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Abstract. A ring signature scheme allows one party to sign messages
on behalf of an arbitrary set of users, called the ring. The anonymity of
the scheme guarantees that the signature does not reveal which member
of the ring signed the message. The ring of users can be selected ”on-the-
fly” by the signer and no central coordination is required. Ring signa-
tures have made their way into practice in the area of privacy-enhancing
technologies and they build the core of several cryptocurrencies. Despite
their popularity, almost all ring signature schemes are either secure in
the random oracle model or in the common reference string model. The
only candidate instantiations in the plain model are either impractical
or not fully functional.
In this work, we close this gap by proposing a new construction paradigm
for ring signatures without random oracles: We show how to efficiently
instantiate full-fledged ring signatures from signature schemes with re-
randomizable keys and non-interactive zero-knowledge. We obtain the
following results:

– The first almost practical ring signature in the plain model from
standard assumptions in bilinear groups.

– The first efficient ring signature in the plain model secure under a
generalization of the knowledge of exponent assumption.

1 Introduction

Ring signatures were envisioned by Rivest, Shamir, and Tauman [36] as a tool
to leak a secret information in an authenticated manner while being anonymous
in within a crowd of users. The idea behind this primitive is that a signer can
choose a set of users via their public-keys and sign a message on behalf of this
set, also called a ring. Signing in the name of the users means that it is infeasible
to tell which of the users signed the message. Ring signatures guarantee great
flexibility: Rings can be formed arbitrarily and ”on-the-fly” by the signer and
no trusted authority is required. In fact, users do not even have to be aware of
each other. The widely accepted security notions of anonymity against full key
exposure and unforgeability with respect to insider corruption were formalized
by Bender, Katz, and Morselli [4].

In the past years many applications of ring signatures were suggested, such
as the ability to leak secrets while staying anonymous within a certain set [36].
Recently, certain types of ring signatures made it into practice being a building
block in the cryptocurrency Monero. In Monero, to spend a certain amount of
coins, the user searches for other public-keys sharing the same amount and it



issues a ring signature for this set of users. Since the ring signature is anonymous,
nobody can tell which of the users in the ring spent their coin.

Despite being one of the classical problems of cryptography and being de-
ployed in practice, almost all ring signatures are either secure in the random
oracle model or the common reference string model. Even worse, among the
construction without random oracles, the asymptotically most efficient instance
is the scheme of Bose, Das, and Rangan [8] with a signature of 95 group elements
for a composite order bilinear group. Notable exceptions to what discussed above
are the scheme of Bender, Katz, and Morselli [4] and the one of Chow et al. [19].
However, the former is only a feasibility result that relies on generic ZAPs [23],
whereas the latter supports only rings of constant size and it is secure against a
tailored assumption.

In this work, we close this gap presenting a new generic framework to con-
struct efficient ring signatures without random oracles: Our abstraction gives us
the first efficient scheme secure in the plain model. As a corollary of our trans-
formation, we also obtain the most efficient scheme with constant size signatures
in the common reference string model

1.1 Our Contribution

At the core of our contributions is a novel generic construction of ring signa-
tures from signatures with re-randomizable keys, a property that was recently
leveraged by Fleischhacker et al. [26] to build efficient sanitizable signature
scheme [12,13,35]. In addition to that, our scheme requires a non-interactive
zero-knowledge proof. Our generic transformation is secure in the common ref-
erence string model, without random oracles. In the process of instantiating
our construction we propose a modification to the signature scheme of Hofheinz
and Kiltz [34] that significantly simplifies the statement to be proven in zero-
knowledge, thereby boosting the efficiency of our ring signature1. A nice feature
of our transformation is that the resulting signature size does not depend on
the size of the ring, except for the statement to be proven in zero-knowledge.
Therefore, instantiating the zero-knowledge proof with SNARKs automatically
yields a ring signature of constant size. As an example, we can implement the
proof of knowledge with the scheme recently proposed by Groth [31], which adds
only three group elements to our signatures.

Ring Signatures in the Plain Model. Our next observation is that, if the
zero-knowledge scheme uses a common reference string with some homomorphic
properties, then we can include a different string in each user’s verification key.
The proof for a ring of users is then computed against a combination of all the
corresponding strings, that results in a correctly distributed reference string. This
effectively lifts the resulting scheme to the plain model, given a suitable zero-
knowledge protocol. We show that the scheme of Groth [29] partially satisfies our

1 We choose Hofheinz-Kiltz signatures for efficiency reasons, although our transforma-
tion can also be instantiated from Waters’ scheme [41], whose hardness relies on the
Computational Diffie-Hellman (CDH) assumption.
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constraints and we demonstrate how to integrate it in our system. The resulting
ring signature scheme relies on standard assumptions for bilinear groups and
it has somewhat efficient signature size, although still large for practical usage.
The caveat here is that the scheme achieves only a weak form of anonymity.

Achieving Efficiency and Full Security. The last step towards our main
result is a novel instantiation of a zero-knowledge proof system for proving
the knowledge of discrete logarithms. The scheme relies on asymmetric bilinear
groups and its efficiency is comparable to schemes derived from the Fiat-Shamir
heuristic, although it does not use random oracles. We prove the security of our
scheme under a generalization of the knowledge of exponent assumption and
confirm its hardness in the generic group model [40]. When combined with our
variant of the scheme of Hofheinz and Kiltz, the resulting ring signature is fully
secure in the standard model (by using a similar trick as described above) and
the signatures are composed by roughly 4 group elements per user in the ring.

