s PHRs, since they are of
rather small size. For instance, the data today stored in e-health cards is at most 128KB.
The current trend is to store the remaining medical information (e.g., DNA information) on an
external server, which can be accessed by using the card. This is exactly our setting, except that
we allow for accessing PHRs even without the card, which is crucial in emergency situations.
DNA information takes approximately 125MB6 [39] and all our constructions o↵er an adequate
performance for databases of a few gigabytes, with A-GORAM and S-GORAM performing
better for the retrieval of large amounts of data, thanks to the possibility of using larger block
sizes.

6The actual DNA sequence takes about 200GB but one usually shares only the mutations, i.e., the di↵erences
of the considered genome to the average human genome. These mutations are only 0.1% of the overall sequence.

29

10 Related Work

Privacy-preserving outsourced storage. Oblivious RAM (ORAM) [4] is a technique origi-
nally devised to protect the access pattern of software on the local memory and thus to prevent
the reverse engineering of that software. The observation is that encryption by itself prevents
an attacker from learning the content of any memory cell but monitoring how memory is ac-
cessed and modified may still leak a great amount of sensitive information. Recent advances in
ORAM show that it is e�cient enough to hide the data and the user’s access pattern in storage
outsourcing services [3, 12, 40]–[47].

While a few ORAM constructions guarantee the integrity of user data [48, 49], none of them
is suitable to share data with potentially distrustful clients. Goodrich et al. [50] studied the
problem of multi-client ORAM, but their attacker model does not include malicious, and po-
tentially colluding, clients. Furthermore, their construction does not provide fine-grained access
control mechanisms, i.e., either all members of a group have access to a certain data, or none
has. Finally, this scheme does not allow the clients to verify the data integrity.

The fundamental problem in existing ORAM constructions is that all clients must have
access to the ORAM key, which allows them to read and potentially disrupt the entire database.

A few recent works have started to tackle this problem. Franz et al. have introduced the
concept of delegated ORAM [51]. The idea is to encrypt and sign each entry with a unique
set of keys, initially only known to the data owner: giving a client the decryption key (resp.
the decryption and signing keys) su�ces to grant read (resp. write) access to that entry. This
solution, however, has two drawbacks that undermine its deployment in practice. First, the
data owner has to periodically visit the server for checking the validity of the signatures accom-
panying the data to be inserted in the database (thus tracking the individual client accesses)
and reshu✏ing the ORAM according to the access history in order to enable further unlinkable
ORAM accesses. Furthermore, revoking access for a single client requires the data owner to
change (and distribute) the capabilities of all other users that have access to that file.

Huang and Goldberg have recently presented a protocol for outsourced private information
retrieval [52], which is obtained by layering a private information retrieval (PIR) scheme on
top of an ORAM data layout. This solution is e�cient and conceals client accesses from the
data owner, but it does not give clients the possibility to update data. Moreover, it assumes `
non-colluding servers, which is due to the usage of information theoretic multi-server PIR.

De Capitani di Vimercati et al. [53] proposed a storage service that uses selective encryption
as a means for providing fine-grained access control. The focus of their work is to study how
indexing data in the storage can leak information to clients that are not allowed to access these
data, although they are allowed to know the indices. The authors do, however, neither consider
verifiability nor obliviousness, which distinguishes their storage service from ours.

Finally, there have been a number of works leveraging trusted hardware to realize ORAM
schemes [54, 55] including some in the multi-client setting [56, 57]. We, however, intention-
ally tried to strive for a solution without trusted hardware, only making use of cryptographic
primitives.

Verifiable outsourced storage. Verifying the integrity of data outsourced to an untrusted
server is a research problem that has recently received increasing attention in the literature.
Schröder and Schröder introduced the concept of verifiable data streaming (VDS) and an ef-
ficient cryptographic realization thereof [58, 59]. In a verifiable data streaming protocol, a
computationally limited client streams a long string to the server, who stores the string in its
database in a publicly verifiable manner. The client has also the ability to retrieve and update
any element in the database. Papamathou et al. [60] proposed a technique, called stream-
ing authenticated data structures, that allows the client to delegate certain computations over

30

streamed data to an untrusted server and to verify their correctness. Other related approaches
are proofs-of-retrievability [61]–[64], which allow the server to prove to the client that it is ac-
tually storing all of the client’s data, verifiable databases [65], which di↵er from the previous
ones in that the size of the database is fixed during the setup phase, and dynamic provable data
possession [66]. All the above do not consider the privacy of outsourced data. While some of
the latest work has focused on guaranteeing the confidentiality of the data [67], to the best of
our knowledge no existing paper in this line of research takes into account obliviousness.

Personal Health Records. Security and privacy concerns seem to be one of the major
obstacles towards the adoption of cloud-based PHRs [68, 69, 70]. Di↵erent cloud architectures
have been proposed [71], as well as database constructions [72, 73], in order to overcome such
concerns. However, none of these works takes into account the threat of a curious storage
provider and, in particular, none of them enforces the obliviousness of data accesses.

11 Conclusion and Future Work

This paper introduces the concept of Group ORAM, which captures an unprecedented range of
security and privacy properties in the cloud storage setting. The fundamental idea underlying
our instantiation is to extend a state-of-the-art ORAM scheme [5] with access control mecha-
nisms and integrity proofs while preserving obliviousness. To tackle the challenge of devising an
e�cient and scalable construction, we devised a novel zero-knowledge proof technique for shu✏e
correctness as well as a new accountability technique based on chameleon signatures, both of
which are generically applicable and thus of independent interest. We showed how GORAM is
an ideal solution for personal record management systems.

As a future work, we intend to relax the assumptions on the server behavior, under which
some of the security and privacy properties are proven, developing suitable cryptographic tech-
niques. A further research goal is the design of cryptographic solutions allowing clients to learn
only limited information (e.g., statistics) about the dataset.

Acknowledgments

This work was supported by the German research foundation (DFG) through the Emmy Noether
program, by the German Federal Ministry of Education and Research (BMBF) through the
Center for IT-Security, Privacy and Accountability (CISPA), and by an Intel Early Career
Faculty Honor Program Award. Finally, we thank the reviewers for their helpful comments.

References

[1] M. Ma↵ei, G. Malavolta, M. Reinert, and D. Schröder, “Privacy and Access Control for
Outsourced Personal Records,” in Proc. IEEE Symposium on Security & Privacy (S&P’15).
IEEE Press, 2015.

[2] M. Islam, M. Kuzu, and M. Kantarcioglu, “Access Pattern Disclosure on Searchable En-
cryption: Ramification, Attack and Mitigation,” in Proc. Annual Network & Distributed
System Security Symposium (NDSS’12). Internet Society, 2012.

[3] B. Pinkas and T. Reinman, “Oblivious RAM Revisited,” in Proc. Advances in Cryptology
(CRYPTO’10), ser. LNCS. Springer Verlag, 2010, pp. 502–519.

31

[4] O. Goldreich and R. Ostrovsky, “Software Protection and Simulation on Oblivious RAMs,”
Journal of the ACM, vol. 43, no. 3, pp. 431–473, May 1996.

[5] E. Stefanov, M. van Dijk, E. Shi, C. Fletcher, L. Ren, X. Yu, and S. Devadas, “Path ORAM:
An Extremely Simple Oblivious RAM Protocol,” in Proc. Conference on Computer and
Communications Security (CCS’13). ACM, 2013.

[6] J. Katz, A. Sahai, and B. Waters, “Predicate Encryption Supporting Disjunctions, Polyno-
mial Equations, and Inner Products,” in Proc. Conference on the Theory and Applications
of Cryptographic Techniques (EUROCRYPT’08). Springer Verlag, 2008, pp. 146–162.

[7] J. Groth and A. Sahai, “E�cient Noninteractive Proof Systems for Bilinear Groups,” SIAM
Journal on Computing, vol. 41, no. 5, pp. 1193–1232, 2012.

[8] S. Bayer and J. Groth, “E�cient Zero-Knowledge Argument for Correctness of a Shu✏e,”
in Proc. Conference on the Theory and Applications of Cryptographic Techniques (EURO-
CRYPT’12), ser. LNCS. Springer Verlag, 2012, pp. 263–280.

[9] I. E. Akkus, R. Chen, M. Hardt, P. Francis, and J. Gehrke, “Non-tracking Web Analytics,”
in Proc. Conference on Computer and Communications Security (CCS’12). ACM, 2012,
pp. 687–698.

[10] R. Chen, I. E. Akkus, and P. Francis, “SplitX: High-Performance Private Analytics,” in
Proc. of the ACM SIGCOMM 2013. ACM, 2013, pp. 315–326.

[11] S. Goldwasser and S. Micali, “Probabilistic Encryption & How To Play Mental Poker Keep-
ing Secret All Partial Information,” in Proc. ACM Symposium on Theory of Computing
(STOC’82). ACM, 1982, pp. 365–377.

[12] E. Shi, T.-H. H. Chan, E. Stefanov, and M. Li, “Oblivious RAM With O((log n)3) Worst-
Case Cost,” in Proc. International Conference on the Theory and Application of Cryptology
and Information Security (ASIACRYPT’11), ser. LNCS. Springer Verlag, 2011, pp. 197–
214.

[13] R. Dingledine, N. Mathewson, and P. Syverson, “Tor: The Second-Generation Onion
Router,” in Proc. USENIX Security Symposium (USENIX’04). USENIX Association,
2004, pp. 303–320.

[14] M. Ma↵ei, K. Pecina, and M. Reinert, “Security and Privacy by Declarative Design,” in
Proc. Symposium on Computer Security Foundations (CSF’13). IEEE Press, 2013, pp.
81–96.

[15] M. Backes, S. Lorenz, M. Ma↵ei, and K. Pecina, “Anonymous Webs of Trust,” in Proc.
Privacy Enhancing Technologies Symposium (PETS’10), ser. LNCS. Springer Verlag,
2010, pp. 130–148.

[16] M. Backes, M. Ma↵ei, and K. Pecina, “Automated Synthesis of Privacy-Preserving Dis-
tributed Applications,” in Proc. Annual Network & Distributed System Security Symposium
(NDSS’12). Internet Society, 2012.

[17] F. Baldimtsi and A. Lysyanskaya, “Anonymous Credentials Light,” in Proc. Conference on
Computer and Communications Security (CCS’13). ACM, 2013, pp. 1087–1098.

[18] D. L. Chaum, “Untraceable Electronic Mail, Return Addresses, and Digital Pseudonyms,”
Communications of the ACM, vol. 24, no. 2, pp. 84–90, 1981.

32

[19] M. Jakobsson and A. Juels, “Millimix: Mixing in Small Batches,” DIMACS, Tech. Rep.
99-33, 1999.

[20] M. Jakobsson, A. Juels, and R. L. Rivest, “Making Mix Nets Robust for Electronic Voting
by Randomized Partial Checking,” in Proc. USENIX Security Symposium (USENIX’02).
USENIX Association, 2002, pp. 339–353.

[21] A. Fiat and A. Shamir, “How to Prove Yourself: Practical Solutions to Identification and
Signature Problems,” in Proc. Advances in Cryptology (CRYPTO’86). Springer Verlag,
1987, pp. 186–194.

[22] G. Ateniese and B. de Medeiros, “On the Key Exposure Problem in Chameleon Hashes,”
in Proc. International Conference on Security in Communication Networks (SCN’04), ser.
LNCS. Springer Verlag, 2004, pp. 165–179.

[23] J. Camenisch, M. Kohlweiss, and C. Soriente, “An Accumulator Based on Bilinear Maps
and E�cient Revocation for Anonymous Credentials,” in Proc. Practice and Theory in
Public Key Cryptography (PKC’09), ser. LNCS. Springer Verlag, 2009, pp. 481–500.

[24] C. Gentry and B. Waters, “Adaptive Security in Broadcast Encryption Systems (with
Short Ciphertexts),” in Proc. Conference on the Theory and Applications of Cryptographic
Techniques (EUROCRYPT’09), ser. LNCS. Springer Verlag, 2009, pp. 171–188.

[25] A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson, S. Shenker, H. Sturgis, D. Swine-
hart, and D. Terry, “Epidemic Algorithms for Replicated Database Maintenance,” in Proc.
Symposium on Principles of Distributed Computing (PODC’87). ACM, 1987, pp. 1–12.

[26] R. Küsters, T. Truderung, and A. Vogt, “Accountability: Definition and Relationship to
Verifiability,” in Proc. Conference on Computer and Communications Security (CCS’10).
ACM, 2010, pp. 526–535.

[27] J. Daemen and V. Rijmen, The Design of Rijndael, AES - The Advanced Encryption
Standard. Springer Verlag, 2002.

[28] Y. Lindell and B. Pinkas, “A Proof of Security of Yao’s Protocol for Two-Party Computa-
tion,” Journal of Cryptology, vol. 22, no. 2, pp. 161–188, Apr. 2009.

[29] T. El Gamal, “A Public Key Cryptosystem and a Signature Scheme Based on Discrete
Logarithms,” in Proc. Advances in Cryptology (CRYPTO’84), ser. LNCS. Springer Verlag,
1985, pp. 10–18.

[30] D. M. Freeman, “Converting Pairing-Based Cryptosystems from Composite-Order Groups
to Prime-Order Groups,” in Proc. Conference on the Theory and Applications of Crypto-
graphic Techniques (EUROCRYPT’10), ser. LNCS. Springer Verlag, 2010, pp. 44–61.

[31] C. P. Schnorr, “E�cient Identification and Signatures for Smart Cards,” in Proc. Advances
in Cryptology (CRYPTO’89), ser. LNCS. Springer Verlag, 1989, pp. 239–252.

[32] R. L. Rivest, A. Shamir, and L. Adleman, “A Method for Obtaining Digital Signatures
and Public-key Cryptosystems,” Communications of the ACM, vol. 21, no. 2, pp. 120–126,
Feb. 1978.

[33] R. Cramer, R. Gennaro, and B. Schoenmakers, “A Secure and Optimally E�cient Multi-
authority Election Scheme,” in Proc. Conference on the Theory and Applications of Cryp-
tographic Techniques (EUROCRYPT’97), ser. LNCS. Springer Verlag, 1997, pp. 103–118.

33

[34] J. Backes, S. Lorenz, and K. Pecina, “Zero-knowledge Library,” online at github.com/
peloba/zk-library.

[35] A. D. Caro, “jPBC - Java Library for Pairing Based Cryptography,” online at http://gas.
dia.unisa.it/projects/jpbc/.

[36] B. Lynn, “PBC - C Library for Pairing Based Cryptography,” online at http://crypto.
stanford.edu/pbc/.

[37] A. Miyaji, M. Nakabayashi, and S. Takano, “Characterization of Elliptic Curve Traces un-
der FR-Reduction,” in Proc. International Conference on Information Security and Cryp-
tology (ICISC’00), ser. LNCS, vol. 2015. Springer Verlag, 2001, pp. 90–108.

[38] BlueKrypt, “Cryptograhpic Key Length Recommendation,” online at www.keylength.com.

[39] R. J. Robinson, “How big is the human genome?” Online at https://medium.com/
precision-medicine/how-big-is-the-human-genome-e90caa3409b0.

[40] B. Carbunar and R. Sion, “Regulatory Compliant Oblivious RAM,” in Proc. Applied Cryp-
tography and Network Security (ACNS’10), ser. LNCS. Springer Verlag, 2010, pp. 456–474.

[41] M. Ajtai, “Oblivious RAMs Without Cryptographic Assumptions,” in Proc. ACM Sympo-
sium on Theory of Computing (STOC’10). ACM, 2010, pp. 181–190.

[42] M. T. Goodrich and M. Mitzenmacher, “Privacy-Preserving Access of Outsourced Data via
Oblivious RAM Simulation,” in Proc. International Conference on Automata, Languages
and Programming (ICALP’11), ser. LNCS. Springer Verlag, 2011, pp. 576–587.

[43] I. Damg̊ard, S. Meldgaard, and J. B. Nielsen, “Perfectly Secure Oblivious RAM Without
Random Oracles,” in Proc. Theory of Cryptography (TCC’11), ser. LNCS. Springer Verlag,
2011, pp. 144–163.

[44] E. Stefanov and E. Shi, “Multi-Cloud Oblivious Storage,” in Proc. Conference on Computer
and Communications Security (CCS’13). ACM, 2013, pp. 247–258.

[45] M. Maas, E. Love, E. Stefanov, M. Tiwari, E. Shi, K. Asanovic, J. Kubiatowicz, and
D. Song, “PHANTOM: Practical Oblivious Computation in a Secure Processor,” in Proc.
Conference on Computer and Communications Security (CCS’13). ACM, 2013, pp. 311–
324.

[46] E. Stefanov and E. Shi, “ObliviStore: High Performance Oblivious Cloud Storage,” in Proc.
IEEE Symposium on Security & Privacy (S&P’13). IEEE Press, 2013, pp. 253–267.

[47] D. Apon, J. Katz, E. Shi, and A. Thiruvengadam, “Verifiable Oblivious Storage,” in Proc.
Practice and Theory in Public Key Cryptography (PKC’14), ser. LNCS. Springer Verlag,
2014, pp. 131–148.

[48] P. Williams, R. Sion, and B. Carbunar, “Building Castles out of Mud: Practical Access
Pattern Privacy and Correctness on Untrusted Storage,” in Proc. Conference on Computer
and Communications Security (CCS’08). ACM, 2008, pp. 139–148.

[49] E. Stefanov, E. Shi, and D. Song, “Towards Practical Oblivious RAM,” in Proc. Annual
Network & Distributed System Security Symposium (NDSS’12). Internet Society, 2012.

