
Verifiably Encrypted Signatures:
Security Revisited and a New Construction

Christian Hanser1†, Max Rabkin2,3, and Dominique Schröder2
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Abstract In structure-preserving signatures on equivalence classes (SPS-
EQ-R), introduced at Asiacrypt 2014, each message M in (G∗)` is asso-
ciated to its projective equivalence class, and a signature commits to the
equivalence class: anybody can transfer the signature to a new, scaled,
representative.

In this work, we give the first black-box construction of a public-key
encryption scheme from any SPS-EQ-R satisfying a simple new property
which we call perfect composition. The construction does not involve
any non-black-box technique and the implication is that such SPS-EQ-
R cannot be constructed from one-way functions in a black-box way. The
main idea of our scheme is to build a verifiable encrypted signature (VES)
first and then apply the general transformation suggested by Calderon
et al. (CT-RSA 2014).

The original definition of VES requires that the underlying signa-
ture scheme be correct and secure in addition to other security prop-
erties. The latter have been extended in subsequent literature, but the
former requirements have sometimes been neglected, leaving a hole in
the security notion. We show that Calderon et al.’s notion of resolution
independence fills this gap.

Keywords: Structure preserving signatures, verifiably encrypted signa-
tures, resolution independence, public-key encryption

1 Introduction

Structure-preserving signatures on equivalence classes (SPS-EQ-Rs) have been
introduced at Asiacrypt 2014, and a corrected instantiation was given in a joint
work with Fuchsbauer [9]. In an SPS-EQ-R, each message M is a vector of group
elements from a group of prime order p, and a signature commits the signer only
to its projective equivalence class [M ]R = {λM : λ ∈ Z∗p}: anybody can transfer
the signature to a new representative, scaling the message by an arbitrary factor
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and obtaining a new signature for the scaled message. SPS-EQ-Rs have many
applications such as anonymous credentials [6] and have appealing properties,
such as being compatible with Groth-Sahai zero-knowledge proofs [15]. In this
work, we show how to construct verifiably encrypted signatures and public-key
encryption from an SPS-EQ-R.

Verifiably Encrypted Signatures. Bob wants to buy a theater ticket with an elec-
tronic check. That is, he wants to exchange one document, signed by himself, for
another document, signed by the theater. If he sends the check before receiving
the ticket, he worries that the theater will cash his check without issuing the
ticket. On the other hand, the theater is not willing to issue the ticket without
receiving a check.

A verifiably encrypted signature scheme (VES), introduced by Boneh, Gen-
try, Lynn and Shacham [3], can be used to resolve this impasse. A VES has two
forms of signatures: plain and encrypted. Both forms of signature can be verified,
and if the signer refuses to reveal the plain signature at the end of negotiations,
the other party can appeal to a trusted third party (called the arbiter), who can
recreate a plain signature given the corresponding encrypted signature.

Thus, in our example, the theater can provisionally send Bob a ticket with an
encrypted signature, and once they receive Bob’s signed check they can reveal the
corresponding plain signature, and thus validate the provisional ticket. If they
fail to do so, Bob can take the encrypted signature to the arbiter. The arbiter’s
investigation will reveal that Bob has indeed upheld his side of the deal, and
so recreate the corresponding plain signature, giving Bob the ticket he has paid
for. This protocol has the advantage that the arbiter need not participate unless
there is a dispute.

VES from SPS-EQ-R. We introduce a simple new property for SPS-EQ-R
schemes, called perfect composition, which is satisfied by an existing construction
in the generic group model, and show how to construct VESes from such schemes.
In particular, this is the first VES construction from any kind of structure-
preserving signature scheme, underlining the versatility of SPS-EQ-Rs. In our
construction, each message is associated to a projective equivalence class. To cre-
ate a plain signature, the signer signs one representative; to create an encrypted
signature, she signs another. The scaling factor between these two representatives
depends on the arbiter’s key, allowing the arbiter to recover the plain signature
from the encrypted one using the SPS-EQ-R’s change representative algorithm.

Public-Key Encryption from SPS-EQ-R. If the SPS-EQ-R allows perfect com-
position, then our VES construction satisfies resolution duplication, a property
introduced very recently by Calderon, Meiklejohn, Shacham and Waters [5],
which requires that a signature extracted by the arbiter is identical to that which
would have been created by the signer. Not only does this prevent discrimination
between arbiter-issued and signer-issued signatures, but VESes satisfying this
property imply public-key encryption. This is particularly interesting because it
is not possible to construct PKE from ordinary signatures (or equivalently, from



one-way functions) in a black-box way. Looking at this from the other side, it
means that such an SPS-EQ-R cannot be constructed (black-box) from one-way
functions.

1.1 Our Contribution

Our main contribution is twofold:

Verifiably Encrypted Signatures. We propose the first black-box construction of
verifiably encrypted signature scheme from any structure-preserving signature
scheme on equivalence classes satisfying a simple property. This construction
does not combine an encryption scheme with an SPS-EQ-R. Furthermore, all our
security proofs hold in the standard model, under the Diffie-Hellman Inversion
assumption.

We also revisit the security definitions of VES. The original definition of
VES [3] requires that the underlying (ordinary) signature scheme be correct and
secure in addition to other security properties. The latter properties have been
extended in subsequent literature [18,27] but the requirements on the underlying
scheme are sometimes neglected. We show that with this omission, resolution
independence is absolutely essential not only to the unforgeability, but even
to the correctness, of the underlying signature scheme. From the alternative
viewpoint, we show that security including resolution independence is sufficient
for the correctness and security of the underlying signature scheme.