A comparison of our results with existing schemes is summarized in Table 1.
Our construction instantiated with [31] improves the signature size by and order
of magnitude with respect to the most efficient scheme without random oracles.
The scheme of [4] relies on generic ZAPs and therefore statements need to go
through an NP-reduction before being proven, making it hard for us to estimate
the real cost of the resulting signature. Although the ring signature of [19] has
a very small signature size, it only supports rings of constant size, hindering
its the practical deployment. Our two instantiations in the standard model of-
fer a tradeoff between efficiency and assumptions, broadening the landscape of
instances without any setup.

Ring Signature Model Anon. Unforg. Assumptions Ring Size Signature Size

[39] crs X X CDH + SubD poly(λ) (2n+ 2)G
[9] crs X X (q,`,1)-Pluri-SDH poly(λ) (n+ 1)G + (n+ 1)Fp
[37] crs Basic Sub. CDH poly(λ) (n+ 1)G
[16] crs X X SDH + SubD poly(λ) O(

√
n)

[8] crs X X q-SDH + SXDH + SQROOT poly(λ) 92G + 3Zp
This work + [31] crs X X q-SDH + GGM poly(λ) 6G + Zp

[19] std X X (q,n)-DsjSDH O(1) nG + nZp
[4] std X X Enc + ZAP poly(λ) O(n)

This work + [29] std Basic X q-SDH + DLIN poly(λ) ∼ 103nG
This work std X X q-SDH + L-KEA poly(λ) (4n+ 3)G + Zp

Table 1: Comparison amongst ring signature schemes without random oracles

On the Knowledge of Exponent Assumption. Although the knowledge of
exponent assumption is clearly non-standard, we believe that it is slightly better
than assuming the existence of random oracles - at least from a theoretical
point of view. The reason is that it is well known that the random oracle is
not sound [15], whereas it might be possible that certain assumptions hold in
practice. As an example, the SNARKs used in the real-world cryptocurrency
Zerocash [3] rely on a variant of the knowledge-of-exponent assumptions.
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1.2 Related Work

The notion of ring signatures has been introduced in the visionary work of
Rivest, Shamir and Tauman [36], as a way to leak secrets while staying anony-
mous within the crowd. The authors proposed a construction based on trapdoor
permutations and several other schemes have followed based on different as-
sumptions such as discrete logarithms [7], bilinear maps [33], factoring [22], and
hybrids [2]. Remarkably, the size of the signatures in the scheme of [22] is in-
dependent from the size of the ring. Such a surprising result is achieved with a
clever usage of RSA accumulators [14] and the Fiat-Shamir transformation. A
practical scheme constructed from a combination of Σ protocols and the Fiat-
Shamir heuristic was recently proposed by Groth and Kohlweiss in [32]. The
security of all of the aforementioned constructions is based on the existence of
random oracles.

There has been a considerable effort in the community in building ring sig-
nature schemes from more classical assumptions. In particular, we know how
to instantiate ring signatures efficiently admitting the existence of a common
reference string model: Shacham and Waters [39] proposed the first efficient
scheme in composite order groups with a pairing, whose performance were later
on improved in the work of Boyen on mesh signatures [9]. Recently, Schäge and
Schwenk [37] have shown a very efficient instantiation based on CDH-hard groups
with extremely appealing signatures size, but at the cost of a weaker notion of
unforgeability (chosen subring attacks in the terminology of [4]). Derler and
Slamanig [21] suggested an efficient linear-size scheme from key-homomorphic
signatures and zero-knowledge proofs. The first scheme with sublinear size sig-
natures has been proposed by Chandran, Groth, and Sahai [16], which exhibits
signatures that grow linearly with the square root of the size of the ring. To the
best of our knowledge, the most (asymptotically) efficient construction without
random oracles is due to Bose, Das, and Rangan [8], where a signature accounts
for 95 group elements for a composite order bilinear group. We shall mention
that in the work on signatures of knowledge [17] the authors claim that one can
use their primitive combined with the techniques of Dodis et. al [22] to construct
ring signatures of constant size, but this is not supported by any formal analysis.
For fairness, we must say that the security model of ring signatures was not yet
well established, as the seminal work of Bender, Katz and Morselli [4] has been
published concurrently in the same year.

In contrast to the common reference string settings, ring signature schemes in
the plain model (without any setup assumption) have been surprisingly under-
studied. The first work that considered this problem was [4], where the authors
proposed a construction from non-interctive ZAPs [23]. Such a scheme represents
the first proof of feasibility of ring signature schemes in the standard model. Con-
currently, Chow et al. [19] published a scheme for constant-size rings based on
a custom assumption. At today, these two instantiations were the only known
candidates for a ring signature scheme in the plain model.

A notion related to ring signatures is that of group signatures, originally
envisioned by Chaum and Van Heyst [18]: The main difference here is that a
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group manager controls the enrolment within the group of users and can revoke
anonymity. Efficient realizations are known in the random oracle model [5] and
in the standard model [10]. The absence of a trusted authority in ring signatures,
makes the two primitives incomparable.

2 Preliminaries

We denote by λ ∈ N the security parameter and by poly(λ) any function that
is bounded by a polynomial in λ. We denote any function that is negligible
in the security parameter by negl(λ). We say that an algorithm is ppt if it is
modelled as a probabilistic Turing machine whose running time is bounded by
some function poly(λ). Given a set S, we denote by x← S the sampling of and
element uniformly at random in S.

2.1 Bilinear Maps

Let G1 and G2 be two cyclic groups of large prime order p. Let g1 ∈ G1 and
g2 ∈ G2 be respective generators of G1 and G2. Let e : G1 × G2 be a function
that maps pairs of elements ∈ (G1,G2) to elements of some cyclic group GT of
order p. Throughout the following sections we write all of the group operations
mutiplicatively, with identity elements denoted by 1. We further require that:

– The map e and all the group operations in G2, G2, and GT are efficiently
computable.