34

github.com/peloba/zk-library
github.com/peloba/zk-library
http://gas.dia.unisa.it/projects/jpbc/
http://gas.dia.unisa.it/projects/jpbc/
http://crypto.stanford.edu/pbc/
http://crypto.stanford.edu/pbc/
www.keylength.com
https://medium.com/precision-medicine/how-big-is-the-human-genome-e90caa3409b0
https://medium.com/precision-medicine/how-big-is-the-human-genome-e90caa3409b0

[50] M. T. Goodrich, M. Mitzenmacher, O. Ohrimenko, and R. Tamassia, “Privacy-Preserving
Group Data Access via Stateless Oblivious RAM Simulation,” in Proc. ACM-SIAM Sympo-
sium on Discrete Algorithms (SODA’12). Society for Industrial and Applied Mathematics,
2012, pp. 157–167.

[51] M. Franz, C. Carbunar, R. Sion, S. Katzenbeisser, M. Sotakova, P. Williams, and A. Peter,
“Oblivious Outsourced Storage with Delegation,” in Proc. Financial Cryptography and
Data Security (FC’11). Springer Verlag, 2011, pp. 127–140.

[52] Y. Huang and I. Goldberg, “Outsourced Private Information Retrieval with Pricing and
Access Control,” in Proc. Annual ACM Workshop on Privacy in the Electronic Society
(WPES’13). ACM, 2013.

[53] S. De Capitani di Vimercati, S. Foresti, S. Jajodia, S. Paraboschi, and P. Samarati, “Private
Data Indexes for Selective Access to Outsourced Data,” in Proc. Annual ACM Workshop
on Privacy in the Electronic Society (WPES’11). ACM, 2011, pp. 69–80.

[54] M. Backes, A. Kate, M. Ma↵ei, and K. Pecina, “ObliviAd: Provably Secure and Prac-
tical Online Behavioral Advertising,” in Proc. IEEE Symposium on Security & Privacy
(S&P’12). IEEE Press, 2012, pp. 257–271.

[55] A. Kate, M. Ma↵ei, P. Moreno-Sanchez, and K. Pecina, “Privacy Preserving Payments
in Credit Networks,” in Proc. Annual Network & Distributed System Security Symposium
(NDSS’15). Internet Society, 2015.

[56] A. Iliev and S. W. Smith, “Protecting Client Privacy with Trusted Computing at the
Server,” IEEE Security and Privacy, vol. 3, no. 2, pp. 20–28, Mar. 2005.

[57] J. R. Lorch, B. Parno, J. Mickens, M. Raykova, and J. Schi↵man, “Shroud: Ensuring
Private Access to Large-scale Data in the Data Center,” in Proc. USENIX Conference on
File and Storage Technologies (FAST’13). USENIX Association, 2013, pp. 199–214.

[58] D. Schröder and H. Schröder, “Verifiable Data Streaming,” in Proc. Conference on Com-
puter and Communications Security (CCS’12). ACM, 2012, pp. 953–964.

[59] D. Schröder and M. Simkin, “VeriStream - A Framework for Verifiable Data Streaming,”
in Proc. Financial Cryptography and Data Security (FC’15). Springer Verlag, 2015.

[60] C. Papamanthou, E. Shi, R. Tamassia, and K. Yi, “Streaming Authenticated Data Struc-
tures ,” in Proc. Conference on the Theory and Applications of Cryptographic Techniques
(EUROCRYPT’13), 2013.

[61] H. Shacham and B. Waters, “Compact Proofs of Retrievability,” in Proc. International
Conference on the Theory and Application of Cryptology and Information Security (ASI-
ACRYPT’08), ser. LNCS. Springer Verlag, 2008, pp. 90–107.

[62] D. L. G. Filho and P. S. L. M. Barreto, “Demonstrating Data Possession and Uncheatable
Data Transfer,” Cryptology ePrint Archive, Report 2006/150, 2006, http://eprint.iacr.org/.

[63] T. Schwarz and E. L. Miller, “Store, Forget, and Check: Using Algebraic Signatures to
Check Remotely Administered Storage,” 2006.

[64] E. Stefanov, M. van Dijk, A. Oprea, and A. Juels, “Iris: A Scalable Cloud File System
with E�cient Integrity Checks,” Cryptology ePrint Archive, Report 2011/585, 2011, http:
//eprint.iacr.org/.

35

http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/

[65] S. Benabbas, R. Gennaro, and Y. Vahlis, “Verifiable Delegation of Computation Over Large
Datasets,” in Proc. Advances in Cryptology (CRYPTO’11), ser. LNCS. Springer Verlag,
2011, pp. 111–131.

[66] C. Erway, A. Küpçü, C. Papamanthou, and R. Tamassia, “Dynamic Provable Data Posses-
sion,” in Proc. Conference on Computer and Communications Security (CCS’09). ACM,
2009, pp. 213–222.

[67] M. van Dijk, A. Juels, A. Oprea, R. L. Rivest, E. Stefanov, and N. Triandopoulos, “Hour-
glass Schemes: How to Prove That Cloud Files Are Encrypted,” in Proc. Conference on
Computer and Communications Security (CCS’12). ACM, 2012, pp. 265–280.

[68] I. Carrión Señor, L. J. Fernández-Alemán, and A. Toval, “Are Personal Health Records
Safe? A Review of Free Web-Accessible Personal Health Record Privacy Policies,” Journal
of Medical Internet Research, vol. 14, no. 4, 2012.

[69] D. Daglish and N. Archer, “Electronic Personal Health Record Systems: A Brief Review of
Privacy, Security, and Architectural Issues,” World Congress on Privacy, Security, Trust
and the Management of e-Business, pp. 110–120, 2009.

[70] K. T. Win, W. Susilo, and Y. Mu, “Personal Health Record Systems and Their Security
Protection,” Journal of Medical Systems, vol. 30, no. 4, pp. 309–315, 2006.

[71] H. Löhr, A.-R. Sadeghi, and M. Winandy, “Securing the e-Health Cloud,” in Proc. ACM
International Health Informatics Symposium (IHI’10). ACM, 2010, pp. 220–229.

[72] M. Li, S. Yu, K. Ren, and W. Lou, “Securing Personal Health Records in Cloud Comput-
ing: Patient-Centric and Fine-Grained Data Access Control in Multi-owner Settings,” in
SECURECOMM’10, 2010.

[73] P. Korde, V. Panwar, and S. Kalse, “Securing Personal Health Records in Cloud using At-
tribute Based Encryption,” International Journal of Engineering and Advanced Technology,
2013.

[74] S. Goldwasser, S. Micali, and R. L. Rivest, “A Digital Signature Scheme Secure Against
Adaptive Chosen-message Attacks,” SIAM Journal on Computing, vol. 17, no. 2, pp. 281–
308, Apr. 1988.

A Cryptographic Building Blocks

Private key encryption. We recall the basic definition of private-key encryption and the
respective IND-CPA security definition.

Definition 2 (Private-Key Encryption). A private key encryption scheme is a tuple of ppt
algorithms ⇧SE = (GenSE, E , D), where the generation algorithm GenSE(1�) outputs a private key
k; the encryption algorithm E(k , m) takes as input a key k and a message m 2M and outputs
a ciphertext c; the decryption algorithm D(k , c) takes as input a key k and a ciphertext c and
outputs a message m.

A private key encryption scheme is correct if and only if, for all k GenSE(1�) and all
messages m 2M we have D(k , E(k , m)) = m.

Next, we define IND-CPA security for private key encryption schemes, where Ok (·) is an
encryption oracle that returns E(k , m) when queried on a message m.

36

Definition 3 (IND-CPA Security). Let ⇧SE = (GenSE, E , D) be a private key encryption scheme.
⇧SE has indistinguishable ciphertexts against chosen-plaintext attacks if for all ppt adversaries
A the following probability is negligible (as function in �):

���Pr[Expcpa
A,⇧SE

(�, 1) = 1]� Pr[Expcpa
A,⇧SE

(�, 0) = 1]
���

where Expcpa
A,⇧SE

(�, b) is the following experiment:

Experiment Expcpa
A,⇧SE

(�, b)
k GenSE(1�)
(m0, m1) A

Ok (·)

cb E(k , mb)
b0 A(cb)
Output 1 if and only if, |m0| = |m1| and b0 = b.

Finally, we introduce the notion of elusive-range scheme, we denote the range of a key k by
Range�(k) := {E(k, m)}m2{0,1}� .

Definition 4 (Elusive Range [28]). Let ⇧SE = (GenSE, E , D) be a private key encryption scheme.
⇧SE has elusive-range if for all ppt adversaries A the following probability is negligible in �:

Prk GenSE(1�)[A(1�) 2 Range�(k)]

Public key encryption. We recall the basic definition of public-key encryption and the
corresponding IND-CPA security definition.

Definition 5 (Public Key Encryption). A public key encryption scheme is a tuple of ppt
algorithms ⇧PKE = (GenPKE, Enc, Dec), where the generation algorithm GenPKE(1�) outputs a
public key pk and a private key sk; the encryption algorithm Enc(pk , m) takes as input the
public key pk and a message m 2 M and outputs a ciphertext c; the decryption algorithm
Dec(sk , c) takes as input the secret key sk and a ciphertext c and outputs a message m or ?.

A public key encryption scheme is correct if and only if, for all (pk , sk) GenPKE(1�) and
all messages m 2M we have Dec(sk , Enc(pk , m)) = m.

Next, we define IND-CPA security for public-key encryption schemes.

Definition 6 (CPA Security). Let ⇧PKE = (GenPKE, Enc, Dec) be a public key encryption
scheme. ⇧PKE has indistinguishable ciphertexts against chosen-plaintext attacks (CPA) if for
all ppt adversaries A the following probability is negligible (in the security parameter �):

|Pr[ExpPKE(�, 1) = 1]� Pr[ExpPKE(�, 0) = 1]|

where ExpPKE(�, b) is the following experiment:

Experiment ExpPKE(�, b)
(pk , sk) GenPKE(1�)
(m0, m1) A(pk)
cb Enc(pk , mb)
b0 A(cb)
Output 1 if and only if, |m0| = |m1| and b0 = b.

37

For our purposes, we need an IND-CPA-secure public-key encryption scheme that is reran-
domizable. Hence, we assume that there exists a function Rerand(pk , c, r) that takes as input a
ciphertext c and randomness r and returns a rerandomized ciphertext c0 encrypting the same
content where c 6= c0 and both c and c0 have the same distribution in the ciphertext space.

Predicate encryption. We recall the notion of predicate encryption [6]. In a predicate
encryption scheme one can encrypt a message m under a certain attribute I 2 ⌃ using a master
public key mpk where ⌃ is the universe of all possible attributes. Furthermore, one can decrypt
the resulting ciphertext using a secret key skf associated with a predicate f 2 F if and only if
I fulfills f , i.e., f(I) = 1, where F is the universe of all predicates.

Definition 7 (Predicate Encryption). A predicate encryption scheme for the universe of
predicates and attributes F and ⌃, respectively, is a tuple of ppt algorithms ⇧PE =
(PrGen, PrKGen, PrEnc, PrDec), where the generation algorithm PrGen takes as input a secu-
rity parameter 1� and returns a master public and a master secret key pair (mpk , psk); the key
generation algorithm PrKGen takes as input the master secret key psk and a predicate descrip-
tion f 2 F and returns a secret key skf associated with f ; the encryption algorithm PrEnc takes
as input the master public key mpk, an attribute I 2 ⌃, and a message m and it returns a
ciphertext c; and the decryption algorithm PrDec takes as input a secret key skf associated with
a predicate f and a ciphertext c and outputs either a message m or ?.

A predicate encryption scheme ⇧PE is correct if and only if, for all �, all key pairs
(mpk , psk) PrGen(1�), all predicates f 2 F , all secret keys skf PrKGen(psk , f), and
all attributes I 2 ⌃ we have that (i) if f(I) = 1 then PrDec(skf , PrEnc(mpk , I, m)) = m and
(ii) if f(I) = 0 then PrDec(skf , PrEnc(mpk , I, m)) = ? except with negligible probability in �.

Next, we recall the security notion attribute-hiding that we require the predicate encryption
scheme to hold. Suppose that there are professors, students, and employees at a university with
corresponding attributes Prof , Emp, and Stud . Naturally, every member of a group will be
equipped with a secret key skf such that f is either the predicate mayAccProf, mayAccEmp,
or mayAccStud. We use the toy policy that professors may read everything and employees and
students may read only encryptions created using Emp and Stud , respectively. Now, attribute-
hiding means the following: let file be a file encrypted using the attribute Prof . On the one
hand, a student equipped with skmayAccStud can neither decrypt the file nor tell with which
attribute it is encrypted except for that it was not Stud . On the other hand, even a professor
does not learn under which attribute file was encrypted, she only learns the content of the file
and nothing more. The following definition formalizes the intuition given above.

Definition 8 (Attribute Hiding). Let ⇧PE be a predicate encryption scheme with respect to F

and ⌃. ⇧PE is attribute hiding if for all ppt adversaries A the following probability is negligible:

|Pr[ExpPE(�, 1) = 1]� Pr[ExpPE(�, 0) = 1]|

where ExpPE(�, b) is the following experiment:

Experiment ExpPE(�, b)
⌃2
3 (I0, I1) A(1�)

(mpk , psk) PrGen(1�) and give mpk to A

A may adaptively query keys pskfi
for predicates

f1, . . . , f` 2 F where fi(I0) = fi(I1)
(m0, m1) A such that |m0| = |m1| and

if there is an i such that fi(I0) = fi(I1) = 1,
then m0 = m1 is required

38

b0 A(PrEnc(mpk , Ib, mb)) while A may continue
requesting keys for additional predicates
with the same restrictions as before

output 1 if and only if, b0 = b.

We use a variant of predicate encryption for our construction. This variant is called predicate-
only encryption. Predicate-only encryption can be seen as a special variant of functional en-
cryption with the universe of functions only mapping to boolean values.

Definition 9 (Predicate-only Encryption). A predicate-only encryption scheme for the uni-
verse of predicates and attributes F and ⌃, respectively, is a tuple of ppt algorithms ⇧PO =
(PoGen, PoKGen, PoEnc, PoDec), where the generation algorithm PoGen takes as input a security
parameter 1� and returns a master public and a master secret key pair (opk , osk); the key gen-
eration algorithm PoKGen takes as input the master secret key osk and a predicate description
f 2 F and returns a secret key oskf associated with f ; the encryption algorithm PoEnc takes
as input the master public key opk and an attribute I 2 ⌃ and it returns a ciphertext c; and the
decryption algorithm PoDec takes as input a secret key oskf associated with a predicate f and
a ciphertext c and outputs either 1 or 0.

A predicate-only encryption scheme ⇧PO is correct if and only if, for all �, all key pairs
(opk , osk) PoGen(1�), all predicates f 2 F , all secret keys oskf PoKGen(osk , f), and
all attributes I 2 ⌃ we have that PoDec(oskf , PoEnc(opk , I)) = f(I) except with negligible
probability.

Security is defined similar to predicate encryption, but we refer the interested reader to [6]
for a formal security definition.

As for public-key encryption, we require rerandomization operations PrRR(mpk , c, r) and
PoRR(opk , c, r).

We briefly describe below how to encode the access control matrix through predicates and
attributes. We use ⌃ = F = Zn+1

q where n is the maximum number of clients that are registered
with the database owner. Let f, I 2 Zn+1

q such that f(I) = 1 if and only if hf, Ii = 0, i.e., the

two vectors f and I are orthogonal. Let (f1, . . . , fn) 2 Z(n+1)⇥n
q be the matrix formed of all

column-vectors representing the n clients. Let us furthermore assume that all the n columns
are pairwise linearly independent. Now, in order to find an attribute that implements the read
or write access modes of a data entry at index i for all clients, one computes a vector I 2 Zn+1

q

that is orthogonal to the k  n vectors corresponding to the clients that have access to i and
that is not orthogonal to the other n� k. Since there are at most n vectors to which I has to
be orthogonal, there always exists a solution to this system of equations.

Broadcast encryption. We recall the definition of broadcast encryption and an adaptive
security notion [24].

Definition 10 (Broadcast encryption). A broadcast encryption scheme is a tuple of ppt al-
gorithms ⇧BE = (SetupBE, BrKeyGen, BrEnc, BrDec):

• the generation algorithm SetupBE(1�, n) takes as input a security parameter � and a max-
imum number of users n and outputs a key pair (bsk , bpk);

• the key generation algorithm BrKeyGen(i, bsk) takes as input an index i 2 {1, . . . , n} and
the secret key bsk and outputs a private key di;

• the encryption function BrEnc(S, bpk) takes as input a set S ✓ {1, . . . , n} and the public
key bpk and outputs a pair hHdr , Ki where Hdr is called the header and K is called the

39

message encryption key. Let ⇧SE be a symmetric encryption scheme and let c E(K, M)
be the encryption of message M that is supposed to be broadcast to users in S. Then the
broadcast message consists of (S,Hdr , c);

• finally, the decryption function BrDec(S, i, di,Hdr , bpk) takes as input the set of users S,
an index i with corresponding private key di, the header Hdr, and the public key bpk. If
i 2 S and di belongs to i, then it outputs a message encryption key K that can be used to
decrypt the symmetric-key ciphertext c produced during encryption.

Definition 11 (Adaptive security). Let ⇧BE be a broadcast encryption scheme. ⇧BE is adap-
tively secure if for all ppt adversaries A the following probability is negligible:

|Pr[ExpBE(�, 1) = 1]� Pr[ExpBE(�, 0) = 1]|

where ExpBE(�, b) is the following experiment:

Experiment ExpBE(�, b)
(bsk , bpk) SetupBE(1�, n) and give bpk to A

A may adaptively query private keys di for 1  i  n
S⇤ A such that i /2 S⇤ for all queried i’s
hHdr⇤, K0i BrEnc(S⇤, bpk)
K1 from the key space
b0 A(Hdr⇤, Kb)
output 1 if and only if, b0 = b.

Chameleon hash functions. We recall the definition of chameleon hash functions as well as
the notion of key-exposure freeness [22].