Public-Key Encryption. We propose the first black-box construction of a CPA-
secure public-key encryption scheme from any structure-preserving signature
scheme on equivalence classes allowing perfect composition. The construction
follows the idea of Calderon et. al [5]; it is black-box and does not involve known
non-black-box techniques such as zero-knowledge. Given the well-known impos-
sibility results, this shows that SPS-EQ-Rs allowing perfect composition cannot
be constructed from one-way functions in a black-box way.

1.2 Related Work

Verifiably encrypted signatures and a first instantiation in the random oracle
model were proposed by Boneh, Gentry, Lynn and Shacham [3]. After their
invention, several instantiations were suggested in the RO model [29,26] and in
the standard model [22,27,8]. The security model is treated in [3,18,27,5].

Impagliazzo and Rudich [20] show in their seminal work that cryptographic
primitives can be classified as lying in one of two “worlds”. The “Minicrypt”
world contains those primitives that are equivalent to the weakest known as-
sumption, the existence of one-way functions (OWFs), such as digital signatures
[21,19,14,24,17]. The second world, “Cryptomania”, includes primitives that re-
quire stronger assumptions such as public-key encryption (PKE), key-agreement
(KA), oblivious transfer (OT) [11,12,25,4,28] and now SPS-EQ-R.



1.3 Outline

In Section 2 we state the preliminaries. In Section 3 we discuss the relationship
between resolution independence and the correctness and unforgeability of the
underlying signature scheme of a VES. Then, in Section 4, we show how to
generically build a VES from an SPS-EQ-R scheme. In Section 5, we then discuss
the implication of PKE by certain SPS-EQ-R. Finally, we conclude this paper
in Section 6.

2 Preliminaries

A function ε : N→ R+ is called negligible if for all c > 0 there is a k0 such that
ε(k) < 1/kc for all k > k0. In the remainder of this paper, we use ε to denote
such a negligible function. By a

$← A, we denote that a is chosen uniformly at
random from the set A. We use the notation A(a1, . . . , an; r) if we make the
randomness r used by a probabilistic algorithm A(a1, . . . , an) explicit.

Definition 1 (Bilinear Map). Let G1, G2 and GT be cyclic groups of prime
order p, where we denote G1 and G2 additively and GT multiplicatively. We
write G∗i for Gi \ {0Gi} where i ∈ {1, 2}. Let P and P̂ be generators of G1 and
G2, respectively. We call e : G1 × G2 → GT a bilinear map or pairing if it is
efficiently computable and the following holds:

Bilinearity: e(aP, bP̂ ) = e(P, P̂ )ab ∀ a, b ∈ Zp.
Non-degeneracy: e(P, P̂ ) 6= 1GT

, i.e., e(P, P̂ ) generates GT .

If G1 = G2, then e is symmetric (Type-1) and asymmetric (Type-2 or 3)
otherwise. For Type-2 pairings there is an efficiently computable isomorphism
Ψ : G2 → G1; for Type-3 pairings no such isomorphism is known. Type-3 pairings
are currently the optimal choice in terms of efficiency and security trade-off [7].

Definition 2 (Bilinear Group Generator). A polynomial-time algorithm
BGGen is a bilinear-group generator if it takes as input a security parameter
1κ and outputs BG = (p,G1,G2,GT , e, P, P̂ ) where the common group order p of
the groups G1,G2 and GT is a prime of bit-length κ, e is a pairing, and P and
P̂ are generators of G1 and G2, respectively.

In this work we assume BGGen to be deterministic.4

Definition 3 (Diffie-Hellman Inversion Assumption (DHI) [23]). Let G
be a group of prime order p with log2 p = κ and let a $← Z∗p. Then, for every PPT
adversary A there is a negligible function ε(·) such that Pr

[ 1
aP ← A(P, aP )

]
≤

ε(κ).

4 This is e.g. the case for BN-curves [2], the most common choice for Type-3 pairings.



2.1 Digital Signatures

Definition 4 (Digital Signature Scheme). A digital signature scheme con-
sists of the following polynomial time algorithms:

KeyGen(1κ): A probabilistic algorithm that takes input a security parameter κ ∈
N and outputs a key pair (sk, pk) for message space M.

Sign(m, sk): A probabilistic algorithm that takes input a message m ∈ M, a
secret key sk and outputs a signature σ.

Verify(m,σ, pk): A deterministic algorithm that takes input a message m ∈ M,
a signature σ, a public key pk and outputs 1 if σ is a valid signature for M
under pk and 0 otherwise.

A digital signature scheme is secure if it is correct and existentially unforge-
able under adaptively chosen-message attacks. We define the properties below:

Definition 5 (Correctness). A digital signature scheme (KeyGen,Sign,Verify)
is called correct if

∀κ > 0 ∀(sk, pk) $← KeyGen(1κ) ∀m ∈M : Verify(m, Sign(m, sk), pk) = 1

Definition 6 (EUF-CMA). A digital signature scheme (KeyGen,Sign,Verify)
is called existentially unforgeable under adaptively chosen-message attacks if
for all PPT algorithms A having access to a signing oracle O(·, sk), there is a
negligible function ε(·) such that:

Pr
[

(sk, pk) $← KeyGen(1κ),
(m∗, σ∗) $← AO(·,sk)(pk)

: m∗ 6∈ Q ∧
Verify(m∗, σ∗, pk) = 1

]
≤ ε(κ),

where Q is the set of queries which A has issued to the signing oracle O.

2.2 Structure-Preserving Signatures on Equivalence Classes

In a structure-preserving signature scheme [1], public keys, messages and sig-
natures consist only of group elements of a bilinear group. The verification
algorithm verifies a signature solely through group membership tests and by
evaluating pairing-product equations.