– The map e is non degenerate, i.e., e(g1, g2) 6= 1.
– The map e is bilinear, i.e., ∀u ∈ G1,∀v ∈ G2,∀(a, b) ∈ Z2, e(ua, vb) =
e(u, v)ab.

– There exists an efficiently computable function φ : G1 → G2 such that
∀(u, v) ∈ G1 it holds that φ(u · v) = φ(u) · φ(v).

2.2 Ring Signatures

In the following we recall the notion of ring signatures. Our definitions follow
the strongest security model proposed by Bender, Katz, and Morselli [4].

Definition 1 (Ring Signature). A ring signature scheme RSig = (RGen,
RSig,RVer) is a triple of the following ppt algorithms:

(sk, vk)← RGen(1λ) : On input the security parameter 1λ outputs a key pair
(sk, vk).

σ ← RSig(sk,m,R) : On input a secret key sk, a message m, and a ring R =
(vk1, . . . , vkn), outputs a signature σ.

b← RVer(R, σ,m) : On input a ring R = (vk1, . . . , vkn), a signature σ and a
message m outputs a bit b.
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For completeness we require that for all λ ∈ N, for all {(ski, vki)}i∈n output by
RGen(1λ), any i ∈ {1, . . . , n}, and any m, we have that RVer(R,RSig(ski,m,R),
m) = 1, where R = (vk1, . . . , vkn).

Security of Ring Signatures. The security of a ring signature scheme is
captured by the notions of anonymity against full key exposure and unforge-
ability with respect to insider corruption. We refer to [4] for a comprehensive
discussion on the matter. In the following definitions, we assume without loss of
generality that the adversary never submits a query where the ring consists only
of maliciously generated keys.

Definition 2 (Anonymity). Let ` be a polynomial function, A a ppt adver-
sary, and RSig = (RGen,RSig,RVer) a ring signature scheme. Consider the fol-
lowing game:

1. For all i ∈ {1, . . . `(λ)} the challenger runs (ski, vki)← RGen(1λ;ωi), record-
ing each randomness ωi. The adversary A is provided with the verification
keys (vk1, . . . , vk`(λ)).

2. A is allowed to make queries of the form (j, R,m), where m is the message
to be signed, R is a set of verification keys and j is and index such that
vkj ∈ R. The challenger responds with RSig(skj ,m,R).

3. A requests a challenge by sending the tuple (i0, i1, R,m), where i0 and i1
are indices such that (vki0 , vki1) ∈ R. The challenger samples a random bit
b ← {0, 1} and sends RSig(skib ,m,R) to A. Additionally, the adversary is
provided with the randomnesses (ω1, . . . , ω`(λ)).

4. A outputs a guess b′ and succeeds if b′ = b.

A ring signature scheme RSig achieves anonymity if, for all ppt A and for all
polynomial functions `, the success probability of A in the above experiment is
negligibly close to 1/2.

Definition 3 (Unforgeability). Given a ring signature scheme RSig = (RGen,
RSig,RVer), a polynomial function `, and a ppt adversary A, consider the fol-
lowing game:

1. For all i ∈ {1, . . . , `(λ)} the challenger runs (ski, vki) ← RGen(1λ;ωi). The
adversary A is provided with the verification keys vk := (vk1, . . . , vk`(λ)).
Additionally, the challenger initializes an empty list of corrupted users C.

2. A is allowed to make signatures and corruption queries. A signature query is
of the form (j, R,m), where m is the message to be signed, R is a set of ver-
ification keys and j is and index such that vkj ∈ R. The challenger responds
with RSig(skj ,m,R). A corruption query is of the form j ∈ {1, . . . , `(λ)}.
The challenger sends skj to A and appends vkj to C.

3. A outputs a tuple (R∗,m∗, σ∗) and wins if it never made any signing query
of the form (·, R∗,m∗) and R∗ ⊆ vk \ C and RVer(R∗, σ∗,m∗) = 1.

A ring signature scheme RSig achieves unforgeability if, for all ppt A and for
all polynomial functions `, the success probability of A in the above experiment
is negligible.
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2.3 Non-Interactive Zero-Knowledge

We recall the definitions and the security properties of non-interactive zero-
knowledge proof systems as defined in [29].

Definition 4 (Non-Interactive Zero-Knowledge Proof System). Let L
be an NP language and let R be the corresponding relation. A non-interactive
zero-knowledge proof system NIZK consists of the following ppt algorithms:

crs← G(1λ) : The setup algorithm takes as input the security parameter 1λ and
generates a random common reference string crs and a trapdoor α.

π ← P(crs, w, x) : The prover algorithm takes as input the common reference
string crs, a statement x, and a witness w and outputs a zero-knowledge
proof π.

b← V(crs, x, π) : The verifier algorithm takes as input the common reference
string crs, a statement x, and a proof π and returns either 0 or 1.

Definition 5 (Completeness). A NIZK system is complete if for all λ ∈ N
and all x ∈ L it holds that

Pr
[
(crs, α)← G(1λ), π ← P(crs, w, x) : 1← V(crs, x, π)

]
= 1.

Soundness, zero-knowledge and proof of knowledge are defined in the following.

Definition 6 (Soundness). A NIZK system is computationally sound if for
all λ ∈ N and all ppt adversaries A there exists a negligible function negl such
that

Pr
[
(crs, α)← G(1λ); (x, π)← A(crs); 1← V(crs, x, π) | x 6∈ L

]
≤ negl(n).