Definition 12 (Chameleon hash function). A chameleon hash function is a tuple of ppt al-
gorithms ⇧CHF = (GenCHF, CH, Col), where the generation algorithm GenCHF(1�) outputs a key
pair (cpk , csk); the chameleon hash function CH(cpk , m, r) takes as input the public key cpk, a
message m, and randomness r and it outputs a tag t; the collision function Col(csk , m, r, m0)
takes as input the private key csk, a message m, randomness r, and a new message m0 and it
outputs a new randomness r0 such that CH(cpk , m, r) = t = CH(cpk , m0, r0).

We define next the key-exposure freeness property for chameleon hash functions [22].

Definition 13 (Key-exposure freeness). Let ⇧CHF = (GenCHF, CH, Col) be a chameleon hash
function. ⇧CHF is key-exposure free if for all key pairs (cpk , csk), all messages m, all random-
nesses r, and all chameleon hash tags t such that t = CH(cpk , m, r), no ppt adversary can
output a fresh message-randomness pair (m⇤, r⇤) such that t = CH(cpk , m⇤, r⇤) without knowing
csk and even after seeing polynomially many collisions (mi, ri) for m and r where mi 6= m⇤ and
ri 6= r⇤.

Digital signatures. We recall the definition of digital signatures as well as the one of existential
unforgeability [74].

Definition 14 (Digital signature). A digital signature scheme is a tuple of ppt algorithms
⇧DS = (GenDS, sign, verify) where the generation algorithm GenDS(1�) outputs a key pair (vk , sk);
the signing function sign(sk , m) takes as input the signing key sk and a message m and it outputs
a signature �; the verification function verify(vk , �, m) takes as input the verification key vk,
a signature �, and a message m, and it outputs either > if � is a valid signature for m or >
otherwise.

40

We next define existential unforgeability [74].

Definition 15 (Existential unforgeability). Let ⇧DS = (GenDS, sign, verify) be a digital signa-
ture scheme. ⇧DS is existentially unforgeable against chosen message attacks if for all ppt
adversaries A the following probability is negligible (as function of �):

Pr[Expeu
A,⇧DS

(�) = 1]

where Expeu
A,⇧DS

(�) is the following experiment:

Experiment Expeu
A,⇧DS

(�)
(vk , sk) GenDS(�)
give vk to A

A may adaptively query signatures �i for messages mi

(�⇤, m⇤) A

output 1 if and only if, verify(vk , �⇤, m⇤) = >
and for all i we have m⇤ 6= mi.

Proofs of shu✏e correctness. Zero-knowledge proofs of shu✏e correctness (also sometimes
known as mix proofs) were first introduced by Chaum [18] in the context of mix networks.
More formally, let C1, . . . , Cn be a sequence of ciphertexts and C 01, . . . , C

0
n be a permuted and

rerandomized version of thereof. Let furthermore ⇡ be the used permutation and r1, . . . , rn be
the randomnesses used in the rerandomization. A zero-knowledge proof of shu✏e correctness
can be expressed as follows:

PK

(
(⇡, r1, . . . , rn) :

8i. C 0
i
= Rerand(pk , C⇡�1(i), ri)

)
.

Notice that this proof reveals the old and the new ciphertext but it hides ⇡ and r1, . . . , rn.

B Predicate Encryption and Rerandomization

We present the predicate encryption scheme of Katz et al. [6]. Moreover, we show how one
can rerandomize ciphertexts as a public operation. This might be of independent interest. We
show the rerandomization for the original scheme, however, it is straightforward to adapt the
transformation to prime order groups [30] – the one we use in our implementation for e�ciency
reasons.

B.1 The KSW Predicate Encryption Scheme

The scheme is based on composite order groups with a bilinear map. More precisely, let N = pqr
be a composite number where p, q, and r are large prime numbers. Let G be an order-N cyclic
group and e : G⇥G! GT be a bilinear map. Recall that e is bilinear, i.e., e(ga, gb) = e(g, g)ab,
and non-degenerate, i.e., if hgi = G then e(g, g) 6= 1. Then, by the chinese remainder theorem,
G = Gp ⇥Gq ⇥Gr where Gs with s 2 {p, q, r} are the s-order subgroups of G. Moreover, given
a generator g for G, hgpqi = Gr, hgpri = Gq, and hgqri = Gp. Another insight is the following,
given for instance a 2 Gp and b 2 Gq, we have e(a, b) = e((gqr)c, (gpr)d) = e(grc, gd)pqr = 1, i.e.,
a pairing of elements from di↵erent subgroups cancels out. Finally, let G be an algorithm that
takes as input a security parameter 1� and outputs a description (p, q, r,G,GT , e). We describe
the algorithms PrGen, PrKGen, PrEnc, and PrDec in the sequel.

41

Algorithm PoGen(1�, n) and PrGen(1�, n). First, the algorithm runs G(1�) to obtain
(p, q, r,G,GT , e) with G = Gp ⇥ Gq ⇥ Gr. Then, it computes gp, gq, and gr as generators of
Gp, Gq, and Gr, respectively. The algorithm selects R0 2 Gr, R1.i, R2,i 2 Gr and h1,i, h2,i 2 Gp

uniformly at random for 1  i  n. (N = pqr,G,GT , e) constitutes the public parameters. The
public key for the predicate-only encryption scheme is

opk = (gp, gr, Q = gq · R0,

{H1,i = h1,i · R1,i, H2,i = h2,i · R2,i}
n

i=1)

and the master secret key is

osk = (p, q, r, gq, {h1,i, h2,i}
n

i=1).

For the predicate encryption with messages, the algorithm additionally chooses � 2 ZN and
h 2 Gp at random. The public key is

mpk = (gp, gr, Q = gq · R0, P = e(gp, h)� ,

{H1,i = h1,i · R1,i, H2,i = h2,i · R2,i}
n

i=1)

and the master secret key is

psk = (p, q, r, gq, h
�� , {h1,i, h2,i}

n

i=1).

Algorithm PoKGen(osk ,~v) and PrKGen(psk ,~v). Parse ~v as (v1, . . . , vn) where vi 2 ZN . The
algorithm picks random r1,i, r2,i 2 Zp for 1  i  n, random R5 2 Gr, random f1, f2 2 Zq, and
random Q6 2 Gq. For the predicate-only encryption scheme it outputs a secret key

osk~v =

0

BB@

K0 = R5 · Q6 ·
Q

n

i=1 h
�r1,i

1,i · h
�r2,i

2,i ,

{K1,i = g
r1,i
p · gf1·viq ,

K2,i = g
r2,i
p · gf2·viq }

n

i=1

1

CCA .

For the predicate encryption scheme with messages, the secret key sk~v is the same as osk~v
except for

K0 = R5 · Q6 · h�� ·

nY

i=1

h
�r1,i

1,i · h
�r2,i

2,i .

Algorithm PoEnc(opk , ~x) and PrEnc(mpk , ~x, m). Parse ~x as (x1, . . . , xn) where xi 2 ZN .
The algorithm picks random s, ↵, � 2 ZN and random R3,i, R4,i 2 Gr for 1  i  n. For the
predicate-only encryption scheme it outputs the ciphertext

C =

C0 = gsp, {C1,i = Hs

1,i · Q↵·xi · R3,i,

C2,i = Hs

2,i · Q�·xi · R4,i}
n

i=0

!
.

For the predicate encryption scheme with messages notice that m 2 GT . The ciphertext is

C =

0

BB@

C 0 = m · P s, C0 = gsp,

{C1,i = Hs

1,i · Q↵·xi · R3,i,

C2,i = Hs
2,i · Q�·xi · R4,i}

n
i=0

1

CCA .

42

Algorithm PoDec(osk~v, C) and PrDec(sk~v, C). The predicate-only encryption outputs
whether the following equation is equal to 1

e(C0, K0) ·

nY

i=1

e(C1,i, K1,i) · e(C2,i, K2,i).

The predicate encryption scheme with messages outputs the result of the following equation

C 0 · e(C0, K0) ·

nY

i=1

e(C1,i, K1,i) · e(C2,i, K2,i).

Correctness. We start with the predicate-only encryption. Assume a secret key osk~v =
(K0, {K1,i, K2,i}

n
i=0) and a ciphertext C = (C0, {C1,i, C2,i}

n
i=0). Then

e(C0, K0) ·

nY

i=0

e(C1,i, K1,i) · e(C2,i, K2,i)

= e(gsp, R5 · Q6 ·

nY

i=1

h
�r1,i

1,i · h
�r2,i

2,i)

·

nY

i=1

e(Hs

1,i · Q↵·xi · R3,i, g
r1,i
p · gf1·viq)

· e(Hs

2,i · Q�·xi · R4,i, g
r2,i
p · gf2·viq)

=
nY

i=1

e(gp, h1,i)
�s·r1,i · e(gp, h2,i)

�s·r2,i

·

nY

i=1

e(h1,i, gp)
s·r1,i · e(gq, gq)

↵·xi·f1·vi

· e(h2,i, gp)
s·r2,i · e(gq, gq)

�·xi·f2·vi

=
nY

i=1

e(gq, gq)
(↵f1+�f2)·xi·vi

= e(gq, gq)
(↵f1+�f2)·h~x,~vi

The last equation is 1 if and only if h~x,~vi = 0, as expected.
For the predicate encryption scheme with messages, we have sk~v = (K0, {K1,i, K2,i}

n

i=0) and
a ciphertext C = (C 0, C0, {C1,i, C2,i}

n
i=0). Then

C 0 · e(C0, K0) ·

nY

i=0

e(C1,i, K1,i) · e(C2,i, K2,i)

= m · P s
· e(gsp, R5 · Q6 · h�� ·

nY

i=1

h
�r1,i

1,i · h
�r2,i

2,i)

·

nY

i=1

e(Hs

1,i · Q↵·xi · R3,i, g
r1,i
p · gf1·viq)

· e(Hs

2,i · Q�·xi · R4,i, g
r2,i
p · gf2·viq)

= m · e(gp, h)s·� · e(gp, h)�s·�

43

·

nY

i=1

e(gp, h1,i)
�s·r1,i · e(gp, h2,i)

�s·r2,i

·

nY

i=1

e(h1,i, gp)
s·r1,i · e(gq, gq)

↵·xi·f1·vi

· e(h2,i, gp)
s·r2,i · e(gq, gq)

�·xi·f2·vi

= m ·

nY

i=1

e(gq, gq)
(↵f1+�f2)·xi·vi

= m · e(gq, gq)
(↵f1+�f2)·h~x,~vi

The second factor in the last line cancels out only if h~x,~vi = 0, as expected.

B.2 Rerandomizing KSW Ciphertexts

The correctness validation in the previous section already suggests that rerandomization of ⇧PO

and ⇧PE ciphertexts is possible since all terms that involve randomness s cancel out in the end.
As terms including s only occur in the ciphertext we can easily have public rerandomization
functions PoRR and PrRR as follows.

Algorithms PoRR(C) and PrRR(C). The algorithm picks fresh randomness s0 2 ZN and
computes CR in the predicate-only encryption scheme as

CR = (C0 · gs
0

p , {C1,i · Hs
0

1,i, C2,i · Hs
0

2,i}
n

i=1).

In the predicate encryption scheme with messages it returns

CR = (C 0 · P s
0
, C0 · gs

0
p , {C1,i · Hs

0
1,i, C2,i · Hs

0
2,i}

n

i=1).

This transformation constitutes an additive randomization in the sense that in every exponent
where s occurs, it now contains exponent s + s0. Therefore, also the correctness is preserved.

B.3 Proving Knowledge of Secret Keys in Groth-Sahai

In our construction, the client has to prove to the server that she is eligible to write an entry
whenever she wants to replace an entry in the database. The proof (see line 6.11) has the
general form

PK {(oskf) : PoDec(oskf , cAuth) = 1} .

In our instantiation where we use KSW predicate-only encryption for regulating the write access,
cAuth is of the form

(C0, {C1,i}1in, {C2,i}1in)

and secret keys are of the form

(K0, {K1,i}1in, {K2,i}1in).

This means that the concrete proof is of the form

PK

8
><

>:

(K0, {K1,i}1in, {K2,i}1in) :

e(C0, K0)·Q
n

i=1 e(C1,i, K1,i)e(C2,i, K2,i) = 1

9
>=

>;
.

44

The Groth-Sahai proof system [7] allows for proving relations of the above form. More
precisely, given vectors of witnesses ~X 2 Gm

1 , ~Y 2 Gn
2 , we can prove the following equality while

disclosing neither ~X nor ~Y :

nY

i=1

e(Ai, Yi) ·

mY

i=1

e(Xi, Bi) ·

nY

i=1

mY

j=1

e(Xi, Yj)
�ij = tT

where ~A 2 Gn
1 , ~B 2 Gm

2 , � 2 Zn⇥m
q , and tT 2 GT are the public components of the proof. In

our special case, it is su�cient to consider the following special form of this equation since we
only want to keep the secret key hidden, which is in G2:

nY

i=1

e(Ai, Yi) = tT .

Furthermore, tT = 1 where 1 stands for the neutral element of the group operation. We
construct the vectors ~A and ~Y as

~A = (C0, C1,i, . . . , C1,n, C2,1, . . . , C2,n)> ~Y = (K0, K1,i, . . . , K1,n, K2,1, . . . , K2,n)>

We do not review the proof construction here but refer the interested reader to [7] for a con-
cise explanation. We observe that since tT = 1, the proofs for our scenario are indeed zero-
knowledge.

C Formal Definitions

C.1 Secrecy

Definition 16 (Secrecy). A Group ORAM GORAM = (gen, addCl, addE, chMode, read, write)
preserves secrecy, if for every ppt adversary A the following probability is negligible in the
security parameter �:

��Pr[ExpSecAGORAM(�, 1) = 1]� Pr[ExpSecAGORAM(�, 0) = 1]
��

where ExpSecAGORAM(�, b) is the following game:
Setup: The challenger runs (capO, DB) gen(1�), sets AC := [], and runs a black-box simu-
lation of A to which it hands over DB.
Queries: The challenger provides A with interactive interfaces addCl, addE, chMode, read,
write, and corCl that A may query adaptively and in any order. Each round A can query
exactly one interface. These interfaces are described below:

(1) On input addCl(a) by A, the challenger executes addCl(capO,a) locally and stores the capa-
bility capi returned by the algorithm.

(2) On input addE(a, d) by A, the challenger executes hCaddE(capO,a, d), SaddE(DB)i in inter-
action with A, where the former plays the role of the client while the latter plays the role of
the server.

(3) On input chMode(a, j) by A, the challenger executes hCchMode(capO,a, j), SchMode(DB)i in
interaction with A.

(4) On input corCl(i) by A, the challenger hands over the capability capi related to the i-th
client in the access control matrix AC.

45

(5) On input read(i, j) by A, the challenger executes hCread(capi, j), Sread(DB)i in interaction
with A.

(6) On input write(i, j, d) by A, the challenger executes hCwrite(capi, j, d), Swrite(DB)i in inter-
action with A.

Challenge: Finally, A outputs (j, (d0, d1)), where j is an index denoting the database entry
on which A wants to be challenged and (d0, d1) is a pair of entries such that |d0| = |d1|. The
challenger accepts the request only if AC(i, j) = ?, for every i corrupted by A in the query
phase. Afterwards it invokes hCwrite(capO, j, db), Swrite(DB)i in interaction with A.
Output: In the output phase A still has access to the interfaces except for addCl on input a
such that a(j) 6= ?; corCl on input i such that AC(i, j) 6= ?; and chMode on input a, i with
a(i) 6= ? for some previously corrupted client i. Eventually, A stops, outputting a bit b0. The
challenger outputs 1 if and only if b = b0.

C.2 Integrity

Definition 17 (Integrity). A Group ORAM GORAM = (gen, addCl, addE, chMode, read, write)
preserves integrity, if for every ppt adversary A the following probability is negligible in the
security parameter:

Pr[ExpIntAGORAM(�) = 1]

where ExpIntAGORAM(�) is the following game:
Setup: The challenger runs (capO, DB) gen(1�), sets AC := [], and runs a black-box simula-
tion of A. Furthermore, the challenger initializes a second database DB0 := [] which is managed
locally.
Queries: The challenger provides A with the same interfaces as in Definition 16, which A

may query adaptively and in any order. Since DB is maintained on the challenger’s side, the
queries to addE, chMode, read and write are locally executed by the challenger. Furthermore,
the challenger updates DB0 locally for all a↵ecting interface calls.
Challenge: Finally, the adversary outputs an index j⇤ which he wants to be challenged on. If
there exists a capability capi provided to A with AC(i, j⇤) = rw, the challenger aborts. Otherwise
it runs d⇤ hCread(capO, j⇤), Sread(DB)i locally.
Output: It outputs 1 if and only if d⇤ 6= DB0(j⇤).

C.3 Tamper Resistance

Definition 18 (Tamper resistance). A Group ORAM GORAM = (gen, addCl, addE, chMode,
read, write) is tamper-resistant, if for every ppt adversary A the following probability is negli-
gible in the security parameter:

Pr[ExpTamResAGORAM(�) = 1]

where ExpTamResAGORAM(�) is the following game:
Setup: The challenger runs the Setup phase as in Definition 16. Furthermore, it forwards DB
to A and initializes a second database DB0 which is managed locally.
Queries: The challenger provides A with the same interfaces as in Definition 16, which A

may query adaptively and in any order. Furthermore, the challenger updates DB0 locally for all
a↵ecting interface calls.
Challenge: Finally, the adversary outputs an index j⇤ which he wants to be challenged on. If
there exists a capability capi that has ever been provided to A such that AC(i, j⇤) = rw, then

46

the challenger aborts. The challenger runs d⇤ hCread(capO, j⇤), Sread(DB)i in interaction with
A.
Output: It outputs 1 if and only if d⇤ 6= DB0(j⇤).