An SPS-EQ-R scheme is a structure-preserving signature scheme that is de-
fined either on the message space (G∗1)` or (G∗2)`, where ` > 1 and |G1| = |G2| = p
is prime. Since Z`p is a vector space, it is possible to define—in analogy to the
projective space—a projective equivalence relation ∼R that partitions Z`p into
projective equivalence classes. This equivalence relation then further propagates
onto (G∗i )` for i ∈ {1, 2}.

Now, an SPS-EQ-R scheme signs such equivalence classes by signing ar-
bitrary representatives of such classes. When given a message-signature pair,
anyone can derive a valid message-signature pair for every other representative
of this class. This is done by multiplying each message vector component by the



same scalar and by consistently updating the corresponding signature. Clearly,
this requires unforgeability to be defined with respect to equivalence classes.
This means that after querying signatures for messages Mi, no adversary should
be able to output a forgery for a message M∗ belonging to a class different from
the classes [Mi]R.

We restate the syntax and the security properties of structure-preserving
signatures on equivalence classes from [16,9,10]:

Definition 7 (Structure-Preserving Signature Scheme on Equivalence
Classes (SPS-EQ-R)). An SPS-EQ-R scheme SPSEQ on (G∗i )` consists of the
following polynomial-time algorithms:

BGGenR(1κ): A deterministic bilinear-group generation algorithm, which on in-
put a security parameter κ outputs a bilinear group BG.

KeyGenR(BG, `): A probabilistic algorithm, which on input a bilinear group BG
and a vector length ` > 1 outputs a key pair (sk, pk).

SignR(M, sk): A probabilistic algorithm, which on input a representative M ∈
(G∗i )` of an equivalence class [M ]R and a secret key sk outputs a signature
σ for the representative M of equivalence class [M ]R.

ChgRepR(M,σ, λ, pk): A probabilistic algorithm, which on input a representative
M ∈ (G∗i )` of an equivalence class [M ]R, a signature σ for M , a scalar λ and
a public key pk returns an updated message-signature pair (M ′, σ′), where
M ′ = λM is the new representative and σ′ its updated signature.

VerifyR(M,σ, pk): A deterministic algorithm, which given a representative M ∈
(G∗i )`, a signature σ and a public key pk outputs 1 if σ is valid for M under
pk and 0 otherwise.

VKeyR(sk, pk): A deterministic algorithm, which given a secret key sk and a
public key pk checks both keys for consistency and returns 1 on success and
0 otherwise.

Definition 8 (Correctness). An SPS-EQ-R scheme SPSEQ on (G∗i )` is called
correct if for all security parameters κ ∈ N, for all ` > 1, all bilinear groups
BG← BGGenR(1κ), all key pairs (sk, pk) $← KeyGenR(BG, `), all messages M ∈
(G∗i )` and all λ ∈ Z∗p we have:

VKeyR(sk, pk) = 1 and
Pr
[
VerifyR(M,SignR(M, sk), pk) = 1

]
= 1 and

Pr
[
VerifyR(ChgRepR(M,SignR(M, sk), λ, pk), pk) = 1

]
= 1.

Definition 9 (EUF-CMA). An SPS-EQ-R scheme SPSEQ on (G∗i )` is called
existentially unforgeable under adaptively chosen-message attacks if, for all PPT
algorithms A having access to a signing oracle O(sk,M), there is a negligible
function ε(·) such that:

Pr

BG← BGGenR(1κ),
(sk, pk) $← KeyGenR(BG, `),
(M∗, σ∗) $← AO(sk,·)(pk)

: [M∗]R 6= [M ]R ∀M ∈ Q ∧
VerifyR(M∗, σ∗, pk) = 1

 ≤ ε(κ),



where Q is the set of queries that A has issued to the signing oracle O.

We now introduce the following new property:

Definition 10. An SPS-EQ-R scheme SPSEQ allows perfect composition if for
all random tapes r and tuples (sk, pk,M, σ, λ) :

VKeyR(sk, pk) = 1 σ ← SignR(M, sk; r) M ∈ (G∗i )` λ ∈ Z∗p

it holds that (λM,SignR(λM, sk; r)) = ChgRepR(M,σ, λ, pk; 1).

Intuitively, this requires that ChgRepR executed with random coins fixed
to 1 updates only the parts of a signature that are affected by updating the
representative from M to λM , not changing the randomness of SignR.

In [10], a standard model SPS-EQ-R construction is presented. Unfortu-
nately, it does not satisfy the above definition, but the scheme in [9], which is
secure in the generic group model, does.

2.3 Verifiably Encrypted Signatures

Below, we give the abstract model of verifiably encrypted signatures, adapted
from [3].

Definition 11 (Verifiably Encrypted Signature Scheme (VES)). A ver-
ifiably encrypted signature scheme VES consists of the following polynomial time
algorithms:

AKeyGen(1κ): Given a security parameter κ, this probabilistic algorithm outputs
a key pair (ask, apk), where ask is the private key and apk the corresponding
public key of the arbiter.

KeyGen(1κ): Given a security parameter κ, this probabilistic algorithm outputs
a private signing key sk and a public verification key pk for message space
M.

Sign(m, sk): Given a message m ∈ M and a signing key sk, this probabilistic
algorithm outputs a signature σ under sk on m.

Verify(m,σ, pk): Given a message m ∈M and a public key pk, this deterministic
algorithm outputs 1 iff σ is a valid signature on m under pk and 0 otherwise.

VESign(m, sk, apk): Given a message m ∈ M, a signing key sk and an arbiter
public key apk, this probabilistic algorithm outputs an encrypted signature ω
under sk on message m.

VEVerify(m,ω, pk, apk): Given a message m ∈ M, an encrypted signature ω,
a public key pk and an arbiter public key apk, this deterministic algorithm
outputs 1 if ω is a valid encrypted signature on m under pk and 0 otherwise.