Definition 7 (Zero-Knowledge). An NIZK system is statistically zero-know-
ledge if there exists a ppt simulator S and a negligible function such that for all
λ ∈ N, for all x ∈ L with witness w, and for (crs, α)← G(1λ) it holds that

P(crs, w, x) ≈ S(crs, α, x).

where ≈ denotes statistical indistinguishability.

Additionally, we say that a NIZK system is unconditionally zero-knowledge if
the condition above holds for any choice of (crs, α).

Definition 8 (Argument of Knowledge). A NIZK system is an argument
of knowledge if for all λ ∈ N and for all ppt adversaries A there exists a ppt
extractor E running on the same random tape of A and a negligible function negl
such that

Pr

[
(crs, α)← G(1λ), (x, π)← A(crs),

(x, π, w)← E(crs, α) : (x,w) ∈ R

∣∣∣∣V(crs, x, π) = 1

]
≥ (1− negl(λ)).

Additionally, we call a proof succinct if the size of the proof is constant, in par-
ticular it must be independent from statement to be proven and corresponding
witness. In literature this primitive is known as succinct non-interactive argu-
ment of knowledge (SNARK) and several efficient realizations are known to exist
without random oracles, among the others see [31,30].
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2.4 Signatures with Re-Randomizable Keys

We recall the notion of signatures with re-randomizable keys, as defined in [26].
This primitive allows one to consistently re-randomize private and public keys
of a signature scheme.

Definition 9 (Signatures with Re-Randomizable Keys). A digital signa-
ture scheme Sig = (SGen,Sig,Ver,RndSK,RndVK) with perfectly re-randomizable
keys is composed by the following ppt algorithms:

(sk, vk)← SGen(1λ) : The key generation algorithm takes as input the security
parameter 1λ and generates a key pair (sk, vk).

σ ← Sig(sk,m) : The signing algorithm takes as input a signing key sk and a
message m and outputs a signature σ.

b← Ver(vk,m, σ) : The verification algorithm takes as input a verification key
vk, a message m, and a candidate signature σ and outputs a bit b.

sk′ ← RndSK(sk, ρ) : The secret key re-randomization algorithm takes as input
a signing key sk and a randomness ρ and outputs a new signing key sk′.

vk′ ← RndVK(vk, ρ) : The public key re-randomization algorithm takes as input
a verification key vk and a randomness ρ and outputs a new verification key
vk′.

The scheme is complete if for all λ ∈ N, all key-pairs (sk, vk) ← SGen(1λ), all
messages m we have that Ver(vk,m,Sig(sk,m)) = 1. Additionally we require
that for all ρ it holds that Ver(RndVK(vk, ρ),m,Sig(RndSK(sk, ρ),m)) = 1. The
formal definition of re-randomizable keys follows.

Definition 10 (Re-Randomizable Keys). A signature scheme Sig has per-
fectly re-randomizable keys if for all λ ∈ N, all key-pairs (sk, vk) ← SGen(1λ),
and a ρ chosen uniformly at random we have that the following distributions are
identical:

{(sk, vk, sk′, vk′)} = {(sk, vk, sk′′, vk′′)}

where (sk′, vk′)← SGen(1λ), sk′′ ← RndSK(sk, ρ), and vk′′ ← RndVK(vk, ρ).

The notion of existential unforgeability for signatures with re-randomizable keys
is an extension of the standard definition where the attacker is provided with
an additional oracle that signs messages under re-randomized keys. The formal
definition follows.

Definition 11 (Unforgeability Under Re-Randomizable Keys). Given a
signature scheme Sig and a ppt adversary A, consider the following game:

1. The challenger runs (sk, vk)← SGen(1λ) and provides A with vk.
2. A is allowed to make signature and randomized signature queries. A signa-

ture query is for the form (m,⊥), where m is the message to be signed, and
the challenger responds with Sig(sk,m). A randomized signature query is of
the form (m, ρ), where m is the message to be signed and ρ is a randomness.
The challenger replies with Sig(RndSK(sk, ρ),m).
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3. A outputs a tuple (m∗, σ∗, ρ∗) and wins the game if it never made a query of
the form (m∗, ·) and either Ver(vk,m∗, σ∗) = 1 or Ver(RndVK(vk, ρ∗),m∗, σ∗)
= 1.

A signature scheme Sig achieves unforgeability under re-randomizable keys if,
for all ppt A , the success probability of A in the above experiment is negligible.

3 Ring Signatures from Signatures with Re-Randomizable
Keys

In this section we describe our framework for designing efficient ring signature
schemes without random oracles. For the ease of the exposition and for a more
modular presentation we propose a generic construction in the common reference
string model. Jumping ahead, we will show later how to upgrade it to the stan-
dard model (i.e., without any setup assumptions) for some specific instantiations.
The idea behind our construction based on signatures with re-randomizable keys
is the following: The signer generates a randomized version of its own public key
and signs the message under the secret key re-randomized with the same fac-
tor. The signature is then composed by the output of the signing algorithm
and a disjunctive argument of knowledge of the randomization factor of the
new verification key with respect to a ring of public keys. More formally, our
building blocks are a signature scheme with re-randomizable keys Sig and a
non-interactive zero-knowledge argument NIZK for the following language L:

L = {(vk1, . . . , vkn, vk∗) : ∃(ρ, i) : vk∗ = RndVK(vki, ρ)} .

Our ring signature scheme RSig = (RGen,RSig,RVer) is shown in Figure 1. The
completeness of the scheme follows directly from the completeness of the zero
knowledge argument and the signature scheme. The security analysis is elabo-
rated below.