C.4 Obliviousness

Definition 19 (Obliviousness). A Group ORAM GORAM = (gen, addCl, addE, chMode, read,
write) is oblivious, if for every ppt adversary A the following probability is negligible in the
security parameter: ��Pr[ExpObvAGORAM(�, 1) = 1]�

Pr[ExpObvAGORAM(�, 0) = 1]
��

where ExpObvAGORAM(�, b) is the following game:
Setup: The challenger runs (capO, DB) gen(1�) as in Definition 16 and it forwards DB to
A.
Queries: The challenger provides A with the same interfaces as in Definition 16 except corCl,
which A may query adaptively and in any order. Furthermore, A is provided with the following
additional interface:

(1) On input query({(i0, j0), (i0, j0, d0)}, {(i1, j1), (i1, j1, d1)}) by A, the challenger checks
whether j0  |DB|, j1  |DB|, and i0, i1 are valid clients. Furthermore, it checks that
the operations requested by A are allowed by AC. If not it aborts. Otherwise it executes
hCread(capib

, jb), Sread(DB)i or hCwrite(capib
, jb, db), Swrite(DB)i depending on the input, in in-

teraction with A. Here the challenger plays the role of the client and A plays the role of
the server.

Output: Finally, A outputs a bit b0. The challenger outputs 1 if and only if b = b0.

C.5 Anonymity

Definition 20 (Anonymity). A Group ORAM GORAM = (gen, addCl, addE, chMode, read,
write) is anonymity-preserving, if for every ppt adversary A the following probability is negli-
gible in the security parameter:

��Pr[ExpAnonAGORAM(�, 1) = 1]�
Pr[ExpAnonAGORAM(�, 0) = 1]

��

where ExpAnonAGORAM(�, b) is the following game:
Setup: The challenger runs (capO, DB) gen(1�) and it forwards capO and DB to A.
Queries: The challenger provides A with read and a write interactive interfaces that A may
query adaptively and in any order. Each round A can query exactly one interface. The interfaces
are described below:

(3) On input read(capi, j) by A, the challenger executes hCread(capi, j), Sread(DB)i in interac-
tion with A, where the former plays the role of the server and the latter plays the role of
the client.

(4) On input write(capi, j, d) by A, the challenger executes hCwrite(capi, j, d), Swrite(DB)i in
interaction with A, where the former plays the role of the server and the latter plays the
role of the client.

47

Challenge: A outputs ((capi0
, capi1

), {j, (j, d)}), where (capi0
, capi1

) is a pair of capabilities,
j is an index denoting the database entry on which A wishes to be challenged, and d is some
data. The challenger checks whether AC(i0, j) = AC(i1, j): if not, then it aborts, otherwise it
executes hCread(capib

, j), Sread(DB)i or hCwrite(capib
, j, d), Swrite(DB)i in interaction with A.

Output: Finally, A outputs a bit b0. The challenger outputs 1 if and only if b = b0.

C.6 Accountability

Definition 21 (Accountability). A Group ORAM GORAM = (gen, addCl, addE, chMode, read,
write, blame) is accountable, if for every ppt adversary A the following probability is negligible
in the security parameter:

Pr[ExpAccAGORAM(�) = 1]

where ExpAccAGORAM(�) is the following game:
Setup: The challenger runs the Setup phase as in Definition 17.
Queries: The challenger runs the Query phase as in Definition 17.
Challenge: Finally, the adversary outputs an index j⇤ which he wants to be challenged on. If
there exists a capability capi provided to A such that AC(i, j⇤) = rw, then the challenger aborts.
The challenger runs d⇤ hCread(capO, j⇤), Sread(DB)i and L blame(capO, Log, j⇤) locally.
Output: It outputs 1 if and only if d⇤ 6= DB0(j⇤) and 9 i 2 L that has not been queried by A to
the interface corCl(·) or L = [].

D Full Cryptographic Proofs

In this section we formally define and sketch the proof for the correctness of our scheme (Sec-
tion D.1) and we prove the theorems presented in Section 7 (Section D.2).

D.1 Correctness

In the following we state the conditions that determine the correctness of a multi-client ORAM.
Intuitively, the primitive is correct if, given a successful execution of any algorithm, its outcome
satisfies some specific constraints which guarantee the reliability of the whole scheme. We
formalize the notion of correctness up to each operation defined within the multi-client ORAM.

Definition 22 (Correctness). A Group ORAM (gen, addCl, addE, chMode, read, write) is correct,
if the following statements are true except with negligible probability in the security parameter:
let D be the payload domain and cntC be the number of registered users.
addCl.

8d 2 D, 8a 2 {?, r , rw}
|DB|, 8j 2 [1, |DB|] :

capi addCl(capO,a) =)

(d hCread(capi, j), Sread(DB)i ()
d = DB(j) ^ (a(j) = r _ a(j) = rw))

^ (DB0 hCwrite(capi, j, d), Swrite(DB)i ()
DB0 = DB[j 7! d] ^ a(j) = rw)

48

addE.
8d 2 D, 8a 2 {?, r , rw}

|cntC |, 8i 2 [1, cntC], 9j :

DB0 hCaddE(capO,a, d), SaddE(DB)i =)

(|DB0| = j) ^ (|DB| = j � 1)
^ (DB0 = DB[j 7! d])
^ (d hCread(capi, j), Sread(DB0)i ()

d = DB0(j) ^ (a(j) = r _ a(j) = rw))

^ 8d0. (DB00 hCwrite(capi, j, d
0), Swrite(DB0)i

() DB00 = DB0[j 7! d0] ^ a(j) = rw)

chMode.
8d 2 D, 8a 2 {?, r , rw}

cntC ,

8j 2 [1, |DB|], 8i 2 [1, cntC] :

hCchMode(capO,a, j), SchMode(DB)i =)

(d hCread(capi, j), Sread(DB)i ()
d = DB(j) ^ (a(j) = r _ a(j) = rw))

^ (DB0 hCwrite(capi, j, d), Swrite(DB)i ()
DB0 = DB[j 7! d] ^ a(j) = rw)

read.
8d 2 D, 8j 2 [1, |DB|], 8i 2 [1, cntC] :

d hCread(capi, j), Sread(DB)i =)

d = DB(j) ^ (AC(i, j) = r _ AC(i, j) = rw)

write.
8d 2 D, 8j 2 [1, |DB|], 8i 2 [1, cntC] :

DB0 hCwrite(capi, j, d), Swrite(DB)i =)

DB0 = DB[j 7! d] ^ AC(i, j) = rw

Theorem 5 (Correctness). Let ⇧PE and ⇧PO be a predicate (resp. predicate-only) encryption
scheme, ⇧PKE and ⇧SE be a public-key (resp. private-key) encryption scheme, and ZKP be a
zero-knowledge proof system such that they all fulfill completeness. Then GORAM constructed
in Section 3.2 satisfies the definition of correctness (Definition 22).

Proof sketch. The proof is conducted by protocol inspection on the implementation of each
algorithm. Under the assumption that all of the encryption schemes, as well as the zero-
knowledge proof system, are complete except with negligible probability, it directly follows from
the analysis of the protocols that all of our instantiations fulfill the definition of correctness.

D.2 Security Proofs

Proof of Theorem 2. In the following we separately prove the security of GORAM for each
specified property.

Lemma 1. Let ⇧PE be an attribute-hiding predicate encryption scheme and ⇧SE be a CPA-
secure private-key encryption scheme. Then GORAM achieves secrecy.

Proof of Lemma 1. The proof is constructed by fixing the choice of the challenger over the
sampling of the random coin and define intermediate hybrid games, where the two extremes
are the ExpSecAGORAM(�, b) experiment over the two values of b. We start by defining a new
experiment ExpSec0AGORAM(�, b) that slightly di↵ers from the original one. For sake of readability
we introduce the following notation:

49

• GAME 1 := ExpSecAGORAM(�, 0)

• GAME 2 := ExpSec0AGORAM(�, 0)

• GAME 3 := ExpSec0AGORAM(�, 1)

• GAME 4 := ExpSecAGORAM(�, 1)

Then we show that the di↵erence among any two neighboring games is bounded by a negligible
value in the security parameter, therefore the advantage of the adversary in ExpSecAGORAM(�, b)
turns to be a sum of negligible values, which is still negligible. In particular we demonstrate
the following:

GAME 1 ⇡ GAME 2 ⇡ GAME 3 ⇡ GAME 4

New Experiment. We define ExpSec0AGORAM(�, b) as the following game:
Setup. The challenger runs (capO, DB) gen(1�), sets AC := [], and runs a black-box
simulation of A to which it hands over DB.
Queries. The challenger provides A with an addCl, an addE, a chMode, a read, a write, and a
corCl interactive interface that A may query adaptively and in any order. Each round A can
query exactly one interface. These interfaces are described below:

(1) On input addCl(a) by A, the challenger executes addCl(capO,a) locally and stores the
capability capi returned by the algorithm.

(2) On input addE(a, d) by A, the challenger executes hCaddE(capO,a, d), SaddE(DB)i in interac-
tion with A, where the former plays the role of the client while the latter plays the role of
the server.

(3) On input chMode(a, j) by A, the challenger executes hCchMode(capO,a, j), SchMode(DB)i in
interaction with A.

(4) On input corCl(i) by A, the challenger hands over the capability capi related to the i-th
client in the access control matrix AC.

(5) On input read(i, j) by A, the challenger executes hCread(capi, j), Sread(DB)i in interaction
with A.

(6) On input write(i, j, d) by A, the challenger executes hCwrite(capi, j, d), Swrite(DB)i in interac-
tion with A.

Challenge. Finally, A outputs (j, (d0, d1)), where j is an index denoting the database entry
on which A wishes to be challenged and (d0, d1) is a pair of entries such that |d0| = |d1|. The
challenger accepts the request only if AC(i, j) = ?, for every i corrupted by A in the query
phase. Afterwards, the challenger invokes hCwrite(capO, j, db), Swrite(DB)i in interaction with A,
as explained in Section 3, with the di↵erence that the new entry is computed as follows:

E0j =

0

BB@

c01,j Rerand(pk , c1,j , r1)
c02,j Enc(pk , PoRR(opk , cAuth, r2))
c03,j Enc(pk , PrEnc(mpk , I, r))
c04,j Enc(pk , c0Data)

1

CCA

where I is the attribute previously associated to the entry j and r is a random string such that
|r| = |k(j)|.

50

Output. In the output phase A still has access to the interfaces except for addCl on input a
such that a(j) 6= ?; corCl on input i such that AC(i, j) 6= ?; and chMode on input a and j
with a(i) 6= ? for some previously corrupted client i. Eventually, A stops, outputting a bit b0.
The challenger outputs 1 if and only if b = b0.

GAME 1 ⇡ GAME 2. We assume toward contradiction that there exists a ppt adversary A that
is able to distinguish among GAME 1 and GAME 2 with non-negligible probability, namely:

|Pr[GAME 1 = 1]� Pr[GAME 2 = 1]| � ✏(�)

for some non-negligible ✏(�). Then we show that we can use such an adversary to build the
following reduction B against the attribute-hiding property of the predicate-encryption scheme
⇧PE defined in Definition 8. The simulation is elaborated below.
Setup. B receives as input the security parameter 1� from the challenger and it forwards it to
A. B initializes uniformly at random an attribute I and it sends to the challenger the tuple
(I, I), who replies with the public key of the predicate-encryption scheme mpk⇤. Finally B

runs (capO, DB) gen(1�) as described in Section 3 without PrGen(1�), setting mpk = mpk⇤

instead. Subsequently B gives pkO and DB to A.
Queries. B provides then A with the following interfaces:

(1) On input addCl(a) by A, B initializes a predicate f such that f(I) = ? and 8j 2 DB it
holds that f(Ij) = 0 whenever a(j) = ? and f(Ij) = 1 otherwise.

(2) On input addE(a, d) by A, B executes hCaddE(capO,a, d), SaddE(DB)i in interaction with A.

(3) On input chMode(a, j) by A, B executes hCchMode(capO,a, j), SchMode(DB)i in interaction
with A.

(4) On input corCl(i) by A, B queries the oracle provided by the challenger on fi so to retrieve
the corresponding key skfi . B constructs capi using such a key, which is handed over to A.

(5) On input read(i, j) by A, B executes hCread(capi, j), Sread(DB)i in interaction with A.

(6) On input write(i, j, d) by A, B executes hCwrite(capi, j, d), Swrite(DB)i in interaction with A.

Challenge. Finally, A outputs (j, (d0, d1)), where j is an index denoting the database entry
on which A wishes to be challenged and (d0, d1) is a pair of entries such that |d0| = |d1|. B

accepts the tuple only if AC(i, j) = ?, for every i corrupted by A in the query phase. B

parses then the j-th entry as Ej = (c1,j , c2,j , c3,j , c4,j), it fetches cKey Dec(sk , c3,j), and it

finally gets k(j) PrDec(skf

O
, cKey), for some suitable skf

O
. Afterwards, B sends the tuple

(m0, m1) = (r, k(j)) to the challenger, where r is a random string such that |r| = |k(j)|. The
challenger answers back with the challenge ciphertext c⇤ PrEnc(mpk , I, mb) that B uses to
execute hCwrite(capO, j, d0), Swrite(DB)i, computing the new entry in the following manner:

E0j =

0

BB@

c01,j Rerand(pk , c1,j , r1)
c02,j Enc(pk , PoRR(opk , cAuth, r2))
c03,j Enc(pk , c⇤)
c04,j Enc(pk , c0Data)

1

CCA .

Output. In the output phase A still has access to the interfaces except for addCl on input
a such that a(j) 6= ?; corCl on input i such that AC(i, j) 6= ?; and chMode on input a, j
with a(i) 6= ? for some previously corrupted client i. Note that in case there exists some non-
corrupted i such that a(i) 6= ?, B just simulates the hCchMode(capO,a, j), SchMode(DB)i protocol

51

by rerandomizing the challenge ciphertext rather than re-encrypting it. Eventually, A stops,
outputting a bit b0. B outputs 1 if and only if b0 = 0.

The simulation is clearly e�cient, also it is easy to see that whenever the challenger samples
b = 1, the simulation perfectly reproduces the inputs that A is expecting in GAME 1. The only
di↵erence is indeed that in the challenge phase c0Data is re-encrypted in the simulation, while in
the real experiment it is just rerandomized; also in the output phase, the interface chMode on
j is simulated with a rerandomization, rather than a re-encryption on cKey. By definition of
rerandomization, however, these two operations are indistinguishable to A. Thus, we can state
the following:

Pr[B 7! 1|b = 1] ⇡ Pr[GAME 1 = 1].

On the other hand, in case the challenger initializes b = 0, then B perfectly simulates the
environment that A is expecting in GAME 2. Therefore we can assert that:

Pr[B 7! 1|b = 0] ⇡ Pr[GAME 2 = 1].

However, it follows from the initial assumption that

|Pr[B 7! 1|b = 1]� Pr[B 7! 1|b = 0]| � ✏(�),

which is clearly a contradiction with respect to the attribute-hiding property of the predicate
encryption scheme ⇧PE, and it proves the initial lemma.

GAME 2 ⇡ GAME 3. We assume toward contradiction that there exists a ppt adversary A that
is able to distinguish among GAME 2 and GAME 3 with non-negligible probability, namely:

|Pr[GAME 2 = 1]� Pr[GAME 3 = 1]| � ✏(�)

For some non-negligible ✏(�). Then we show that we can we can use such an adversary to
build the following reduction B against the CPA-security property of the private-key encryption
scheme ⇧SE. The simulation is elaborated below.
Setup. B receives as input the security parameter 1� from the challenger and it forwards it to
A. B then runs (capO, DB) gen(1�) as described in Section 3 and it gives pkO and DB to A.
Queries. B provides then A with the following interfaces:

(1) On input addCl(a) by A, B executes addCl(capO,a) locally and it stores the capability capi

returned by the algorithm.

(2) On input addE(a, d) by A, B executes hCaddE(capO,a, d), SaddE(DB)i in interaction with A.

(3) On input chMode(a, j) by A, B executes hCchMode(capO,a, j), SchMode(DB)i in interaction
with A.

(4) On input corCl(i) by A, B hands over the capability capi related to the i-th client in the
access control matrix AC.

(5) On input read(i, j) by A, B executes hCread(capi, j), Sread(DB)i in interaction with A.

(6) On input write(i, j, d) by A, B executes hCwrite(capi, j, d), Swrite(DB)i in interaction with A.

Challenge. Finally, A outputs (j, (d0, d1)), where j is an index denoting the database entry on
which A wishes to be challenged and (d0, d1) is a pair of entries such that |d0| = |d1|. B accepts
the tuple only if AC(i, j) = ?, for every i corrupted by A in the query phase. B sends the tuple
(m0, m1) = (d0, d1) to the challenger, who answers back with the challenge ciphertext c⇤

52

E(k , db) that B uses to perform a local execution of hCwrite(capO, j, db), Swrite(DB)i, computing
the new entry in the following manner:

E0j =

0

BB@

c01,j Rerand(pk , c1,j , r1)
c02,j Enc(pk , PoRR(opk , cAuth, r2))
c03,j Enc(pk , PrEnc(mpk , I, r))
c04,j Enc(pk , c⇤)

1

CCA

where I is the attribute previously associated to the entry j and r is a random string such that
|r| = |k |.
Output. In the output phase A still has access to the interfaces except for addCl on input a
such that a(j) 6= ?; corCl on input i such that AC(i, j) 6= ?; and chMode on input a, j with
a(i) 6= ? for some previously corrupted client i. Eventually, A stops, outputting a bit b0. B

outputs b0 as well.
The simulation is obviously e�cient, also it is easy to see that whenever the challenger

samples b = 0, the simulation perfectly reproduces the inputs that A is expecting in GAME 2.
Thus, we can state the following:

Pr[B 7! 0|b = 0] ⇡ Pr[GAME 2 = 1].

On the other hand, in case the challenger initializes b = 1, then B perfectly simulates the
environment that A is expecting in GAME 3. Therefore we can assert that:

Pr[B 7! 1|b = 1] ⇡ Pr[GAME 3 = 1].