Resolve(m,ω, ask, pk): Given a message m ∈ M, an encrypted signature ω, an
arbiter secret key ask and a public key pk, this (probabilistic) algorithm out-
puts a valid signature σ on m under pk.



We call a VES secure if it is complete, unforgeable, opaque, extractable, abuse
free and resolution independent. We define these properties below.

Completeness says that any honestly computed VES always verifies and that
moreover the arbiter can always extract a valid signature.

Definition 12 (Completeness). A VES VES is complete if for all κ > 0, all
(ask, apk) $← AKeyGen(1κ), all (sk, pk) $← KeyGen(1κ), and all messages m ∈M,
for ω $← VESign(m, sk, apk) it holds that

Pr
[
VEVerify(m,ω, pk, apk) = 1

]
= 1 and

Pr
[
Verify(m,Resolve(m,ω, ask, pk), pk) = 1

]
= 1.

Unforgeability says that it should be infeasible to produce a valid encrypted
signature for an unknown secret key.

Definition 13 (Unforgeability). A VES VES is unforgeable if for all PPT al-
gorithms A having access to oracles O ← {VESign(·, sk, apk),Resolve(·, ·, ask, pk),
Sign(·, sk)}, there is a negligible function ε(·) such that:

Pr

 (ask, apk) $← AKeyGen(1κ),
(sk, pk) $← KeyGen(1κ),
(m∗, ω∗) $← AO(pk, apk)

: m∗ 6∈ Q ∧
VEVerify(m∗, ω∗, pk, apk) = 1

 ≤ ε(κ),

where Q is the set of messages which were queried to the oracles.

Opacity basically requires that only the arbiter should be able to pull out
the underlying signature.

Definition 14 (Opacity). A VES VES is opaque if for all PPT algorithms A
having access to oracles O ← {VESign(·, sk, apk),Resolve(·, ·, ask, pk)}, there is a
negligible function ε(·) such that:

Pr

 (ask, apk) $← AKeyGen(1κ),
(sk, pk) $← KeyGen(1κ),
(m∗, σ∗) $← AO(pk, apk)

: m∗ 6∈ Q ∧
Verify(m∗, σ∗, pk) = 1

 ≤ ε(κ),

where Q is the set of messages queried to the Resolve oracle.

In addition to the above property, we have to guarantee that it is indeed
possible for the arbiter to extract the underlying signature, which is covered by
the following property.

Definition 15 (Extractability). A VES VES is extractable if for all PPT
algorithms A having access to oracles O ← {Resolve(·, ·, ask, ·)}, there is a neg-
ligible function ε(·) such that:

Pr

 (ask, apk) $← AKeyGen(1κ),
(pk∗,m∗, ω∗) $← AO(apk)

:
σ

$← Resolve(m∗, ω∗, ask, pk∗) ∧
VEVerify(m∗, ω∗, pk∗, apk) = 1 ∧
Verify(m∗, σ, pk∗) = 0

 ≤ ε(κ).



Abuse freeness guarantees that even if an adversary is colluding with the
arbiter, it is unable to forge a valid encrypted signature.

Definition 16 (Abuse Freeness). A VES VES is abuse free if for all PPT
algorithms A having access to oracles O ← {VESign(·, sk, apk)}, there is a neg-
ligible function ε(·) such that:

Pr

 (ask, apk) $← AKeyGen(1κ),
(sk, pk) $← KeyGen(1κ),
(m∗, ω∗) $← AO(pk, ask, apk)

: m∗ 6∈ Q ∧
VEVerify(m∗, ω∗, pk, apk) = 1

 ≤ ε(κ),

where Q is the set of messages queried to the VESign oracle.

Extractability and abuse freeness were introduced by Rückert and Schröder
in [27].

Additionally, Calderon et al. [5] have identified another property that is called
resolution independence. This property is crucial for a VES to be secure, as we
will discuss in Section 3.

Definition 17 (Resolution Independence). A VES VES is resolution inde-
pendent if for all κ > 0, all (ask, apk) $← AKeyGen(1κ), (sk, pk) $← KeyGen(1κ),
and all messages m, the outputs of Sign(m, sk) and Resolve(m,VESign(m, sk, apk),
ask, pk) are distributed identically.

In [5], the authors showed that VES constructions imply public key encryp-
tion if they additionally satisfy a property called resolution duplication. Loosely
speaking, a VES is resolution duplicate if the signatures returned by the signer
and the arbiter are identical.

Definition 18 (Resolution Duplication). A VES VES is resolution dupli-
cate if it is resolution independent and fulfills the following properties:

Deterministic Resolution: The algorithm Resolve is deterministic.
Extraction: There exists an additional PPT algorithm Extract(·, ·, ·), such that

for all κ > 0, all (ask, apk) $← AKeyGen(1κ), (sk, pk) $← KeyGen(1κ),m ∈M,
and random tapes r ∈ {0, 1}∗, it is the case that

Extract(m, sk, r) = Resolve(m,VESign(m, sk, apk; r), ask, pk).

Up to now numerous standard-model VES constructions have been proposed,
but not all constructions so far are resolution-duplicate; in particular not the ones
with a randomized Resolve algorithm [5].

3 The Importance of Resolution Independence

In Boneh et al.’s original definition of a VES [3], the underlying signature scheme
is required to be secure, in addition to the security properties of the encrypted
signatures: completeness, unforgeability and opacity. Rückert and Schröder [27]



added the properties of extractability and abuse freeness, and Calderon et al. [5]
added the properties of resolution independence, but both omit (or are at least
unclear about) the requirement that the underlying signature scheme be secure.
Indeed, the latter paper says that they “additionally provide the adversary with
access to the Sign oracle, as otherwise the underlying signature scheme could be
completely broken and the VES would still be considered unforgeable.” In fact,
it can be completely broken anyway.