Theorem 1. Let NIZK be a statistically zero-knowledge argument and let (SGen,
Sig,Ver,RndSK,RndVK) be a signature with perfectly re-randomizable keys, then
the construction in Figure 1 is an anonymous ring signature scheme in the com-
mon reference string model.

Proof. Let us consider the following sequence of hybrids:

H0 : Is the original experiment as defined in Definition 2.
H1 : Is defined as H0 except that the proof π in the challenge signature is com-

puted as π ← S(crs, α, x), where x = R∗‖vkib .
H2 : Is defined as H1 except that the challenge signature is substituted with the

tuple (Sig(sk′,m∗||R∗), π, vk′), where (sk′, vk′)← SGen(1λ).

We now argue about the indistinguishability of adjacent experiments.

H0 ≈ H1. The two hybrids are identical except for the proof π that is honestly
generated in H0, while in H1 it is computed by the simulator S of NIZK. By the
perfect zero knowledge of NIZK, the two simulations are statistically close.
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RGen(1λ)

(sk, vk)← SGen(1λ)

return (sk, vk)

RSig(sk,m,R)

parse R = (vk1, . . . , vkn)

if 6 ∃i : vk = vki

return ⊥

ρ← {0, 1}λ

vk′ ← RndVK(vk, ρ)

sk′ ← RndSK(sk, ρ)

x := R||vk′

π ← P(crs, (ρ, i), x)

σ ← Sig(sk′,m||R)

return (σ, π, vk′)

RVer(R, σ,m)

parse R = (vk1, . . . , vkn)

parse σ = (σ′, π, vk′)

x := R||vk′

b← V(crs, x, π)

b′ ← Ver(vk′, (m||R), σ′)

return (b = b′ = 1)

Fig. 1: A generic construction of a ring signature

H1 ≈ H2. The two experiments differ only in the sampling procedure of the
key pair (sk′, vk′) used to compute the challenge signature. In the former case
(sk′, vk′) is the re-randomization of the pair (skib , vkib), while in the latter the
pair is freshly sampled. Since the signature scheme has perfectly re-randomizable
keys, we can conclude that the two simulations are identical.

We observe that in the hybrid H2 the computation of the challenge signature
is completely independent from the bit b. Therefore the success probability of
A in H2 is exactly 1/2. By the argument above we have that H0 ≈ H2 and
therefore we can conclude that any unbounded A cannot win the experiment
with probability negligibly greater than guessing. ut

We now need to show that our ring signature scheme achieves unforgeability
against full key exposure. For our formal argument we need to assume the ex-
istence of an extractor for the NIZK scheme that is successful even in presence
of a signing oracle. For the case of black-box extraction, such a property is triv-
ially guaranteed by any construction. However, as shown in [25], for the case
of non-blackbox extraction the definition itself does not necessarily cover this
additional requirement. For a more comprehensive discussion on the matter we
refer the reader to [25]. In order to be as generic as possible, we are going to
explicitly assume the existence of a NIZK that is extractable also in presence of
a signing oracle. As discussed in [25], such an assumption as been (implicitly)
adopted in several seminal works such as [11,6,27,28].

Theorem 2. Let NIZK be a computationally sound argument of knowledge that
is extractable in presence of a signing oracle and let Sig be a signature with per-
fectly re-randomizable keys, then the construction in Figure 1 is an unforgeable
ring signature scheme in the common reference string model.

Proof. Assume towards contradiction that there exists a ppt adversary A that
succeeds in the experiment of Definition 3 with probability ε(λ), for some non
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negligible function ε. Then we can construct the following reduction R against
the unforgeability under re-randomizable keys of the signature scheme (SGen,Sig,
Ver,RndSK,RndVK).

R(1λ, vk). On input the security parameter and the verification key vk the reduc-
tion samples an i← {1, . . . , `(λ)} and sets vki = vk. For all j ∈ {1, . . . , `(λ)}\i,
the reduction sets (skj , vkj) ← SGen(1λ). Upon a corruption query from A on
index k 6= i, the reduction sends skk to A, if k = i then R aborts. Signing queries
of the form (k,R,m), for k 6= i are handled as specified in the experiment. On the
other hand, for queries of the form (i, R,m), the reduction samples a random ρ,
and computes vk′ ← RndVK(vk, ρ) and π ← P(crs, (ρ, i), R‖vk′). Then it queries
the signing oracle on input (m||R, ρ). Let σ be the response of the challenger,
R returns (σ, π, vk′) to A. At some point of the execution A outputs a tuple
(R∗,m∗, σ∗). R parses σ∗ = (θ∗, π∗, vk∗) and runs (R∗‖vk∗, w∗, π∗)← EA on the
same inputs and random tape of A. R parses w∗ = (ρ∗, i∗) and aborts if i∗ 6= i.
Otherwise R returns the tuple (m∗‖R∗, θ∗, ρ∗) and interrupts the simulation.