However, it follows from the initial assumption that:

|Pr[B 7! 1|b = 1]� Pr[B 7! 0|b = 0]| � ✏(�),

���Pr[Expcpa
A,⇧SE

(�, 1) = 1]� Pr[Expcpa
A,⇧SE

(�, 0) = 1]
���

� ✏(�),

which implies a non-negligible di↵erence in the success probability of B with respect to the
random choice of b and it clearly represents a contradiction with respect to the CPA-security
property of the private-key encryption scheme ⇧SE. This proves the initial lemma.

GAME 3 ⇡ GAME 4. The proof is conducted with the same pipeline of the indistinguishability
between GAME 1 and GAME 2; the simulation also works correspondingly, except that in this
case the reduction B encrypts the message d1 rather than d0. However, the analogous argument
applies.

GAME 1 ⇡ GAME 4. By the previous lemmas it directly follows that the di↵erence among
each couple of neighboring games is bounded by a negligible value, thus the di↵erence between
GAME 1 and GAME 4 is a sum of negligible terms, which is, again, negligible. In particular

GAME 1 ⇡ GAME 4

directly implies that:
ExpSecAGORAM(�, 0) ⇡ ExpSecAGORAM(�, 1)

thus, 8 ppt adversary the two experiments look indistinguishable. This concludes our proof.

Lemma 2. Let ZKP be a zero-knowledge proof system. Then GORAM achieves integrity.

53

Proof of Lemma 2. The proof is conducted by contradiction. Assume that there exists a ppt
A that wins the experiment defined in Definition 17 with non-negligible probability. Then we
construct an adversary B that breaks the soundness of the zero-knowledge proof system ZKP.
The simulation works exactly as specified in Definition 17. Since the database is held on the
side of B, the adversary can only modify data by triggering interfaces and all of the resulting
operations are executed locally by B as described in Section 3.2 except for the read and write
protocols. Whenever an operation a↵ects the database DB, B reflects these changes on DB0,
especially in the protocols addE, chMode, and write. This implies that the opportunity for the
adversary to inject some data such that B does not update the local database DB0 accordingly,
is restricted to the read and write algorithms. We will briefly recall how the operations are
performed from Section 3.2.

Read and write. When A triggers the read or write on a certain index j, B releases the path
for the leaf lj associated to such an entry E = (E1, . . . , Eb(D+1)), from ⇢ down to TD,lj . The
database DB is kept blocked by B until A frees it again by submitting an updated path for lj
along with a valid shu✏e proof. The proof looks as follows:

P = PK

(
(⇡, r1, . . . , rb(D+1)) :

8`. E` = Rerand(pk , E⇡�1(`), r`)

)
. (1)

It is easy to see that, by construction, the proof guarantees that the new path is just a shu✏ing
and a re-randomization with respect to the old one. B verifies the proof against the new and
the old path, i.e., it checks whether the proof of shu✏e correctness verifies cryptographically,
whether the inputs correspond to the components of the Ej , and whether the outputs correspond
to the components of the E0

j
. If all these checks succeed, B replaces the old with the new

path. Subsequently A sends an updated top entry E0 = (c01, c
0
2, c
0
3, c
0
4) for an old top entry

E = (c1, c2, c3, c4) along with a proof of the decryption for the top entry of the updated path:

PAuth = PK {(oskf) : PoDec(oskf , cAuth) = 1} (2)

together with information to access cAuth (see Section 8.1 for how this information looks like in
our concrete instantiation), and a proof that he did not change the index

P = PK
�
Jc01K = Jc1K

. (3)

B checks then PAuth against the content of c2 of E and P against c1 and c01. If all of the checks
verify, B replaces the old by the new entry in the first position of the tree.

Analysis. We assume toward contradiction that there exists an A such that the experiment
ExpIntAGORAM(�) outputs 1 with non-negligible probability, namely

Pr[ExpIntAGORAM(�) = 1] � ✏(�).

As we argued before, by construction of the experiment we know that A can only inject entries
by cheating in the read and write protocols. Thus we can restrict the success probability of A to
the interaction within the read and write interfaces. Furthermore we split the success probability
over his ability of breaking the zero-knowledge proof system ZKP. We define BREAK to be
the event in which A computes one zero-knowledge proof that verifies but without knowing the
witness, i.e., he convinces the verifier of a false statement. In particular it follows from the
initial assumption that

Pr[ExpIntAGORAM(�) = 1] =

Pr[A wins | BREAK] · Pr[BREAK]+

Pr[A wins | ¬ BREAK] · Pr[¬ BREAK] � ✏(�).

54

It is easy to see that, given that A can compute a false statement that convinces the verifier in
the zero-knowledge proof system ZKP, he can win the game with probability 1, e.g., writing
on an entry which he does not have writing access to. Therefore

Pr[A wins | BREAK] = 1.

On the other hand, given that A does not break the soundness of the zero-knowledge proof
system ZKP, the probability that A modifies an entry without B noticing is negligible in both
read and write algorithms. This follows directly from the notion of correctness of the primitive
Definition 22. Thus we can rewrite

Pr[A wins | ¬ BREAK]  negl(�).

It follows that we can bind the success probability of A as

Pr[ExpIntAGORAM(�) = 1] ⇡

1 · Pr[BREAK] + negl(�) · Pr[¬ BREAK] ⇡

Pr[BREAK] � ✏(�).

Since A can query the interfaces only a polynomial number of times, say q, B can simply store all
of the transcripts of the queries to the read and write interfaces and output one zero-knowledge
proof chosen uniformly at random. There are at most 3 · q zero-knowledge proof transcripts by
construction of the protocol, therefore the probability that B outputs a zero-knowledge proof
which verifies a false statement is lower bounded by ✏(�) · 1

3·q which is still a non-negligible value.
This is clearly a contradiction with respect to the soundness property of the zero-knowledge
proof system and it concludes our proof.

Lemma 3. ZKP be a zero-knowledge proof system and ⇧PE be an attribute-hiding predicate
encryption scheme. Then GORAM achieves tamper-resistance.

Proof of Lemma 3. The proof is elaborated by contradiction, assuming we have a ppt adversary
A such that he is able to break the security of the game with non-negligible probability, we
build a distinguisher B such that it runs the aforementioned A as a black-box to break the
attribute-hiding property of the underlying predicate encryption scheme ⇧PE.

In particular, we assume toward contradiction that the following inequality holds:

Pr[ExpTamResAGORAM(�) = 1] � ✏(�).

Note that, by construction of the experiment, the challenge entry outputted by A is accepted
by the challenger only if A never had read or write access to it. We now define a new event
GUESS as the event in which A guesses the attribute encrypted in the cKey cipher. It is easy to
see that, with such a knowledge, A can always win the game by simply re-encrypting another
symmetric key k(j⇤)0 within the cKey and using the same k(j⇤)0 for encrypting another arbitrary
plaintext into cData. It follows that when the challenger attempts to read the challenged index
j⇤, she will always succeed and she outputs 1 with overwhelming probability. Therefore we split
the success probability of A over the probability that GUESS occurs:

Pr[ExpTamResAGORAM(�) = 1] =

Pr[ExpTamResAGORAM(�) = 1| GUESS] · Pr[GUESS]+

Pr[ExpTamResAGORAM(�) = 1| ¬ GUESS] · Pr[¬ GUESS].

55

As reasoned above, the success probability of A given his knowledge of the attribute encrypted
within cKey is overwhelming, thus we can rewrite:

Pr[ExpTamResAGORAM(�) = 1] =

Pr[GUESS]+

Pr[ExpTamResAGORAM(�) = 1| ¬ GUESS] · Pr[¬ GUESS].

We now consider the success probability of A given that he does not know the attribute of the
⇧PE cipher relative to the challenge entry. It follows from the proof of Lemma 2 that A cannot
modify the cipher via the interfaces provided by the challenger without being detected. However,
since A stores the database locally, he can still perform local modifications. Nevertheless, in
order to win the experiment, it must be the case that the challenger succeeds in reading j⇤,
that implies the challenge entry to be encrypted such that the capability held by the challenger
allows her to access such an entry. In practice, this means that the attribute I of the cipher cKey

in the challenge entry is orthogonal with respect to the predicate f held by the challenger, as
defined in Definition 7. By assumption A knows neither the attribute I in cKey nor the predicate
f , therefore the probability that he computes an attribute I 0 such that it is orthogonal to f is
negligible by construction. This implies that A can only win by locally modifying the cipher
cData such that it successfully decrypts to another arbitrary message, given that A has neither
knowledge nor the possibility to modify the key k(j⇤). This, however, is a contradiction to
the elusive-range property of the symmetric encryption scheme ⇧SE (see Definition 4). Hence,
it follows that the probability that A wins the experiment, given that he does not guess the
attribute, is upper bounded by a negligible value. Then we have:

Pr[ExpTamResAGORAM(�) = 1] =

Pr[GUESS] + negl(�) · Pr[¬ GUESS],

which by assumption is lower bounded by:

Pr[ExpTamResAGORAM(�) = 1] ⇡ Pr[GUESS] � ✏(�).

New Experiment. We now define the experiment ExpSInt0AGORAM(�) analogously to the game
ExpTamResAGORAM(�), except that in the challenge phase the adversary outputs the attribute
I that is encrypted in the cKey cipher of such an entry, along with the challenge index j⇤. By
the argument above it follows that A has the same success probability in both games. The
experiment is defined as follows:
Setup. The challenger runs (capO, DB) gen(1�) as in Definition 16. Furthermore, it forwards
DB to A and it initializes a second database DB0 which is managed locally.
Queries. The challenger provides A with the same interfaces as in Definition 16, which A may
query adaptively and in any order. In all interactive protocols, A plays the role of the server
and the challenger the one of the client. Furthermore, the challenger updates DB0 whenever the
protocols triggered by addE (2), chMode (3), and write (6) complete successfully.
Challenge. Finally, the adversary outputs an index j⇤ on which he wants to be challenged, along
with the attribute I⇤. If there exists a capability capi that has ever been provided to A such that
AC(i, j) 6= ?, then the challenger aborts. The challenger runs d⇤ hCread(capO, j⇤), Sread(DB)i
in interaction with A.
Output. It outputs 1 if and only if d⇤ 6= DB0(j⇤) and I⇤ is the attribute associated with the
entry j⇤.

Reduction. Note that the experiment ExpSInt0AGORAM(�) reproduces the experiment
ExpTamResAGORAM(�) except that A must hold the knowledge of the attribute I associated

56

to the challenge entry in order to win the former. However, since we argued that the success
probability of A in the latter game implies such a knowledge, we can conclude that

Pr[ExpTamResAGORAM(�) = 1] ⇡ Pr[GUESS]

⇡ Pr[ExpSInt0AGORAM(�) = 1]

� ✏(�).

Under this assumption, we can build the following reduction B against the attribute-hiding for
multiple messages property of the predicate encryption scheme ⇧PE. Note that, even though
we did not explicitly state such a property so far, it is implied by the attribute-hiding notion
and we will subsequently show why this is the case. We define the experiment ExpPEMulti(�, b)
as follows:

Experiment ExpPEMulti(�, b)
⌃2
3 (I0, I1) A(1�)

(mpk , psk) PrGen(1�) and give mpk to A

A may adaptively query pskfi
for predicates

f1, . . . , f` 2 F where fi(I0) = fi(I1)
M A such that

M = ((m0,0, m1,0), ..., (m0,t, m1,t))
and |m0,j | = |m1,j | and
if there is an i such that fi(I0) = fi(I1) = 1,
then m0,j = m1,j is required for all j

b0 A(Cb) where
Cb = (PrEnc(mpk , Ib, mb,0), . . . ,
PrEnc(mpk , Ib, mb,t))
while A may continue requesting keys for
additional predicates with the same
restrictions as before

output 1 if and only if, b0 = b.

The simulation works as follows:
Setup. B receives as input the security parameter 1� from the challenger and it forwards
it to A. B initializes uniformly at random an attribute pair (I0, I1) and it sends it to the
challenger, who replies with the public key of the predicate-encryption scheme mpk⇤. Finally B

runs (capO, DB) gen(1�) as described in Section 3 without PrGen(1�), setting mpk = mpk⇤

instead. Subsequently B gives pkO to A, and it initializes a second database DB0 which is
managed locally.
Queries. B provides then A with the following interfaces:

(1) On input addCl(a) by A, B initializes a predicate f such that 8j 2 DB it holds that
f(Ij) = a(j). Note that some entry j may be encrypted under either the I0 or I1 attribute,
in this case f is chosen such that f(I0) = f(I1) = a(j). Then it queries the oracle provided

by the challenger on f so to retrieve the corresponding key skf

O
. B constructs capi using

such a key, which is stored locally.

(2) On input addE(a, d) by A, B checks whether there exists some corrupted i such that
AC(i, j) 6= ?, if this is the case it executes hCaddE(capO,a, d), SaddE(DB)i in interac-
tion with A who holds DB. Otherwise, B initializes a new symmetric key k(j) and it
sends the tuple (m0, m1) = (k(j), k(j)) to the challenger, who answers back with the
challenge ciphertext c⇤ PrEnc(mpk , Ib, mb) that B uses to perform an execution of

57

hCaddE(capO,a, d), SaddE(DB)i in interaction with A, setting cKey c⇤. In both cases,
B updates DB0 with the output of the algorithm.

(3) On input chMode(a, j) by A, B executes hCchMode(capO,a, j), SchMode(DB)i in interaction
with A, who holds DB. Note that, if it is still the case that no corrupted i has access to
the entry j, the cKey of such an entry is rerandomized during the execution of the protocol,
rather than re-encrypted.

(4) On input corCl(i) by A, B recomputes the predicate related to the i-th client in the access
control matrix AC such that it fulfills the access control policy described by AC. Note that
some entry j may be encrypted under either the I0 or I1 attribute, in this case f is chosen
such that f(I0) = f(I1) = AC(i, j). B then queries the oracle provided by the challenger
on such a predicate and it receives back a secret key skf which it sends to A together with
the rest of the keys that form the capability capi.

(5) On input read(i, j) by A, B executes hCread(capi, j), Sread(DB)i in interaction with A, where
the former plays the role of the client and the latter plays the role of the server.

(6) On input write(i, j, d) by A, B executes hCwrite(capi, j, d), Swrite(DB)i in interaction with A,
where the former plays the role of the client and the latter plays the role of the server.
Eventually B updates DB0 with the output of the algorithm.

Challenge. Finally, A outputs (j⇤, I⇤). B then checks whether I⇤ = I1, if this is the case it
outputs 1, otherwise it outputs 0.

It is easy to see that the reduction B is e�cient and it perfectly simulates the inputs that A

is expecting in the experiment ExpSInt0AGORAM(�), therefore we can bind the success probability
of B over the random choice of b in ExpPEMultiBGORAM, to the success probability of A. It follows
from the initial assumption that

Pr[ExpPEMultiBGORAM(�, b) = 1] ⇡

Pr[ExpSInt0AGORAM(�) = 1] � ✏(�)

which is clearly a contradiction with respect the attribute-hiding for multiple messages property
of the predicate encryption scheme ⇧PE.

Attribute-Hiding for Multiple Messages. What is left to show, is that the security notion
of attribute-hiding of a predicate encryption scheme implies the attribute-hiding for multiple
messages. The demonstration consists of a standard hybrid argument over the vector of cipher-
texts. We define a hybrid distribution Hi where the first i ciphertexts contain the encryption
of the message m0 and the remaining n � i are the encryption of m1. Observe that H0 = C0

and H1 = C1. Assuming toward contradiction that there exists a distinguisher A such that:

|Pr[A(H0) = 1]� Pr[A(H1) = 1]| � ✏(�),

then it must be the case that there exists some i such that

|Pr[A(Hi) = 1]� Pr[A(Hi+1) = 1]| � ✏(�).

Notice that the only di↵erence between Hi and Hi+1 is that the (i+1)-th cipher is the encryption
of 1 in Hi, while it is the encryption of 0 in Hi+1. Now, given a cipher cb, it is easy to construct
a distribution H = (c0,0, ..., c0,i, cb, c1,i+2, ..., c1,n) which is equal to Hi if and only if cb is the
encryption of 1 and it is equal to Hi+1 otherwise. It follows that it is possible to distinguish

58

the encryption of either m0 or m1 with the same probability with which A distinguishes Hi and
Hi+1. This, however, contradicts our initial assumption and it proves the implication.

Versioning. Note that by the previous argument we only ruled out the cases where the server
maliciously modifies an entry of the database without the client noticing it. However it is still
possible for an adversary to win the game just by querying the write interface for an allowed
modification on a given entry and then provide an old version of DB in the challenge phase.
Note that this is a class of attacks that is inherent to the cloud storage design and can be
prevented via standard techniques (e.g., by using gossip protocols [25] among the clients). For
the sake of simplicity we do not consider such attacks in our proof and we implicitely assume
that the adversary always runs the read algorithm on top of the most recent version of DB in
the challenge phase of the cryptographic game.

Lemma 4. Let ZKP be a zero-knowledge proof system and ⇧PKE be a CPA-secure public-key
encryption scheme. Then GORAM achieves obliviousness.

Proof of Lemma 4. The proof consists of the analysis of the distribution of the read and write
operations over the access pattern of the paths in the binary tree. Combining the uniform
distribution over the retrieved path with the indistinguishability among the read and write
algorithms, it directly follows that any two sequences of queries are indistinguishable, i.e., it
cannot exist any adversary who wins the experiment ExpObvAGORAM(�, b) with non-negligible
probability.

It follows from the design of the primitive that each bucket independently represents a trivial
ORAM and therefore preserves oblivious access. Indeed, every bucket is always retrieved as a
whole and it is re-randomized upon every access. By the CPA-security of the top layer public
key encryption scheme ⇧PKE, we can state that the rerandomization operation completely hides
any modification of the data. Thus, we can restrict the information leaked by each operation
to the path of the binary tree that gets retrieved and, in order to prove obliviousness, it is
su�cient to demonstrate that each client’s access leads to the same distribution over the choice
of such a path.