We will show that, with this omission, resolution independence is absolutely
essential to not only the unforgeability, but even the correctness, of the underly-
ing scheme. Resolution independence supplies the necessary glue to connect the
security properties of the encrypted scheme to the underlying scheme. Contra-
positively, we show that security including resolution independence is sufficient
for the correctness and security of the underlying signature scheme, so that does
not need to be proven separately. To be clear, we formally define what is meant
by the underlying signature scheme.

Definition 19. Let VES be a VES. Then we call Sig = (SKeyGen,Sign,Verify)
the underlying signature scheme of VES, where SKeyGen(1κ) outputs (sk, pk) $←
KeyGen(1κ).

3.1 Counterexample

We now show that completeness, unforgeability, opacity, extractability and abuse
freeness together do not imply the correctness or security of the underlying
scheme.

Let VES = (AKeyGen,KeyGen,Sign,Verify,VESign,VEVerify,Resolve) be a VES
with messages of length n, and let VES′ = (AKeyGen,KeyGen,Sign′,Verify,VESign,
VEVerify,Resolve) where Sign′(m, sk) computes and outputs Sign(0n, sk).

Theorem 1. If VES is complete, unforgeable, opaque, extractable and abuse free,
then so is VES′.

Proof. The adversary in the unforgeability game must output a valid encrypted
signature, but the set of valid encrypted signatures in VES and VES′ are the same,
and we have only weakened the oracles (by making Sign provide signatures only
on 0n), so unforgeability is preserved. The other properties do not mention the
Sign algorithm at all, so they are unaffected.

This scheme is intuitively both incorrect (as the signatures produced by Sign′
cannot be verified) and insecure (as it gives away a forgery as soon as it is called
on a message other than 0n. Nevertheless, VES′ is secure as defined in [27], since
their definition does not include the security of the underlying signature scheme.
It is also much more catastrophically insecure than the separating example in
[5, Section 3], which motivated the definition of resolution independence.

Theorem 2. The underlying signature scheme Sig of VES′ is neither correct
nor secure.



3.2 Filling the Gap

Lemma 1. If VES is a complete and resolution independent VES, then its un-
derlying signature scheme Sig is correct.

Proof. By completeness, for all κ > 0, (ask, apk) $← AKeyGen(1κ), (sk, pk) $←
KeyGen(1κ) and all messages m ∈ M, for ω $← VESign(m, sk, apk), with proba-
bility 1,

Verify(m,Resolve(m,ω, ask, pk), pk) = 1.

By resolution independence, Resolve(m,ω, ask, pk) is identically distributed to
Sign(m, sk), so with probability 1,

Verify(m,Sign(m, sk), pk) = 1.

Lemma 2. If VES is an opaque and resolution independent VES, then its un-
derlying signature scheme Sig is EUF-CMA-secure.

Proof. Let VES be a resolution independent VES, and let Sig be the underlying
signature scheme. We assume that there is an efficient adversary A breaking
the EUF-CMA security of Sig with non-negligible probability, and construct an
adversary B that uses A to break the opacity of VES.
B takes as input an arbiter’s public key apk and a signer’s public key pk

(with unknown corresponding private keys ask and sk), and passes pk as input
to A. Whenever A tries to query the Sign oracle on message m, B forwards m
to its VESign oracle, obtaining ω = VESign(m, sk, apk); B then queries (m,ω) to
its Resolve oracle, obtaining σ = Resolve(m,VESign(m, sk, apk), ask, pk), which it
returns to A. When A outputs (m∗, σ∗), B outputs the same.

By resolution independence, Sign(m, sk) and Resolve(m,VESign(m, sk, apk),
ask, pk) are identically distributed, so we perfectly simulate A’s Sign oracle.

If A never queried m∗ to Sign, then B never queried m∗ to Resolve, and so B
has the same non-negligible success probability as A.

Theorem 3. If a VES is complete, opaque and resolution independent, then its
underlying signature scheme Sig is correct and secure.

Proof. By Lemmas 1 and 2.

4 Verifiably Encrypted Signatures from SPS-EQ-R

In Scheme 1, we show how a VES can be built using any SPS-EQ-R construction
that allows perfect composition as a black box. In particular, the VES construc-
tion only requires the SPS-EQ-R construction to be correct, EUF-CMA secure
and to fulfill perfect composition (Definition 10).

Note 1. Observe that, independently of the instantiation of Scheme 1 with a
concrete SPS-EQ-R, the efficiency of the Verify resp. VEVerify can be improved
by precomputing parts of the pairing product equations that solely depend on



AKeyGen(1κ): Given a security parameter κ, compute BG ← BGGenR(1κ), pick a
$←

Z∗p, compute A← aP and output (ask, apk)← (a, (BG, A)).
KeyGen(1κ): Given a security parameter κ, compute BG ← BGGenR(1κ) and output

(sk, pk) $← KeyGenR(BG, ` = 3).
Sign(m, sk; (r1, r2)): Given a message m ∈ Z∗p, secret key sk and a random

tape (r1, r2) ∈ {0, 1}∗, pick s
$← Z∗p using r1 and compute σ′ ←

SignR((msP, sP, P ), sk; r2) using the remaining coins r2. Finally, output σ ←
(σ′, sP ).

Verify(m,σ, pk): Given a message m ∈ Z∗p, a signature σ = (σ′, S) and a public key pk,
output whatever VerifyR((mS,S, P ), σ′, pk) outputs.

VESign(m, sk, apk; (r1, r2)): Given a message m ∈ Z∗p, secret key sk, the arbiter public
key apk = A and a random tape (r1, r2) ∈ {0, 1}∗, pick s

$← Z∗p using r1 and
compute ω′ ← SignR((msA, sA,A), sk; r2) using the remaining coins r2. Finally,
output ω ← (ω′, sA).