Since A and EA are ppt machines it follows that R runs in polynomial time.
Let us assume for the moment that i = i∗. In this case the successful A
never queries the corruption oracle on i, since vki ∈ R∗ (by the soundness
of the NIZK) and R∗ ⊆ vk \ C. Therefore the reduction does not aborts. It
is also easy to see that all the signing queries on i are answered correctly by
the reduction since the signing oracle of the challenger returns some signa-
ture σ ← Sig(RndSK(ski, ρ),m||R), which is exactly what A is expecting. It
follows that, for the case i = i∗, R correctly simulates the inputs for A. We
now show that a successful forgery by A implies a successful forgery by R.
Let (R∗,m∗, σ∗) be the outputs of A, by the winning condition of the unforge-
ability experiment we have that RVer(R∗,m∗, σ∗) = 1. Let σ∗ = (θ∗, π∗, vk∗),
this implies that V(crs, R∗‖vk∗, π∗) = 1 and that Ver(vk∗,m∗‖R∗, θ∗) = 1.
Since the extractor is successful with overwhelming probability we can rewrite
vk∗ = RndVK(vki∗ , ρ

∗) = RndVK(vki, ρ
∗), for the case i∗ = i. It follows that

Ver(RndVK(vki, ρ
∗),m∗‖R∗, θ∗) = 1. Recall that vki = vk, which means that

(m∗‖R∗, θ∗, ρ∗) is a valid signature under vk. Since A is required to never query
the signing oracle on (·, R∗,m∗), then R never queried the challenger on some
tuple (m∗‖R∗, ·). We can conclude that, if i∗ = i, R returns a valid forgery with
the same probability of A. That is

Pr[R wins] = Pr[R wins|i∗ = i]Pr[i∗ = i] + Pr
[
R wins

∣∣i∗ = i
]
Pr
[
i∗ = i

]
≥ Pr[R wins|i∗ = i]Pr[i∗ = i]

&
ε(λ)

`(λ)
,

which is a non-negligible probability. This represents a contradiction to the exis-
tential unforgeability of signatures with re-randomizable keys and concludes our
proof. ut
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4 Bilinear Groups Instantiation

With the goal of an efficient standard model scheme in mind, in this section
we show how to efficiently instantiate the construction presented in Section 3
in prime order groups with an efficiently computable pairing. As it was shown
in [26], signatures with perfectly re-randomizable keys are known to exist in the
standard model due to a construction by Hofheinz and Kiltz [34]. We proceed
by describing a slightly modified version of the scheme and then we show how
to deploy it in our generic framework.

4.1 A Variation of [34]

We recall the digital signature scheme from Hofheinz and Kiltz [34] as described
in [26]. The scheme assumes the existence of a group with an efficiently com-
putable bilinear map and a programmable hash function H = (HGen,HEval)
with domain {0, 1}∗ and range G1. The common reference string contains the
key k of the programmable hash function H, that is assumed to be honestly
generated. Signing keys are random elements sk ∈ Zp and verification keys are
of the form vk = gsk2 . To compute a signature on a message m, the signer re-

turns
(
s, y = HEval(k,m)

1
sk+s

)
, where s is a randomly chosen element of Zp.

The verification of a signature (s, y) consists of checking whether e (y, vk · gs2) =
e (HEval(k,m), g2). Keys can be efficiently re-randomized by computing sk′ =
sk + ρ mod p and vk′ = vk · gρ2 , respectively. The scheme is shown to be existen-
tially unforgeable under re-randomizable key under the q-strong Diffie-Hellman
assumption in [26], in the common reference string model.

Towards More Efficient Ring Signatures. We now propose a slight
modification of the scheme that allows us for a more efficient instantiation of
our generic ring signature scheme. The changes are minimal: We introduce an
additional randomness in the signing algorithm that is used in the computation
of H = (HGen,HEval). Such a randomness is included in the plain signature and
it is used in the verification algorithm to check the validity of the output of the
algorithm HEval. Our variation of the signature scheme can be found in Figure 2.
The correctness of the scheme is trivial to show. Note that the keys of our
construction are identical to the ones of the signature scheme in [34], therefore
the scheme has also perfectly re-randomizable keys. What is left to be shown is
that signatures are still unforgeable.

Theorem 3. Let H = (HGen,HEval) be a programmable hash function, then the
construction in Figure 2 is unforgeable under re-randomizable keys under the
q-strong Diffie-Hellman assumption.

Proof. Our proof strategy consists in showing that a forgery in our signature
scheme implies a forgery in the scheme of Hofheinz and Kiltz [34]. Since the
scheme is proven to be secure against the q-strong Diffie-Hellman assumption,
the theorem follows. More formally, assume that there exists an attacker that

12



SSetup(1λ)

k ← HGen(1λ)

return k

SGen(1λ)

x← Zp
return (x, gx2 )

Sig(sk,m)

s← Zp
δ ← Zp
c← HEval(k,m)δ

y ← c
1

sk+s

return (s, y, c, δ)

Ver(vk, σ,m)

parse σ = (s, y, c, δ)

if HEval(k,m)δ = c return

e(y, vk · gs2) = e(c, g2)

RndSK(sk, ρ)

return sk + ρ

RndVK(vk, ρ)

return (vk · gρ2 , k)

Fig. 2: Our variation of the [34] signature scheme

succeeds in the experiment as described in Definition 11 with probability ε(λ),
for some non-negligible function ε. Then we can construct the following reduction
against the unforgeability of the scheme [34].

R(1λ, vk). On input vk the reduction samples k ← HGen(1λ) and forwards (vk, k)
to A. The adversary is allowed to issue randomized signature queries of the form
(m, ρ). R forwards (m, ρ) to its own oracle and receives (s, y) as a response.
Then it samples a random δ ← Zp and hands over

(
s, yδ,HEval(k,m)δ, δ

)
to

A. Standard signature queries are handled analogously. At some point of the
execution the adversary outputs a challenge tuple (m∗, σ∗ = (s∗, y∗, c∗, δ∗)) and

R returns
(
m∗,

(
s∗, (y∗)

1
δ∗

))
to the challenger and terminates the execution.