Read. In the read algorithm the path associated with the target entry is initially retrieved
by the client, note that the association leaf-entry was sampled uniformly at random. On the
client-side, a new leaf-entry association is uniformly generated for the target entry and the path
is arranged such that each entry is pushed as far as possible toward its designated leaf in the
tree. In this process the client must make sure that a dummy entry is placed on top of the path,
however the server does not gather any additional information from this procedure because of
the CPA-security of ⇧PKE. The path is then rerandomized and uploaded on the hosting server.
It is easy to see that any further access of any entry (including the most recently accessed one)
will always determine a path only depending on the association between leaf and entry, which
is uniformly distributed. It follows that, for all accesses, the distribution over the choice of the
path is uniform and independent with respect to the accessed entry. After the shu✏ing the
client overwrites the dummy entry placed on top of the root node, however this does not a↵ect
the obliviousness of the algorithm since the memory location accessed is fixed.

Write. The write algorithm works analogously to the read, so the argument above still applies.
The only di↵erence in this scenario is that a target entry is selected to be placed on top of the
root, instead of a dummy one. This, however, does not introduce any di↵erence in the server’s
view since the choice of the entry to set on top of the path is again hidden by the CPA-security
of ⇧PKE. Thus, we achieve uniform distribution of the memory accesses in the write operation
and consequently indistinguishability among the read and write protocols.

59

Zero-Knowledge. In both read and write cases, the client attaches along with the data sent
to the server three non-interactive zero-knowledge proves that the server must verify in order
to protect the integrity of the data. Specifically this set of proofs is composed of a proof of a
shu✏e correctness (line 6.8 and line 7.8), a proof of writing eligibility (line 6.11), and a proof of
plaintext-equivalence for the index (line 6.13). However, due to the zero-knowledge property of
ZKP the proved statements do not reveal any information so as to give A additional information
that would allow him to break obliviousness.

Lemma 5. Let ZKP be a zero-knowledge proof system. Then GORAM achieves anonymity.

Proof of Lemma 5. The proof proceeds by contradiction. We show that, given an adversary
who is able to win the experiment ExpAnonAGORAM(�, b) with non-negligible probability, we can
construct an e�cient algorithm that breaks the zero-knowledge property of ZKP.

By construction of the game, the only information available to the adversary in order to
distinguish between the two capabilities is the execution of the read or write protocol, depending
on the input he provides to the challenger. In both cases, it follows from the inspection of the
protocol (see Section 3) that the only step which is not independent from the capability held by
the client is the formulation of the authorization proof. We recall that such a statement proves
the knowledge of a key oskf which can be used to successfully decrypt the ciphertext cAuth. The
proof looks as follows:

PAuth = PK {(oskf) : PoDec(oskf , cAuth) = 1} ,

note, indeed, that in the instantiation of our protocol, the capability of the client is implemented
as the client’s secret key oskf . Thus, all of the read or write transcripts, except for such a zero-
knowledge proof, are trivially indistinguishable over the choice of the capability. It follows that
any information that the adversary gathers, can only be derived from the transcript of the
authentication proof. Assuming toward contradiction that

Pr[ExpAnonAGORAM(�, b) = 1] �
1

2
+ ✏(�),

then it must be the case that A is able to correctly guess the capability chosen by the challenger
to formulate the proof PAuth with advantage at least ✏(�) over the random choice of b. We define
EXTRACT as the event in which A extracts some additional information from PAuth about the
capability used to construct the proof. It follows from the initial assumption that

Pr[ExpAnonAGORAM(�, b) = 1] =

Pr[A wins | EXTRACT] · Pr[EXTRACT]+

Pr[A wins | ¬ EXTRACT] · Pr[¬ EXTRACT]

�
1
2 + ✏(�).

It is easy to see that, given that A can deduce some information about the capability from
PAuth, i.e., that EXTRACT happens, he can win the game with probability 1. Therefore

Pr[A wins | EXTRACT] = 1.

On the other hand, given that A does not break the zero-knowledge of PAuth, the probability
that A correctly guesses the capability sampled by the challenge is negligibly bigger than 1/2
in both read and write algorithms, as argued above. Thus we can rewrite

Pr[A wins | ¬ EXTRACT] ⇡
1

2
.

60

It follows that we can bind the success probability of A as

Pr[ExpAnonAGORAM(�, b) = 1] ⇡

1 · Pr[EXTRACT] + 1
2 · Pr[¬ EXTRACT] � 1

2 + ✏(�),

then we have

Pr[EXTRACT] +
1

2
· (1� Pr[EXTRACT]) �

1

2
+ ✏(�)

1

2
· Pr[EXTRACT] � ✏(�)

Pr[EXTRACT] � 2 · ✏(�),

which is still a non-negligible value. This implies that A must be able to extract additional
information from the proof without knowing the witnesses, which is clearly a contradiction with
respect to the zero-knowledge property of ZKP and it concludes our proof.

Proof of Theorem 3. In the following we separately prove the security of A-GORAM for each
specified property.

Lemma 6. Let ⇧PE be an attribute-hiding predicate encryption scheme and ⇧SE be a CPA-
secure private-key encryption scheme. Then A-GORAM achieves secrecy.

Proof of Lemma 6. The proof works analogously to Lemma 1.

Lemma 7. Let ⇧CHF be a collision-resistant, key-exposure free chameleon hash function
and ⇧DS be an existentially unforgeable digital signature scheme. Then A-GORAM achieves
accountable-integrity.

Proof of Lemma 7. The proof is conducted by splitting the success probability of the adversary
and showing that such probability is upper bounded by a sum of negligible values. We first
define the event COLL as the event in which the adversary is able to find a collision on the
chameleon hash function ⇧CHF without knowing the secret key, for the challenge entry of the
experiment. We can express the probability that the adversary wins the experiment defined in
Definition 21 as follows:

Pr[ExpAccAGORAM(�) = 1] =

Pr[A wins | COLL] · Pr[COLL]+

Pr[A wins | ¬ COLL] · Pr[¬ COLL]

.

It is easy to see that whenever the event COLL happens the adversary can easily win the
game by arbitrarily modifying the entry and computing a collision for the chameleon hash
function. In the history of changes all of the versions of that entry will correctly verify and the
challenger will not be able to blame any client in particular, thus making the adversary succeed
with probability 1. By the above reasoning we can rewrite:

Pr[ExpAccAGORAM(�) = 1] =

Pr[COLL] + Pr[A wins | ¬ COLL] · Pr[¬ COLL]
.

We will now show that the probability that COLL happens is upper bounded by a negligible
function. In order to do so we first define an intermediate game ExpAcc‘AGORAM(�), we then
show that such a game is indistinguishable from the original and finally we prove that in this

61

latter experiment the probability of COLL is negligible. It directly follows that the probability
of COLL is also negligible in the original experiment ExpAccAGORAM(�) since the two games are
indistinguishable to the view of the adversary.

New Experiment. We define the intermediate game ExpAcc‘AGORAM(�) as follows:
Setup:. The challenger runs the Setup phase as in Definition 21. Additionally it sets a polyno-
mial upper bound p on the number of queries to the interfaces addE and chMode and it picks a
q 2 {1...p} uniformly at random.
Queries:. The challenger runs the Query phase as in Definition 21, except for the following
interfaces:

(1) On input addE(a, d) by A, the challenger executes hCaddE(capO,a, d), SaddE(DB)i locally. If
it holds that for all corrupted i and for the new entry index j, AC(i, j) 6= rw and the query
is the q-th query, then the new entry is computed with cAuth PrEnc(mpk , xw, s) where s
is a random string such that |s| = |csk |.

(2) On input chMode(a, j) by A, the challenger executes hCchMode(capO,a, j), SchMode(DB)i lo-
cally. If it holds that for all corrupted i and for the new entry index j, AC(i, j) 6= rw and
the query is the q-th query, then the new entry is computed with cAuth PrEnc(mpk , xw, s)
where s is a random string such that |s| = |csk |. On the other hand, if there exists a
corrupted i such that AC(i, j) = rw , cAuth is reverted to be consistent with the entry
structure.

Challenge. The challenger runs the Challenge phase as in Definition 21.
Output. The challenger runs the Output phase as in Definition 21.

ExpAccAGORAM(�) ⇡ ExpAcc‘AGORAM(�). We prove the claim with a reduction against the
attribute-hiding property of the predicate-encryption scheme ⇧PE. That is, given an adver-
sary A that can e�ciently distinguish the two games, we create a simulation B that breaks the
attribute-hiding property with the same probability, thus such an adversary cannot exist. The
reduction is depicted below.
Setup. B receives as input the security parameter 1� from the challenger and it forwards it to
A. B initializes uniformly at random an attribute I and it sends to the challenger the tuple
(I, I), who replies with the public key of the predicate-encryption scheme mpk⇤. B then runs
(capO, DB) gen(1�) without PrGen(1�), setting mpk = mpk⇤ instead. Subsequently B gives
pkO to A. Finally, it sets a polynomial upper bound p on the number of queries to the interfaces
addE and chMode and it picks a q 2 {1...p} uniformly at random.
Queries. B provides then A with the following interfaces:

(1) On input addCl(a) by A, B initializes a predicate f such that f(I) = ? and 8j 2 DB it
holds that f(Ij) = 0 whenever a(j) = ? and f(Ij) = 1 otherwise.

(2) On input addE(a, d) by A, B executes hCaddE(capO,a, d), SaddE(DB)i locally. If it holds that
for all corrupted i and for the new entry index j, AC(i, j) 6= rw and the query is the
q-th query, then B sends to the challenger the pair (csk , s) = (m0, m1) where csk is the
chameleon secret key relative to that entry and s is a random string such that |s| = |csk |.
The challenger replies with c⇤ PrEnc(mpk , I, mb) and B sets cAuth = c⇤ for the target
entry.

(3) On input chMode(a, j) by A, B executes hCchMode(capO,a, j), SchMode(DB)i locally. If it
holds that for all corrupted i and for the new entry index j, AC(i, j) 6= rw and the query is
the q-th query, then B sends to the challenger the pair (csk , s) = (m0, m1) where csk is the
chameleon secret key relative to that entry and s is a random string such that |s| = |csk |.

62

The challenger replies with c⇤ PrEnc(mpk , I, mb) and B sets cAuth = c⇤ for the target
entry. On the other hand, if there exists a corrupted i such that AC(i, j) = rw , cAuth is
reverted to be consistent with the entry structure.

(4) On input corCl(i) by A, B queries the oracle provided by the challenger on the relative
predicate fi so to retrieve the corresponding key oskfi . B constructs capi using such a key,
which is then handed over to A.

(5) On input read(i, j) by A, B executes hCread(capi, j), Sread(DB)i locally or in interaction with
A, depending whether i is corrupted.

(6) On input write(i, j, d) by A, B executes hCwrite(capi, j, d), Swrite(DB)i locally or in interaction
with A, depending whether i is corrupted.

Challenge. Finally, A outputs an index j⇤ which he wants to be challenged on. If there
exists a capability capi provided to A such that AC(i, j⇤) = rw , then B aborts. B runs
d⇤ hCread(capO, j⇤), Sread(DB)i and L hblame(capO, Log, j⇤) locally.
Output. B sends to A 1 if and only if d⇤ 6= DB0(j⇤) and 9 i 2 L that has not been queried by A

to the interface corCl(·) or L = []. At any point of the execution A can output 0 or 1 depending
on his guess about which game he is facing, B simply forwards such a bit to the challenger and
it stops the simulation.

The simulation above it is clearly e�cient, also it is easy to see that whenever the challenger
samples its internal coin b = 0, the simulation of B perfectly reproduces ExpAccAGORAM(�), thus:

Pr[B 7! 1|b = 0] ⇡ Pr[A 7! 1|b = 0].

Instead, whenever b = 1 the protocol executed by B perfectly simulates ExpAcc‘AGORAM(�),

Pr[B 7! 1|b = 1] ⇡ Pr[A 7! 1|b = 1].

By our initial assumption A was able to distinguish between the two games with non-negligible
probability, therefore the probability carries over

|Pr[B 7! 1|b = 0]� Pr[B 7! 1|b = 1]| � ✏(�),

which is clearly a contradiction to the attribute-hiding property of ⇧PE and it proves our lemma.

Pr[COLL] in ExpAcc‘AGORAM(�)  negl(�). We demonstrate the claim via a reduction against
the property of collision-resistance with key-exposure freeness of the chameleon hash function.
Assume towards contradiction that there exists an adversary A such that the event COLL
happens in ExpAcc‘AGORAM(�) with non-negligible probability, we build the following algorithm
B to e�ciently break the collision-resistance with key-exposure freeness property:
Setup. B sets a polynomial upper bound p on the number of queries to the interfaces addE and
chMode and it picks a q 2 {1...p} uniformly at random. Then it runs (capO, DB) gen(1�)
and it hands over pkO to A.
Queries. B provides then A with the following interfaces:

(1) On input addCl(a) by A, B executes addCl(capO,a) locally and stores the capability capi

returned by the algorithm.

(2) On input addE(a, d) by A, B executes hCaddE(capO,a, d), SaddE(DB)i locally. If it holds that
for all corrupted i and for the new entry index j, AC(i, j) 6= rw and the query is the q-th
query, then the new entry is computed with cAuth PrEnc(mpk , xw, s) where s is a random
string such that |s| = |csk |.

63

(3) On input chMode(a, j) by A, B executes hCchMode(capO,a, j), SchMode(DB)i locally. If it
holds that for all corrupted i and for the new entry index j, AC(i, j) 6= rw and the query
is the q-th query, then the new entry is computed with cAuth PrEnc(mpk , xw, s) where s
is a random string such that |s| = |csk |. On the other hand, if there exists a corrupted i
such that AC(i, j) = rw , cAuth is reverted to be consistent with the entry structure.

(4) On input corCl(i) by A, B hands over the capability capi related to the i-th client in the
access control matrix AC.

(5) On input read(i, j) by A, B executes hCread(capi, j), Sread(DB)i locally or in interaction with
A, depending whether i is corrupted.

(6) On input write(i, j, d) by A, B executes hCwrite(capi, j, d), Swrite(DB)i locally or in interaction
with A, depending whether i is corrupted.

Challenge. Finally, A outputs an index j⇤ which he wants to be challenged on. If there exists
a capability capi provided to A such that AC(i, j⇤) = rw , then the B aborts. It then runs
d⇤ hCread(capO, j⇤), Sread(DB)i and L hblame(capO, Log, j⇤) locally.
Output. B outputs 1 if and only if d⇤ 6= DB0(j⇤) and 9 i 2 L that has not been queried by A

to the interface corCl(·) or L = [].
The simulation is e�cient and it perfectly reproduces the game that A is expecting. Note

that by assumption we have that COLL happens with probability ✏(�), thus it must be the
case that the adversary was able to compute a collision of the chameleon hash function in the
challenge entry with non-negligible probability. Note that B selects the challenge entry for
storing s in cAuth with probability at least 1

p
. Thus, with probability at least 1

p
· ✏(�) A was able

to compute a collision without having any information on the secret key csk . The probability
is still non-negligible, therefore this constitutes a contradiction to the collision resistance with
key-exposure freeness of ⇧CHF. This proves our lemma.

We have demonstrated that the event COLL does not occur with more than negligible prob-
ability, therefore we can rewrite the total success probability of the adversary as follows:

Pr[ExpAccAGORAM(�) = 1] =

negl(�) + Pr[A wins | ¬ COLL] · (1� negl(�)) ⇡

Pr[A wins | ¬ COLL]

.

Thus, what is left to show is that the success probability of the adversary given that he is
not able to compute a collision for ⇧CHF, is at most a negligible value in the security parameter.
This is demonstrated through a reduction against the existential unforgeability of the digital
signature scheme ⇧DS. Assuming towards contradiction that there exists an adversary A such
that Pr[A wins | ¬ COLL] � ✏(�) we can build a reduction B against the existential unforgeability
Expeu

A,⇧DS
of ⇧DS as follows:

Setup. B receives as input the security parameter 1� and the verification key vk⇤. It runs
(capO, DB) gen(1�) setting vk = vk⇤ and it hands over pkO to A.
Queries. B provides then A with the following interfaces:

(1) On input addCl(a) by A, B executes addCl(capO,a) locally and stores the capability capi

returned by the algorithm.

(2) On input addE(a, d) by A, B executes hCaddE(capO,a, d), SaddE(DB)i locally. In order to
compute the correct signature on the respective chameleon hash tag t, B queries the signing
oracle provided by the challenger and retrieves the signature tag �.

64

(3) On input chMode(a, j) by A, the challenger executes hCchMode(capO,a, j), SchMode(DB)i lo-
cally.

(4) On input corCl(i) by A, B hands over the capability capi related to the i-th client in the
access control matrix AC.

(5) On input read(i, j) by A, B executes hCread(capi, j), Sread(DB)i locally or in interaction with
A, depending whether i is corrupted.

(6) On input write(i, j, d) by A, B executes hCwrite(capi, j, d), Swrite(DB)i locally or in interaction
with A, depending whether i is corrupted.

Challenge. Finally, A outputs an index j⇤ which he wants to be challenged on. B parses the
Log to search one version of that entry that contains a pair (t0, �0) that has not been queried to
the signing oracle and such that verify(vk , t0, �0) = 1.
Output. B outputs such a pair (t0, �0) and it interrupts the simulation.

The simulation is clearly e�cient. It is easy to see that, in order to win the game, A

must be able to change an entry without writing permission and by leaving it in a consistent
state. This can be done by either computing a collision in the chameleon hash function or by
forging a valid signature on the tag t. By assumption we ruled out the first hypothesis, thus
the winning condition of the adversary implies the forge of a verifying message-signature pair.
Note that the A could also just roll back to some previous version of the entry but this can be
easily prevented by including some timestamp in the computation of the chameleon hash. The
winning probability of the reduction then carries over:

Pr[B wins] ⇡ Pr[A wins | ¬ COLL] � ✏(�).