VEVerify(m,ω, pk, apk): Given a message m ∈ Z∗p, an encrypted signature ω =
(ω′,W ), a public key pk and an arbiter public key apk = A, output whatever
VerifyR((mW,W,A), ω′, pk) outputs.

Resolve(m,ω, ask, pk): Given a message m ∈ Z∗p, an encrypted signature ω =
(ω′, sA), a public key pk and an arbiter secret key ask ← a, check whether
VEVerify(m,ω, pk, apk) =? 1 and return ⊥ if this is not the case. Otherwise, compute
((msP, sP, P ), σ′)← ChgRepR((msA, sA,A), ω, 1

a
, pk; 1) and output σ ← (σ′, sP ).

Scheme 1: A VES Construction from SPS-EQ-R.

P and pk resp. A and pk, and including the resulting GT elements into (the
updated) user public key pk.

In the following, we are going to analyze the security of Scheme 1 and prove
completeness, unforgeability, opacity and abuse freeness as well as resolution
duplication.

Theorem 4. The VES in Scheme 1 is complete.

Proof. The completeness proof of Scheme 1 is straight-forward and therefore
omitted here.

Theorem 5. The VES in Scheme 1 is unforgeable given that the underlying
SPS-EQ-R scheme is unforgeable.

Proof. We assume that there is an efficient adversary A winning the unforge-
ability game with non-negligible probability; then we are able to construct an
adversary B that uses A to break the EUF-CMA security of the underlying
SPS-EQ-R scheme with non-negligible probability.
B obtains pkR of the SPS-EQ-R scheme with ` = 3 (and thereby implic-

itly the bilinear group BG) from the challenger C of the EUF-CMA security
game, and sets pk ← pkR. Then B picks a $← Z∗p, computes A ← aP and sets
(ask, apk)← (a, (BG, A)). Next, B sets up a list L← ∅ to keep track of represen-
tatives queried to C, runs A on (pk, apk) and answers A’s oracle queries to the



Resolve oracle as in the real game and simulates queries to all other oracles as
follows:

Sign(·, sk): If A submits a query for m ∈ Z∗p, B queries C’s signing oracle for the
message (msP, sP, P ) for s $← Z∗p, gets in return a corresponding signature
σ′, sets L[m]← L[m] ∪ {(msA, sA,A)} and gives σ ← (σ′, sP ) to A.

VESign(·, sk, apk): If A submits a query for m ∈ Z∗p, B queries C’s signing oracle
for the message (msA, sA,A) for s $← Z∗p, gets in return a corresponding
signature ω′, sets L[m]← L[m] ∪ {(msA, sA,A)} and gives ω ← (ω′, sA) as
encrypted signature to A.

If at some point A outputs a valid encrypted message-signature pair (m∗, ω∗ =
(ω′∗,W ∗)), such that it has not previously queried m∗ to any of the oracles, then
B will output ((m∗W ∗,W ∗, A), ω′∗) to C.

Note that the distribution of all values returned to A during the simulation
is identical to the distribution of these values during a real game.

By construction, ((m∗W ∗,W ∗, A), ω′∗) constitutes a valid SPS-EQ-Rmessage-
signature pair. It remains to show that for M∗ = (m∗W ∗,W ∗, A), the class
[M∗]R is different from all classes represented by elements in L, if m∗ is different
from all messages queried to the oracles. VEVerify demands that the third vector
component of M∗ be A, which uniquely determines the representative for each
class and allows for comparison. Now, if there is some Mi = (miWi,Wi, A) ∈ L
queried to the VESign or the Sign oracle coinciding with M∗ in the second compo-
nent, then both vectors still differ in the first component for m∗ 6= mi. Likewise,
if they coincide in the first component for m∗ 6= mi, then they cannot have equal
second components. Hence, M∗ 6= Mi for any Mi in L.

Theorem 6. The VES in Scheme 1 is opaque given that the DHI assumption
holds in G1 and that the underlying SPS-EQ-R is unforgeable.

Proof. We assume that there is an efficient adversary A winning the opacity
game with non-negligible probability. Then we are able to construct an adversary
B that uses A either to break with non-negligible probability the EUF-CMA
security of the underlying SPS-EQ-R scheme (Type-1 adversary) if A has neither
queried the VESign nor the Resolve oracle for m∗; or the DHI assumption (Type-
2 adversary) if A has only queried the VESign but not the Resolve oracle for
m∗.

In the following, B guesses A’s strategy, i.e., the type of forgery A will con-
duct. We are now going to describe the setup, the initialization of the environ-
ment, the reduction and the abort conditions for each type.
Type-1: B obtains pkR of the SPS-EQ-R scheme with ` = 3 (and thereby im-
plicitly the bilinear group BG) from the challenger C of the EUF-CMA security
game and sets pk ← pkR. Furthermore, B picks a $← Z∗p, computes A ← aP
and sets (ask, apk)← (a, (BG, A)). Next, B runs A on (pk, apk) and answers A’s
oracle queries to the Resolve oracle as in the real game and simulates queries to
the other oracle as follows:



VESign(·, sk, apk): If A submits a query for m ∈ Z∗p, B queries C’s signing oracle
for the message (msA, sA,A) for s $← Z∗p, then B gets in return a signature
ω′ and outputs (ω′, sA).

If at some point A outputs a valid message-signature pair (m∗, σ∗) with σ∗ =
(σ′∗, S∗), and neither has queried to the VESign nor to the Resolve oracle for
m∗, then B will output ((m∗S∗, S∗, P ), σ′∗) to C. In case that A has queried the
VESign oracle for m∗, B will abort.

Note that the distribution of all values returned to A during the simulation
is identical to the distribution of these values during a real game, which makes
the simulation perfect.