The reduction is clearly efficient. To see that the queries of A are correctly
answered it is enough to observe that the tuple(

s, yδ,HEval(k,m)δ, δ
)

=

(
s,
(
HEval(k,m)

1
s+(sk+ρ)

)δ
,HEval(k,m)δ, δ

)
=
(
s,HEval(k,m)

δ
s+(sk+ρ) ,HEval(k,m)δ, δ

)
=
(
s, c

1
s+(sk+ρ) , c, δ

)
is a correctly distributed key if and only if (s, y) is correctly distributed. To

conclude we need to show that
(
m∗,

(
s∗, (y∗)

1
δ∗

))
is a valid forgery if and only

if (m∗, σ∗ = (s∗, y∗, c∗, δ∗)) is a valid forgery. It is easy to see that since m∗

was not queried by the adversary then it holds that m∗ was not queried by the
reduction either. Furthermore, by the winning condition of the experiment we
have that

e
(
y∗, vk · gs

∗

2

)
= e(c∗, g2),
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which we can rewrite as

e
(

(y∗)
1
δ∗ , vk · gs

∗

2

)
= e

(
(c∗)

1
δ∗ , g2

)
.

Since it must be the case that c∗ = HEval(k,m∗)δ
∗
, then we have that

e
(

(y∗)
1
δ∗ , vk · gs

∗

2

)
= e(HEval(k,m∗), g2),

which implies that
(
m∗,

(
s∗, (y∗)

1
δ∗

))
is a valid message-signature tuple for the

scheme in [34]. By initial assumption this happens with non-negligible probability
ε(λ), which is a contradiction to the existential unforgeability of the scheme
in [34] under re-randomizable keys and it concludes our proof. ut

4.2 A Ring Signature Scheme

Now we show how to deploy our scheme as described above in our framework
for the construction of an efficient ring signature scheme. As our ultimate goal is
to remove the common reference string, the first challenge in using the scheme
of Figure 2 in our generic construction of Section 3 is that it assumes a trusted
setup of a key k for a programable hash function. The natural strategy to solve
this issue is to include the key k in the verification key and show a re-randomized
version of k in the ring signature. However, this comes at the price of proving
the knowledge of a randomization factor of k, which is typically very expensive.
In fact, the most efficient instance of a programmable hash function is due to
Waters [41] and the size of the key is linear in the security parameter. Instead, we
leverage some non-blackbox properties of the scheme presented in Section 4.1 to
re-randomize the output of the programmable hash function. Loosely speaking,
this allows us to remove the evaluation of H from the statement to be proven
in zero knowledge thus greatly improving the efficiency of the resulting scheme.
A complete description of the resulting ring signature can be found in Figure 3.
Here the language L of our proof system is defined as

L =

{
((vk1, . . . , vkn, vk

∗), (k1, . . . , kn), c,m) ∈ Gn+1
2 ×Gλ·n+1

1 × {0, 1}∗ :

∃(δ, ρ, i) : vk∗

vki
= gρ2 ∧ c = HEval(ki,m)δ

}
,

which is essentially a disjunctive proof of two discrete logarithms over two vectors
of group elements.
Since the scheme in Figure 3 is not a direct instantiation of the construction
discussed in Section 3, we shall prove that the construction satisfies the require-
ments for a ring signature scheme. First we show that our scheme is statistically
anonymous.

Theorem 4. Let NIZK be a statistically zero-knowledge argument, and let H =
(HGen,HEval) be a programmable hash function, then the construction in Fig-
ure 3 is an anonymous ring signature scheme in the common reference string
model.
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RGen(1λ)

x← Zp
k ← HGen(1λ)

return (x, (gx2 , k))

RSig(sk,m,R)

parse R = (vk1, . . . , vkn)

if 6 ∃i : vk = vki

return ⊥
parse vk = (z, k)

(s, ρ, δ)← Z3
p

z′ ← z · gρ2
x′ ← sk + ρ

c← HEval(k,m||R)δ

x := R||z′||c||(m,R)

π ← P(crs, (ρ, δ, i), x)

y ← c
1
x′

σ = (s, y, c)

return (σ, π, z′)

RVer(R, σ,m)

parse R = (vk1, . . . , vkn)

parse vki = (zi, ki)

parse σ = (σ′, π, z′)

parse σ′ = (s, y, c)

x := R||z′||c||(m,R)

b← V(crs, x, π)

b′ = 1 if

e(y, vk′ · gs2) = e(c, g2)

return (b = b′ = 1)

Fig. 3: A ring signature scheme in the common reference string model

Proof. The first steps of the proof are identical to the ones of the proof of
Theorem 1. We only need to introduce an extra hybrid H3 where we substitute
c∗ with a random element in G1. For the indistinguishability H2 ≈ H3 we argue
that for all m ∈ {0, 1}∗, for a random key k ← HGen(1λ), and for a random
δ ∈ Zp, the element HEval(k,m)δ is uniformly distributed in G1, except with
negligible probability. This is clearly the case as long as HEval(k,m) 6= 1, which,
in the construction of [41], happens only with negligible probability over the
random choice of k. With this in mind, the argument follows along the same
lines. ut

Finally, we show that our scheme is unforgeable against full key exposure.

Theorem 5. Let NIZK be a computationally sound argument of knowledge that
is extractable in presence of a signing oracle and let H = (HGen,HEval) be a
programmable hash function, then the construction in Figure 3 is an unforge-
able ring signature scheme under the q-strong Diffie-Hellman assumption in the
common reference string model.