In this way we built an e�cient adversary B that breaks the existential unforgeability of
⇧DS with non negligible probability, which is clearly a contradiction. Therefore it must hold
that Pr[A wins | ¬ COLL] is a negligible function in the security parameter. Finally we have
that:

Pr[ExpAccAGORAM(�) = 1] ⇡

Pr[A wins | ¬ COLL]  negl(�)
,

which concludes our proof.

Lemma 8. Let ZKP be a zero-knowledge proof system and ⇧SE be a CPA-secure private-key
encryption scheme. Then A-GORAM achieves obliviousness.

Proof of Lemma 8. The proof works analogously to Lemma 4.

Proof of Theorem 4. In the following we separately prove the security of S-GORAM for each
specified property.

Lemma 9. Let ⇧BE be an be an adaptively secure broadcast encryption scheme and ⇧SE be a
CPA-secure private-key encryption scheme. Then S-GORAM achieves secrecy.

Proof of Lemma 9. The proof is constructed by fixing the choice of the challenger over the
sampling of the random coin and define intermediate hybrid games, where the two extremes
are the ExpSecAGORAM(�, b) experiment over the two values of b. We start by defining a new
experiment ExpSec0AGORAM(�, b) that slightly di↵ers from the original one. For sake of readability
we introduce the following notation:

65

• GAME 1 := ExpSecAGORAM(�, 0)

• GAME 2 := ExpSec0AGORAM(�, 0)

• GAME 3 := ExpSec0AGORAM(�, 1)

• GAME 4 := ExpSecAGORAM(�, 1)

Then we show that the di↵erence among any two neighboring games is bounded by a negligible
value in the security parameter, therefore the advantage of the adversary in ExpSecAGORAM(�, b)
turns to be a sum of negligible values, which is still negligible. In particular we demonstrate
the following:

GAME 1 ⇡ GAME 2 ⇡ GAME 3 ⇡ GAME 4

New Experiment. We define ExpSec0AGORAM(�, b) as the following game:
Setup. The challenger runs (capO, DB) gen(1�), sets AC := [], and runs a black-box
simulation of A to which it hands over DB.
Queries. The challenger provides A with an addCl, an addE, a chMode, a read, a write, and a
corCl interactive interface that A may query adaptively and in any order. Each round A can
query exactly one interface. These interfaces are described below:

(1) On input addCl(a) by A, the challenger executes addCl(capO,a) locally and stores the
capability capi returned by the algorithm.

(2) On input addE(a, d) by A, the challenger executes hCaddE(capO,a, d), SaddE(DB)i in interac-
tion with A, where the former plays the role of the client while the latter plays the role of
the server.

(3) On input chMode(a, j) by A, the challenger executes hCchMode(capO,a, j), SchMode(DB)i in
interaction with A.

(4) On input corCl(i) by A, the challenger hands over the capability capi related to the i-th
client in the access control matrix AC.

(5) On input read(i, j) by A, the challenger executes hCread(capi, j), Sread(DB)i in interaction
with A.

(6) On input write(i, j, d) by A, the challenger executes hCwrite(capi, j, d), Swrite(DB)i in interac-
tion with A.

Challenge. Finally, A outputs (j, (d0, d1)), where j is an index denoting the database entry
on which A wishes to be challenged and (d0, d1) is a pair of entries such that |d0| = |d1|. The
challenger accepts the request only if AC(i, j) = ?, for every i corrupted by A in the query
phase. Afterwards, the challenger invokes hCwrite(capO, j, db), Swrite(DB)i in interaction with A,
as explained in Section 5, with the di↵erence that the new entry is computed as follows:

E0j =

0

BB@

c01,j E(K, j)
c02,j E(K, BrEnc(bpkw, W ⇤, csk))
c03,j E(K, BrEnc(bpk r, R

⇤, K⇤))
c04,j E(K, c0Data)

1

CCA

where R⇤ is the subset of users having read access on the entry j, W ⇤ is the subset of users
having write access on it and K⇤ is a random string such that |K⇤| = |kj | and in particular it
is not necessarily the same key used to encrypt c0Data.

66

Output. In the output phase A still has access to the interfaces except for addCl on input a
such that a(j) 6= ?; corCl on input i such that AC(i, j) 6= ?; and chMode on input a and j
with a(i) 6= ? for some previously corrupted client i. Eventually, A stops, outputting a bit b0.
The challenger outputs 1 if and only if b = b0.

GAME 1 ⇡ GAME 2. We assume toward contradiction that there exists a ppt adversary A that
is able to distinguish among GAME 1 and GAME 2 with non-negligible probability, namely:

|Pr[GAME 1 = 1]� Pr[GAME 2 = 1]| � ✏(�)

for some non-negligible ✏(�). Then we show that we can use such an adversary to build the
following reduction B against the adaptive-security property of the broadcast encryption scheme
⇧BE defined in Definition 11. The simulation is elaborated below.
Setup. B receives as input the security parameter 1� and the public key bpk⇤ from the challenger
and it forwards 1� to A. B runs (capO, DB) gen(1�) as described in Section 5 without
SetupBE(1�), setting bpk r = bpk⇤ instead. Additionally, B initializes an empty set S of clients.
Finally B gives pkO and DB to A.
Queries. B provides then A with the following interfaces:

(1) On input addCl(a) by A, B adds one client to the set S of clients.

(2) On input addE(a, d) by A, B executes hCaddE(capO,a, d), SaddE(DB)i in interaction with A.

(3) On input chMode(a, j) by A, B executes hCchMode(capO,a, j), SchMode(DB)i in interaction
with A.

(4) On input corCl(i) by A, B queries the oracle provided by the challenger on i so to retrieve
the corresponding key bsk i. B constructs capi using such a key, which is handed over to A.

(5) On input read(i, j) by A, B executes hCread(capi, j), Sread(DB)i in interaction with A.

(6) On input write(i, j, d) by A, B executes hCwrite(capi, j, d), Swrite(DB)i in interaction with A.

Challenge. Finally, A outputs (j, (d0, d1)), where j is an index denoting the database entry on
which A wishes to be challenged and (d0, d1) is a pair of entries such that |d0| = |d1|. B accepts
the tuple only if AC(i, j) = ?, for every i corrupted by A in the query phase. B sets S⇤ to be
the set of clients that have access to the j-th entry and it sends it to the challenger, who replies
with the tuple (Hdr⇤, K⇤). B then executes hCwrite(capO, j, d0), Swrite(DB)i, computing the new
entry in the following manner:

E0j =

0

BB@

c01,j E(K, j)
c02,j E(K, BrEnc(bpkw, W ⇤, csk))
c03,j E(K, Hdr⇤)
c04,j E(K, E(K⇤, d0))

1

CCA

Output. In the output phase A still has access to the interfaces except for addCl on input
a such that a(j) 6= ?; corCl on input i such that AC(i, j) 6= ?; and chMode on input a, j
with a(i) 6= ? for some previously corrupted client i. Note that in case there exists some non-
corrupted i such that a(i) 6= ?, B just simulates the hCchMode(capO,a, j), SchMode(DB)i protocol
by rerandomizing the challenge ciphertext rather than re-encrypting it. Eventually, A stops,
outputting a bit b0. B outputs 1 if and only if b0 = 0.

The simulation is clearly e�cient, also it is easy to see that whenever the challenger samples
b = 0, the simulation perfectly reproduces the inputs that A is expecting in GAME 1. The only

67

di↵erence is indeed that in the challenge phase c0Data is re-encrypted in the simulation, while
in the real experiment it is just rerandomized; also in the output phase, the interface chMode
on j is simulated with a rerandomization on Hdr⇤, rather than a re-encryption on cKey. By
definition of rerandomization, however, these two operations are indistinguishable to A. Note
that we assume for simplicity the broadcast encryption scheme to be rerandomizable, however
this feature is not strictly necessary since we could simulate the rerandomization by asking the
challenger another challenge cipher. This does not a↵ect the security of the scheme by standard
hybrid argument. Thus, we can state the following:

Pr[B 7! 1|b = 0] ⇡ Pr[GAME 1 = 1].

On the other hand, in case the challenger initializes b = 1, then B perfectly simulates the
environment that A is expecting in GAME 2. Therefore we can assert that:

Pr[B 7! 1|b = 1] ⇡ Pr[GAME 2 = 1].

However, it follows from the initial assumption that

|Pr[B 7! 1|b = 1]� Pr[B 7! 1|b = 0]| � ✏(�),

which is clearly a contradiction with respect to the adaptive-security property of the broadcast
encryption scheme ⇧BE, and it proves the initial lemma.

GAME 2 ⇡ GAME 3. We assume toward contradiction that there exists a ppt adversary A that
is able to distinguish among GAME 2 and GAME 3 with non-negligible probability, namely:

|Pr[GAME 2 = 1]� Pr[GAME 3 = 1]| � ✏(�)

For some non-negligible ✏(�). Then we show that we can we can use such an adversary to
build the following reduction B against the CPA-security property of the private-key encryption
scheme ⇧SE. The simulation is elaborated below.
Setup. B receives as input the security parameter 1� from the challenger and it forwards it to
A. B then runs (capO, DB) gen(1�) as described in Section 5 and it gives pkO and DB to A.
Queries. B provides then A with the following interfaces:

(1) On input addCl(a) by A, B executes addCl(capO,a) locally and it stores the capability capi

returned by the algorithm.

(2) On input addE(a, d) by A, B executes hCaddE(capO,a, d), SaddE(DB)i in interaction with A.

(3) On input chMode(a, j) by A, B executes hCchMode(capO,a, j), SchMode(DB)i in interaction
with A.

(4) On input corCl(i) by A, B hands over the capability capi related to the i-th client in the
access control matrix AC.

(5) On input read(i, j) by A, B executes hCread(capi, j), Sread(DB)i in interaction with A.

(6) On input write(i, j, d) by A, B executes hCwrite(capi, j, d), Swrite(DB)i in interaction with A.

Challenge. Finally, A outputs (j, (d0, d1)), where j is an index denoting the database entry on
which A wishes to be challenged and (d0, d1) is a pair of entries such that |d0| = |d1|. B accepts
the tuple only if AC(i, j) = ?, for every i corrupted by A in the query phase. B sends the tuple
(m0, m1) = (d0, d1) to the challenger, who answers back with the challenge ciphertext c⇤

68

E(k , db) that B uses to perform a local execution of hCwrite(capO, j, db), Swrite(DB)i, computing
the new entry in the following manner:

E0j =

0

BB@

c01,j E(K, j)
c02,j E(K, BrEnc(bpkw, W ⇤, csk))
c03,j E(K, BrEnc(bpk r, R

⇤, K⇤))
c04,j E(K, c⇤)

1

CCA

where K⇤ is a random string such that |K⇤| = |k |.
Output. In the output phase A still has access to the interfaces except for addCl on input a
such that a(j) 6= ?; corCl on input i such that AC(i, j) 6= ?; and chMode on input a, j with
a(i) 6= ? for some previously corrupted client i. Eventually, A stops, outputting a bit b0. B

outputs b0 as well.
The simulation is obviously e�cient, also it is easy to see that whenever the challenger

samples b = 0, the simulation perfectly reproduces the inputs that A is expecting in GAME 2.
Thus, we can state the following:

Pr[B 7! 0|b = 0] ⇡ Pr[GAME 2 = 1].

On the other hand, in case the challenger initializes b = 1, then B perfectly simulates the
environment that A is expecting in GAME 3. Therefore we can assert that:

Pr[B 7! 1|b = 1] ⇡ Pr[GAME 3 = 1].

However, it follows from the initial assumption that:

|Pr[B 7! 1|b = 1]� Pr[B 7! 0|b = 0]| � ✏(�),
���Pr[Expcpa

A,⇧SE
(�, 1) = 1]� Pr[Expcpa

A,⇧SE
(�, 0) = 1]

���
� ✏(�),

which implies a non-negligible di↵erence in the success probability of B with respect to the
random choice of b and it clearly represents a contradiction with respect to the CPA-security
property of the private-key encryption scheme ⇧SE. This proves the initial lemma.

GAME 3 ⇡ GAME 4. The proof is conducted with the same pipeline of the indistinguishability
between GAME 1 and GAME 2; the simulation also works correspondingly, except that in this
case the reduction B encrypts the message d1 rather than d0. However, the analogous argument
applies.

GAME 1 ⇡ GAME 4. By the previous lemmas it directly follows that the di↵erence among
each couple of neighboring games is bounded by a negligible value, thus the di↵erence between
GAME 1 and GAME 4 is a sum of negligible terms, which is, again, negligible. In particular

GAME 1 ⇡ GAME 4

directly implies that:
ExpSecAGORAM(�, 0) ⇡ ExpSecAGORAM(�, 1)

thus, 8 ppt adversary the two experiments look indistinguishable. This concludes our proof.

Lemma 10. Let ⇧CHF be a collision-resistant, key-exposure free chameleon hash function
and ⇧DS be an existentially unforgeable digital signature scheme. Then S-GORAM achieves
accountable-integrity.

69

Proof of Lemma 10. The proof is conducted by splitting the success probability of the adversary
and showing that such probability is upper bounded by a sum of negligible values. We first
define the event COLL as the event in which the adversary is able to find a collision on the
chameleon hash function ⇧CHF without knowing the secret key, for the challenge entry of the
experiment. We can express the probability that the adversary wins the experiment defined in
Definition 21 as follows:

Pr[ExpAccAGORAM(�) = 1] =

Pr[A wins | COLL] · Pr[COLL]+

Pr[A wins | ¬ COLL] · Pr[¬ COLL]

.

It is easy to see that whenever the event COLL happens the adversary can easily win the
game by arbitrarily modifying the entry and computing a collision for the chameleon hash
function. In the history of changes all of the versions of that entry will correctly verify and the
challenger will not be able to blame any client in particular, thus making the adversary succeed
with probability 1. By the above reasoning we can rewrite:

Pr[ExpAccAGORAM(�) = 1] =

Pr[COLL] + Pr[A wins | ¬ COLL] · Pr[¬ COLL]
.

We will now show that the probability that COLL happens is upper bounded by a negligible
function. In order to do so we first define an intermediate game ExpAcc‘AGORAM(�), we then
show that such a game is indistinguishable from the original and finally we prove that in this
latter experiment the probability of COLL is negligible. It directly follows that the probability
of COLL is also negligible in the original experiment ExpAccAGORAM(�) since the two games are
indistinguishable to the view of the adversary.

New Experiment. We define the intermediate game ExpAcc‘AGORAM(�) as follows:
Setup:. The challenger runs the Setup phase as in Definition 21. Additionally it sets a polyno-
mial upper bound p on the number of queries to the interfaces addE and chMode and it picks a
q 2 {1...p} uniformly at random.
Queries:. The challenger runs the Query phase as in Definition 21, except for the following
interfaces:

(1) On input addE(a, d) by A, the challenger executes hCaddE(capO,a, d), SaddE(DB)i locally. If
it holds that for all corrupted i and for the new entry index j, AC(i, j) 6= rw and the query
is the q-th query, then the new entry is computed with cAuth BrEnc(bpkw, W ⇤, K⇤) where
K⇤ is a random string such that |K⇤| = |csk j |.

(2) On input chMode(a, j) by A, the challenger executes hCchMode(capO,a, j), SchMode(DB)i lo-
cally. If it holds that for all corrupted i and for the new entry index j, AC(i, j) 6= rw and the
query is the q-th query, then the new entry is computed with cAuth BrEnc(bpkw, W ⇤, K⇤)
where K⇤ is a random string such that |K⇤| = |csk j |. On the other hand, if there exists
a corrupted i such that AC(i, j) = rw , cAuth is reverted to be consistent with the entry
structure.

Challenge. The challenger runs the Challenge phase as in Definition 21.
Output. The challenger runs the Output phase as in Definition 21.

ExpAccAGORAM(�) ⇡ ExpAcc‘AGORAM(�). We prove the claim with a reduction against the
adaptive-security property of the broadcast encryption scheme ⇧BE. That is, given an ad-
versary A that can e�ciently distinguish the two games, we create a simulation B that breaks

70

the adaptive-security property with the same probability, thus such an adversary cannot exist.
The reduction is depicted below.
Setup. B receives as input the security parameter 1� and the public key bpk⇤ from the challenger
and it forwards 1� to A. B then runs (capO, DB) gen(1�) without SetupBE(1�), setting
bpkw = bpk⇤ instead. Subsequently B initializes an empty set S of clients and it gives pkO to
A. Finally, it sets a polynomial upper bound p on the number of queries to the interfaces addE
and chMode and it picks a q 2 {1...p} uniformly at random.
Queries. B provides then A with the following interfaces:

(1) On input addCl(a) by A, B adds one client to the set S of clients.

(2) On input addE(a, d) by A, B executes hCaddE(capO,a, d), SaddE(DB)i locally. If it holds that
for all corrupted i and for the new entry index j, AC(i, j) 6= rw and the query is the
q-th query, then B sends to the challenger the set S⇤ of clients having write access to the
j-th entry. The challenger replies with the tuple (Hdr⇤, K⇤) and B sets cAuth Hdr⇤ and
csk j K⇤ (cpk j is also changed accordingly) for the target j-th entry.

(3) On input chMode(a, j) by A, B executes hCchMode(capO,a, j), SchMode(DB)i locally. If it
holds that for all corrupted i and for the new entry index j, AC(i, j) 6= rw and the query is
the q-th query, then B sends to the challenger the set S⇤ of clients having write access to the
j-th entry. The challenger replies with the tuple (Hdr⇤, K⇤) and B sets cAuth Hdr⇤ and
csk j K⇤ (cpk j is also changed accordingly) for the target j-th entry. On the other hand,
if there exists a corrupted i such that AC(i, j) = rw , cAuth is reverted to be consistent with
the entry structure.