By construction, ((m∗S∗, S∗, P ), σ′∗) constitutes a valid SPS-EQ-R message-
signature pair. It remains to show that for M∗ = (m∗S∗, S∗, P ), the class [M∗]R
is different from all classes queried to C, if m∗ is different from all messages
queried to the VESign oracle. Verify demands that the third vector component of
M∗ be P , which uniquely determines the representative for each class and allows
for comparison. Now, if there is some Mi = (miSi, Si, P ) coinciding with M∗

in the second component, then both vectors still differ in the first component
for m∗ 6= mi. Likewise, if they coincide in the first component for m∗ 6= mi,
then they cannot have equal second components. Hence, M∗ 6= Mi for any Mi

queried to C.

Type-2: In the following, let p be some fixed probability, which we will set
later. B obtains an instance (P, aP ) of the DHI problem in group G1 ∈ BG
(and thereby implicitly the bilinear group BG) from the challenger C. B executes
(sk, pk) $← KeyGenR(BG), runs A on (pk, apk← (BG, A)) for A← aP , sets up a
list L← ∅ and simulates queries to the oracles as follows:

VESign(·, sk, apk): If A submits a query for m ∈ Z∗p, B picks s $← Z∗p and random
coins r2, sets
– W ← sA with probability p, or
– W ← s(P +A) with probability 1− p, and

runs ω′ ← SignR((mW,W,A), sk; r2). Then, it sets ω ← (ω′,W ), stores
L[m]← (s, r2, ω) and returns ω.

Resolve(·, ·, ask, pk): If A submits a query for m ∈ Z∗p and ω, then B checks
whether VEVerify(m,ω, pk, apk) =? 1 and returns ⊥ if this is not the case.
Otherwise, it retrieves the entry (s, r2, ω = (ω′,W )) ← L[m]. If W =? s(P +
A), then B aborts. Otherwise, B computes σ′ ← SignR((msP, sP, P ), sk; r2)
and returns σ ← (σ′, sP ).

If at some point A outputs a valid message-signature pair (m∗, σ∗ = (σ′∗, S∗))
and has queried the VESign oracle for m∗, but not the Resolve oracle, then B
retrieves (s∗, r∗2 , ω∗) ← L[m∗]. If S∗ = s∗P , then B aborts. Otherwise, we have
S∗ = s∗( 1

aP + P ) and B outputs 1
aP ←

1
s∗S
∗ − P as a solution to the DHI

problem.



Note that the distribution of all values returned to A during the simulation
is identical to the distribution of these values during a real game, which makes
the simulation perfect.

Let qR be the number of resolve queries. Then, with probability pqR , B
does not abort during the simulation. Given that the simulation works out, A
outputs a “useful” forgery with probability 1− p. In total, B is able to return a
solution to the DHI problem with probability pqR(1− p). The function f(p) =
pqR(1 − p) reaches its maximum for qR

qR+1 and after few calculations we obtain
f(p) = O( 1

qR
). Therefore, if A is able to break the opacity of the scheme with

non-negligible probability ε(κ), then B is able to break the DHI assumption with
non-negligible probability O( ε(κ)

qR
).

Theorem 7. The VES in Scheme 1 is unconditionally extractable.

Theorem 8. The VES in Scheme 1 is abuse free given that the underlying SPS-
EQ-R scheme is unforgeable.

The following theorem states that Scheme 1 is resolution duplication. In
particular, it is resolution independent, the importance of which was established
in Section 3. It will allow also us to derive a PKE scheme (cf. Section 5).
Theorem 9. The VES in Scheme 1 is resolution duplicate given that the un-
derlying SPS-EQ-R scheme allows perfect composition.

The proofs of Theorems 7-9 are given in Appendix A.

5 Public-Key Encryption From SPS-EQ-R

In this section, we show how to convert any SPS-EQ-R satisfying perfect com-
position (Definition 10) into a public-key encryption scheme. This connection is
somewhat surprising, as it is well known that regular signature schemes do not
imply public-key encryption (in a black-box way). However, there is no contra-
diction as SPS-EQ-R have more structure than a regular signature scheme.

The basic idea is to instantiate the transformation of Calderon et al. [5].
This transformation turns any secure, resolution duplicate VES scheme into a
public-key encryption scheme, in a black-box way. We have already shown how to
construct a secure VES scheme, and that it is resolution duplicate, in Section 4.
The basic idea of the transformation is an application of the Goldreich-Levin
trick [14] to the setting of VES. That is, we view 〈σ, r〉 as the hard-core predicate
for VESign, i.e., given ω and r it should be hard to predict the value of 〈σ, r〉.
This intuition is formally shown in the following lemma.
Lemma 3. Let VES be a VES and let b(x, r) := 〈x, r〉 mod 2 for any x and
r such that |x| = |r|. Then, if the VES is opaque for all messages m ∈ M,
all (ask, apk) $← AKeyGen(1κ) and (sk, pk) $← KeyGen(1κ), it is hard to compute
b(σ, r) given m, apk, pk, ω $← VESign(m, sk, apk), and r

$← {0, 1}|σ|, where σ :=
Resolve(ω, ask, pk).



The proof is given in [5] and follows that of Goldreich [13] closely. It leads
to the following construction of a CPA-secure public-key encryption scheme
(EKeyGen,Enc,Dec) as follows:

– EKeyGen(1κ) : Output (apk, ask) $← AKeyGen(1κ).
– Enc(m, apk) : Generate signing keys (sk, pk) $← KeyGen(1κ) and pick a ran-

dom tape r and rσ
$← {0, 1}|σ|. Now, compute ω := VESign(0, sk, apk; r),

σ
$← Extract(m, sk, r), and set c0 := m⊕ 〈σ, rσ〉. Output c = (pk, ω, rσ, c0).