(4) On input corCl(i) by A, B queries the oracle provided by the challenger on i so to retrieve
the corresponding key bsk i. B constructs capi using such a key, which is then handed over
to A.

(5) On input read(i, j) by A, B executes hCread(capi, j), Sread(DB)i locally or in interaction with
A, depending whether i is corrupted.

(6) On input write(i, j, d) by A, B executes hCwrite(capi, j, d), Swrite(DB)i locally or in interaction
with A, depending whether i is corrupted.

Challenge. Finally, A outputs an index j⇤ which he wants to be challenged on. If there
exists a capability capi provided to A such that AC(i, j⇤) = rw , then B aborts. B runs
d⇤ hCread(capO, j⇤), Sread(DB)i and L hblame(capO, Log, j⇤) locally.
Output. B sends to A 1 if and only if d⇤ 6= DB0(j⇤) and 9 i 2 L that has not been queried by A

to the interface corCl(·) or L = []. At any point of the execution A can output 0 or 1 depending
on his guess about which game he is facing, B simply forwards such a bit to the challenger and
it stops the simulation.

The simulation above it is clearly e�cient, also it is easy to see that whenever the challenger
samples its internal coin b = 0, the simulation of B perfectly reproduces ExpAccAGORAM(�), thus:

Pr[B 7! 1|b = 0] ⇡ Pr[A 7! 1|b = 0].

Instead, whenever b = 1 the protocol executed by B perfectly simulates ExpAcc‘AGORAM(�),

Pr[B 7! 1|b = 1] ⇡ Pr[A 7! 1|b = 1].

By our initial assumption A was able to distinguish between the two games with non-negligible
probability, therefore the probability carries over

|Pr[B 7! 1|b = 0]� Pr[B 7! 1|b = 1]| � ✏(�),

71

which is clearly a contradiction to the adaptive-security property of ⇧BE and it proves our
lemma.

Pr[COLL] in ExpAcc‘AGORAM(�)  negl(�). We demonstrate the claim via a reduction against
the property of collision-resistance with key-exposure freeness of the chameleon hash function.
Assume towards contradiction that there exists an adversary A such that the event COLL
happens in ExpAcc‘AGORAM(�) with non-negligible probability, we build the following algorithm
B to e�ciently break the collision-resistance with key-exposure freeness property:
Setup. B sets a polynomial upper bound p on the number of queries to the interfaces addE and
chMode and it picks a q 2 {1...p} uniformly at random. Then it runs (capO, DB) gen(1�)
and it hands over pkO to A.
Queries. B provides then A with the following interfaces:

(1) On input addCl(a) by A, B executes addCl(capO,a) locally and stores the capability capi

returned by the algorithm.

(2) On input addE(a, d) by A, B executes hCaddE(capO,a, d), SaddE(DB)i locally. If it holds that
for all corrupted i and for the new entry index j, AC(i, j) 6= rw and the query is the q-th
query, then the new entry is computed with cAuth BrEnc(bpkw, W ⇤, K⇤) where K⇤ is a
random string such that |K⇤| = |csk j |.

(3) On input chMode(a, j) by A, B executes hCchMode(capO,a, j), SchMode(DB)i locally. If it
holds that for all corrupted i and for the new entry index j, AC(i, j) 6= rw and the query is
the q-th query, then the new entry is computed with cAuth BrEnc(bpkw, W ⇤, K⇤) where
K⇤ is a random string such that |K⇤| = |csk j |. On the other hand, if there exists a corrupted
i such that AC(i, j) = rw , cAuth is reverted to be consistent with the entry structure.

(4) On input corCl(i) by A, B hands over the capability capi related to the i-th client in the
access control matrix AC.

(5) On input read(i, j) by A, B executes hCread(capi, j), Sread(DB)i locally or in interaction with
A, depending whether i is corrupted.

(6) On input write(i, j, d) by A, B executes hCwrite(capi, j, d), Swrite(DB)i locally or in interaction
with A, depending whether i is corrupted.

Challenge. Finally, A outputs an index j⇤ which he wants to be challenged on. If there exists
a capability capi provided to A such that AC(i, j⇤) = rw , then the B aborts. It then runs
d⇤ hCread(capO, j⇤), Sread(DB)i and L hblame(capO, Log, j⇤) locally.
Output. B outputs 1 if and only if d⇤ 6= DB0(j⇤) and 9 i 2 L that has not been queried by A

to the interface corCl(·) or L = [].
The simulation is e�cient and it perfectly reproduces the game that A is expecting. Note

that by assumption we have that COLL happens with probability ✏(�), thus it must be the
case that the adversary was able to compute a collision of the chameleon hash function in
the challenge entry with non-negligible probability. Note that B selects the challenge entry for
storing K⇤ in cAuth with probability at least 1

p
. Thus, with probability at least 1

p
·✏(�) A was able

to compute a collision without having any information on the secret key csk . The probability
is still non-negligible, therefore this constitutes a contradiction to the collision resistance with
key-exposure freeness of ⇧CHF. This proves our lemma.

We have demonstrated that the event COLL does not occur with more than negligible prob-
ability, therefore we can rewrite the total success probability of the adversary as follows:

72

Pr[ExpAccAGORAM(�) = 1] =

negl(�) + Pr[A wins | ¬ COLL] · (1� negl(�)) ⇡

Pr[A wins | ¬ COLL]

.

Thus, what is left to show is that the success probability of the adversary given that he is
not able to compute a collision for ⇧CHF, is at most a negligible value in the security parameter.
This is demonstrated through a reduction against the existential unforgeability of the digital
signature scheme ⇧DS. Assuming towards contradiction that there exists an adversary A such
that Pr[A wins | ¬ COLL] � ✏(�) we can build a reduction B against the existential unforgeability
Expeu

A,⇧DS
of ⇧DS as follows:

Setup. B receives as input the security parameter 1� and the verification key vk⇤. It runs
(capO, DB) gen(1�) setting vk = vk⇤ and it hands over pkO to A.
Queries. B provides then A with the following interfaces:

(1) On input addCl(a) by A, B executes addCl(capO,a) locally and stores the capability capi

returned by the algorithm.

(2) On input addE(a, d) by A, B executes hCaddE(capO,a, d), SaddE(DB)i locally. In order to
compute the correct signature on the respective chameleon hash tag t, B queries the signing
oracle provided by the challenger and retrieves the signature tag �.

(3) On input chMode(a, j) by A, the challenger executes hCchMode(capO,a, j), SchMode(DB)i lo-
cally.

(4) On input corCl(i) by A, B hands over the capability capi related to the i-th client in the
access control matrix AC.

(5) On input read(i, j) by A, B executes hCread(capi, j), Sread(DB)i locally or in interaction with
A, depending whether i is corrupted.

(6) On input write(i, j, d) by A, B executes hCwrite(capi, j, d), Swrite(DB)i locally or in interaction
with A, depending whether i is corrupted.

Challenge. Finally, A outputs an index j⇤ which he wants to be challenged on. B parses the
Log to search one version of that entry that contains a pair (t0, �0) that has not been queried to
the signing oracle and such that verify(vk , t0, �0) = 1.
Output. B outputs such a pair (t0, �0) and it interrupts the simulation.

The simulation is clearly e�cient. It is easy to see that, in order to win the game, A

must be able to change an entry without writing permission and by leaving it in a consistent
state. This can be done by either computing a collision in the chameleon hash function or by
forging a valid signature on the tag t. By assumption we ruled out the first hypothesis, thus
the winning condition of the adversary implies the forge of a verifying message-signature pair.
Note that the A could also just roll back to some previous version of the entry but this can be
easily prevented by including some timestamp in the computation of the chameleon hash. The
winning probability of the reduction then carries over:

Pr[B wins] ⇡ Pr[A wins | ¬ COLL] � ✏(�).

In this way we built an e�cient adversary B that breaks the existential unforgeability of
⇧DS with non negligible probability, which is clearly a contradiction. Therefore it must hold
that Pr[A wins | ¬ COLL] is a negligible function in the security parameter. Finally we have
that:

73

Pr[ExpAccAGORAM(�) = 1] ⇡

Pr[A wins | ¬ COLL]  negl(�)
,

which concludes our proof.

Lemma 11. Let ZKP be a zero-knowledge proof system and ⇧SE be a CPA-secure private-key
encryption scheme. Then S-GORAM achieves obliviousness.

Proof of Lemma 11. The proof works analogously to Lemma 4.

E Algorithms for GORAM with Accountable Integrity

Implementation of (capO, DB) gen(1�, n). Additionally to Algorithm 1 we include in the
capability of the data owner capO the key pair (vkO, skO) GenDS(1�), used for signing the
chameleon hash tag t. We also add another predicate-encryption key pair (mpk , psk) instead
of the predicate-only (opk , osk) (line 1.2). We refer to the two key pairs in the following as
(mpkAuth, pskKey) and (mpkKey, pskKey).

Implementation of {capi, deny} addCl(capO,a). The di↵erence from Algorithm 2 is that
we instrument the capability capi with another predicate-encryption key skfi instead of the
predicate-only oskfi (line 2.7). The two predicate encryption secret keys are denoted by skAuth

and skKey in the following.

Implementation of {DB0, deny} hCaddE(capO,a, d), SaddE(DB)i. The di↵erence
from Algorithm 3 is line 3.9, where the new entry is instead composed of Ek =
(j, cjAuth, c

j

Key, c
j

Data, r
j , cpk , tj , �j) where

(cpk , csk) GenCHF(1�) cj
Auth PrEnc(mpkAuth, xw,j , csk)

rj
 {0, 1}

� cj
Key PrEnc(mpkKey, xr,j , kj)

kj GenSE(1�) cj
Data E(kj , d)

tj CH(cpk , j || cj
Auth || cj

Key || cj
Data || cpk , rj)

�j
 sign(skO, tj).

Furthermore, the rerandomization in 3.12 is substituted by the re-encryption under the same
symmetric key.

Eviction. The eviction algorithm is implemented as in Algorithm 4 with the di↵erence that
the proof P is never computed. Additionally, the rerandomization step (line 4.4) is substituted
with a re-encryption of the top-level encryption layer.

Implementation of hCchMode(capO,a, j), SchMode(DB)i. The algorithm is defined as in Algo-
rithm 5, except for line 5.11 where the new entry is initialized as defined in the above addE.

Implementation of {d, deny} hCread(capi, j), Sread(DB)i. The read algorithm follows Algo-
rithm 6 until line 6.9 and stops there. Furthermore, the proof P is no longer computed.

Implementation of {DB0, deny} hCwrite(capi, j, d), Swrite(DB)i. The write algorithm is equiv-
alent to the aforementioned read algorithm up to the point where we upload the entry Ek stored

74

at the index j, which is modified as follows:

csk j := PrDec(skAuth, c
j

Auth) kj := PrDec(skKey, c
j

Key)

ĉjData E(kj , d)

r̂j Col(csk j , (j || cjAuth || cjKey || cjData || cpk j), rj ,

(j || cjAuth || cjKey || ĉjData || cpk j))

Ek := (j, cjAuth, c
j

Key, ĉ
j

Data, r̂
j , cpk j , tj , �j)

F Proof of Soundness for the Batched Zero-Knowledge Proof
of Shu✏e

In the following we argue why our novel batched ZK proof of shu✏e (BZKPS) approach preserves
all of the properties of the underlying zero-knowledge protocol for proving the correctness of
the shu✏e. In this section we abstract away the instantiation of the concrete protocol and we
simply assume that it fulfills the properties of a zero-knowledge proof of knowledge system ZKP

specified in Section 3.1. We do, however, assume that the common input to the prover and the
verifier in such a proof are the two lists of ciphertexts ~✓ and ~✓0 and the additional input for the
prover P is the permutation ⇡ and the randomnesses ~r.

Correctness. For our BZKPS, it is easy to see that whenever the two input matrices of
ciphers A and A0 are honestly computed and the two parties do not deviate from the protocol
specifications, the probability that the verifier is convinced of the statement does not vary with
respect to the underlying ZKP. This follows directly from the fact that, as long as A di↵ers
from A0 only in the order of the rows, the resulting vectors ~✓ and ~✓0 will contain the same
entries, in the same permuted order. Thus correctness holds true.

Zero-Knowledge and proof of knowledge. The zero-knowledge and the proof of knowledge
properties can be also derived by the ZKP since the only procedure performed in BZKPS,
outside of the original protocol, is a public operation, namely, the multiplication of ciphertexts
which causes homomorphically a multiplication of plaintexts.

Soundness. Finally, in order to show that our approach preserves the soundness of the ZKP,
we have to prove that any malicious prover trying to fool the protocol succeeds with probability
at most 1/2. It is clear that this fact su�ces by itself since with k protocol runs the success
probability of the adversary drops to 1/2k, which is exponentially low in k. The intuition
behind the proof is that the adversary cannot modify a single block in a row of A0 without the
verifier noticing at least half of the times, thus he needs to modify at least one more spot so
to cancel out the multiplied values in the total product. But, again, this block will be selected
by the verifier to contribute to the product just half of the times in expectation, so the success
probability does not increase. This holds true no matter how many blocks in the same row the
adversary modifies.

Proof of Theorem 1. In the soundness scenario a malicious prover P
⇤ wants to convince the

verifier V that the matrices of ciphers A and A0 contain the same plaintexts up to the order of
the rows, i.e., they are permuted with respect to ⇡, and the ciphertexts are rerandomized with
respect to R. Let |A| = |A0| = n⇥m. Note that A0 is generated by P

⇤ and then sent to V in an
early stage of the protocol. Since the underlying ZKP is assumed to be sound, it follows that,
any time an element ✓i in the resulting vector ~✓ will di↵er with respect to the correspondent
permuted element ✓0

⇡(i) in the vector ~✓0, the verifier will notice it with overwhelming probability.

Thus, in order for P
⇤ to succeed, it must be the case that for all i, J✓iK = J✓0

⇡(i)K where JcK
denotes the plaintext encrypted in c.

75

Let �i be the quotient between ✓i and ✓0
⇡(i) and �i = J�iK. It follows from the argument

above and from the homomorphic property of the encryption scheme that, in order for the
protocol to successfully terminate, for all i, �i must be equal to 1. Since P

⇤ has no control over
the input A, and therefore over ~✓, the value of �i is directly derived from the modifications that
P
⇤ introduced in the i-th row of the matrix A0. We next prove the following: if P

⇤ performed at
least one modification on a given row i of A0 (i.e., he multiplied some value di↵erent from one to
the plaintext of A0

i,j
for some 1  j  m), then �i has any possible fixed value with probability

at most 1/2. Intuitively, this statement is true since with probability 1/2, the verifier does not
pick a column that contributes to the di↵erence of the plaintext product. Since any �i must be
one for P

⇤ to succeed, this directly proves our theorem.
The proof is conducted by induction on `, the number of modified blocks in the given row:

` = 1: Assume without loss of generality that P
⇤ introduces an arbitrary modification z 6= 1 on

a given block (i.e., on the cipher identified by some column index j), then such a block is
selected to contribute to the product ✓0

i
with probability exactly 1/2. Thus it holds that:

Pr[�1i = 0] =
1

2
Pr[�1i = z] =

1

2

`! ` + 1: Assume without loss of generality that P
⇤ introduces some arbitrary modifications

di↵erent than one on ` blocks of the given row and that he multiplied the value z to
the (` + 1)-th spot. We denote by CHOOSE(`) the event that the `-th block is picked to
contribute to the product ✓0

i
. Then, for all values y it holds that

Pr[�`+1
i

= y] = Pr[�`i = y/z | CHOOSE(` + 1)]

· Pr[CHOOSE(` + 1)]+

Pr[�`i = y | ¬ CHOOSE(` + 1)]

· Pr[¬ CHOOSE(` + 1)].

Since z 6= 1 it follows that y 6= y/z, additionally the (`+1)-th spot is chosen to contribute
to the product ✓0

i
with probability 1/2, so we have

Pr[�`+1
i

=y] =

1

2
· Pr[�`i = y/z | CHOOSE(` + 1)]+

1

2
· Pr[�`i = y | ¬ CHOOSE(` + 1)].

Furthermore the two events are independent, thus we can rewrite

Pr[�`+1
i

=y] =

1

2
· Pr[�`i = y/z] +

1

2
· Pr[�`i = y].

By induction hypothesis it holds that for all i, �i has any fixed value with probability at
most 1

2 , then

Pr[�`+1
i

= y] =
1

2
·
1

2
+

1

2
·
1

2
=

1

2
.

The induction above proves that for all i, �i = 1 with probability at most 1/2, therefore the
verifier notifies the cheating prover with probability at least 1/2. This concludes our proof.

76

	Introduction
	Our Contributions
	Outline

	System Settings
	Group ORAM
	Security and Privacy Properties
	The Attacker Model

	Our Construction (GORAM)
	Prerequisites
	Description of the Algorithms
	Batched Zero-Knowledge Proofs of Shuffle

	Accountable Integrity (A-GORAM)
	Prerequisites
	Construction

	Scalable Solution (S-GORAM)
	Security and Privacy for Group ORAM
	Security and Privacy of Group ORAM

	Security and Privacy Results
	Implementation and Experiments
	Cryptographic Instantiations
	Computational Complexity
	Java Implementation
	Experiments

	Case Study: Personal Health Records
	Related Work
	Conclusion and Future Work
	Cryptographic Building Blocks
	Predicate Encryption and Rerandomization
	The KSW Predicate Encryption Scheme
	Rerandomizing KSW Ciphertexts
	Proving Knowledge of Secret Keys in Groth-Sahai

	Formal Definitions
	Secrecy
	Integrity
	Tamper Resistance
	Obliviousness
	Anonymity
	Accountability

	Full Cryptographic Proofs
	Correctness
	Security Proofs

	Algorithms for GORAM with Accountable Integrity
	Proof of Soundness for the Batched Zero-Knowledge Proof of Shuffle