– Dec(c, ask) : Parse c = (pk, ω, rσ, c0) and return ⊥ if VEVerify(0, ω, pk, apk) =
0. Otherwise, compute σ := Resolve(0, pk, ω, ask, pk) and output m := c0 ⊕
〈σ, rσ〉.

Regarding security, it was shown that the above construction is CPA secure [5]:

Theorem 10. If the verifiably encrypted signature is resolution duplicate (ac-
cording to Definition 18) and opaque, then the above scheme is IND-CPA secure.

6 Conclusion

We have shown that the property of resolution independence is crucial, not only
for constructing public-key encryption from verifiably encrypted signatures, but
even for the correctness and security of the VES.

We gave for the first time a construction of resolution duplicate (and in
particular resolution independent) VES from SPS-EQ-R. Our VES has short
keys and signatures. This result demonstrates further applications of SPS, and
SPS-EQ-R in particular. Using our VES, we constructed public-key encryption.
Since the construction is generic, it proves that SPS-EQ-Rs allowing perfect
composition cannot be constructed from one-way functions.
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A Omitted proofs

Theorem 7. The VES in Scheme 1 is unconditionally extractable.

Proof. This follows directly from the correctness property of any SPS-EQ-R
scheme. To see this, observe that for (m,ω) with ω = (ω′, sA) it holds that
VEVerifyR((msA, sA,A), ω′, pk) = 1 if and only if VerifyR((msP, sP, P ), σ′, pk) =
1, where ((msP, sP, P ), σ′)← ChgRepR((msA, sA,A), ω′, 1

a , pk; 1), since

[(msA, sA,A)]R = [(msP, sP, P )]R.

Theorem 8. The VES in Scheme 1 is abuse free given that the underlying SPS-
EQ-R scheme is unforgeable.

Proof. We assume that there is an efficient adversary A winning the abuse free-
ness game with non-negligible probability; then we are able to construct an



adversary B that uses A to break the EUF-CMA security of the underlying
SPS-EQ-R scheme with non-negligible probability.
B obtains pkR of the SPS-EQ-R scheme with ` = 3 (and thereby implicitly

the bilinear group BG) from the challenger C of the EUF-CMA security game,
sets pk ← pkR. Furthermore, B picks a $← Z∗p, computes A ← aP and sets
(ask, apk) = (a, (BG, A)). Next, B runs A on (pk, ask, apk) and answers A’s oracle
queries as follows:

VESign(·, sk, apk): If A submits a query for m ∈ Z∗p, B queries C’s signing oracle
for the message (m · sA, sA,A) for s $← Z∗p, gets in return a corresponding
encrypted signature ω′ and gives ω ← (ω′, sA) to A.

If at some point A outputs a valid encrypted message-signature pair (m∗, ω∗ =
(ω′∗,W ∗)), such that it has not previously queried m∗ to any of the oracles, then
B will output ((m∗W ∗,W ∗, A), ω′∗) to C. In case that A has queried the VESign
oracle for m∗, B will abort.

Note that the distribution of all values returned to A during the simulation
is identical to the distribution of these values during a real game.

By construction, ((m∗W ∗,W ∗, A), ω′∗) constitutes a valid SPS-EQ-Rmessage-
signature pair. It remains to show that for M∗ = (m∗W ∗,W ∗, A), the class
[M∗]R is different from all classes queried to C, if m∗ is different from all mes-
sages queried to the VESign oracle. VEVerify demands that the third vector
component of M∗ be A, which uniquely determines the representative for each
class and allows for comparison. Now, if there is some Mi = (mi ·Wi,Wi, A) co-
inciding with M∗ in the second component, then both vectors still differ in the
first component for m∗ 6= mi. Likewise, if they coincide in the first component
for m∗ 6= mi, then they cannot have equal second components. Hence, assuming
that m∗ 6= mi and M∗ = Mi for some Mi queried to C, immediately gives a
contradiction.

Theorem 9. The VES in Scheme 1 is resolution duplicate given that the un-
derlying SPS-EQ-R scheme allows perfect composition.

Proof. Here, we have to show (1) that the outputs of Sign(m, sk) and Resolve(m,
VESign(m, sk, apk), ask, pk) are distributed identically, (2) that Resolve is deter-
ministic and (3) that there exists a PPT algorithm Extract(·, ·, ·), such that for all
(ask, apk) $← AKeyGen(1κ), (sk, pk) $← KeyGen(1κ),m ∈ M, and random tapes
r ∈ {0, 1}∗, it is the case that

Extract(m, sk, r) = Resolve(m,VESign(m, sk, apk; r), ask, pk).

Property (2) is easy to see, since Resolve controls the internal randomness of
ChgRepR, runs it with randomness 1 and, thereby, executes it deterministically.
All other parts of Resolve are deterministic as well.

The extract algorithm for Property (3) can be specified as Extract(m, sk, r) :=
Sign(m, sk; r) = Sign(m, sk; (r1, r2)) = (SignR((msP, sP, P ), sk; r2), sP ) where s



is drawn uniformly from Z∗p using random coins r1. For the RHS, we have

Resolve(m,VESign(m, sk, apk; r2), ask, pk) =
Resolve(m, (SignR((msA, sA,A), sk; r2), sA), ask, pk) =

(ChgRepR((msA, sA,A),SignR((msA, sA,A), sk; r2), 1
a
, pk; 1)[2], sP ),

where s and t are as above. If the underlying SPS-EQ-R scheme allows perfect
composition, this gives the same output as the specified Extract algorithm.

With regard to (1) observe that Property (3) and the fact that the Extract
algorithm can be expressed by Sign implies that the distributions of Sign(m, sk)
and Resolve(m,VESign(m, sk, apk), ask, pk) are identical.
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