Proof. Our proof strategy is to reduce against the unforgeability of the scheme
described in Figure 2. The proof outline is identical to the proof of Theorem 2,
but there are some subtleties to address due to the non-blackbox usage of the
signature scheme. More formally, assume towards contradiction that there ex-
ists a ppt adversary A that succeeds in the experiment of Definition 3 with
probability ε(λ), for some non negligible function ε. Then we can construct the
following reduction R against the unforgeability under re-randomizable keys of
the signature scheme in Figure 2.
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R(1λ, (vk, k)). On input the security parameter and the key (vk, k) the reduction
samples an i ← {1, . . . , `(λ)} and sets vki = (vk, k). For all j ∈ {1, . . . , `(λ)}\i,
the reduction executes (sk′j , vk

′
j)← SGen(1λ) (as defined in Figure 2) and ki ←

HGen(1λ).R sets vkj = (vk′j , kj). Upon a corruption query fromA on index j 6= i,
the reduction sends skj to A, if j = i then R aborts. Signing queries of the form
(j, R,m), for j 6= i are handled as specified in the experiment. Upon queries of the
form (i, R,m), the reduction sends (m||R, ρ) to the signing oracle, for a random
ρ ∈ Zp. R parses the response as (s, y, c, δ), sets x := (R, vk · gρ2 , c,m‖R) and
computes π ← P(crs, (ρ, δ, i), x). A is provided with the tuple ((s, y, c), π, vk ·gρ2).
At some point of the execution A outputs a tuple (R∗,m∗, σ∗). R parses σ∗ =
(θ∗, π∗, z∗) and θ∗ = (s∗, y∗, c∗) and runs (x∗, w∗, π∗)← EA on the same inputs
and random tape of A. R parses w∗ = (ρ∗, δ∗, i∗) and aborts if i∗ 6= i. Otherwise
R returns the tuple (m∗‖R∗, (s∗, y∗, c∗, δ∗), ρ∗) and interrupts the simulation.

Since it runs only ppt machines, it follows that R terminates in polynomial
time. For the case i = i∗ it is easy to see that the queries are answered correctly:
π is clearly a correct argument of knowledge and for a tuple ((s, y, c), π, vk · gρ2)

it holds that e(y, vk · gρ2 · gs2) = e(c, g2), since y = c
1

sk+ρ+s , as expected. We now
have to argue that a successful forgery by A implies a successful forgery of R.
First we note that, in order to win the experiment, A must not have queried the
signing oracle on input (·, R∗,m∗), it follows that a valid signature on m∗||R∗ by
R must be a forgery. Let σ∗ = (θ∗, π∗, z∗) be the challenge signature of A and let
θ∗ = (s∗, y∗, c∗). Since the extractor is successful with overwhelming probability

we have that c = HEval(ki,m
∗||R∗)δ∗ and that z∗ = vk · gρ

∗

2 , and by the win-

ning condition of the game we have that e
(
y∗, z∗ · gs∗2

)
= e

(
y∗, vk · gρ

∗

2 · gs
∗

2

)
=

e(c∗, g2). It follows that (m∗‖R∗, (s∗, y∗, c∗, δ∗), ρ∗) is a valid message-signature
pair for the scheme of Figure 2. Since i∗ = i with probability at least 1

`(λ) , this

represents a contradiction to the q-strong Diffie-Hellman assumption and it con-
cludes our proof. ut

Constant Size Signatures. An interesting feature of our construction is
that the computation of a signature under a re-randomized key is completely
independent from the size of the ring. The only element that potentially grows
with the size of the ring is therefore the proof π. However, if we implement the
NIZK as a SNARK (such as in [31]) then we obtain a ring signature scheme with
constant size signatures without random oracles. For the particular instantiation
of [31], the proof adds only three group elements to the signature, independently
of the size of the ring.

5 Efficient Non-Interactive Zero-Knowledge without
Random Oracles

In this section we put forward a novel NIZK system for languages of the class
of the discrete logarithms in groups that admit an efficient bilinear map and a
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homomorphism φ : G1 → G2. Our constructions enjoy very simple algorithms
and extremely short proofs (of size comparable to proofs derived from the Fiat-
Shamir heuristic [24]) and do not rely on random oracles.

5.1 Complexity Assumptions

To prove the existence of an extractor for our main protocol, we need to assume
that the knowledge of the exponent assumption holds in bilinear groups of prime
order. On a high level, the knowledge of exponent ensures that, for a random
h ∈ G1 and for all x ∈ Zp it is hard to compute (hx, gx) without knowing x.
This assumption was introduced by Damg̊ard in [20] and proven to be secure in
the generic group model by Abe and Fehr in [1].

Assumption 1 (Knowledge of Exponent (KEA)) For all ppt adversaries
A there exists a non-uniform ppt algorithm EA running on the same random
tape of A and a negligible function negl such that

Pr

[
(Y, Z)← A(p, e, g1, g2, g

x
2 ),

(y, Y, Z)← EA(p, e, g1, g2, g
x
2 )

∣∣∣∣Z = Y x ∧ gy 6= Y

]
≤ negl(λ).

We define a new variant of the knowledge of exponent assumption to guarantee
the existence of an extractor for disjunctive statements. This modified version of
the assumption allows the adversary to choose multiple bases h1, . . . , hn as long
as they satisfy the constraint

∏
i∈n hi = h. Then A has to output {hxii , gxi}i∈n

without knowing any xi. The intuition why we believe this assumption to be as
hard as the standard knowledge of exponent is that there must be at least one
hi that is not sampled independently from h, and therefore we conjecture that
a tuple of the form (hx, gx) can be recovered from the code of the adversary. To
back up this intuition, we show that such an assumption holds against generic
algorithms in Section 5.3.

Assumption 2 (Linear Knowledge of Exponent (L-KEA)) For all n ∈
poly(λ) and for all ppt adversaries A there exists a non-uniform ppt algorithm
EA running on the same random tape of A and a negligible function negl such
that

Pr

 ({Yi, Vi, Zi}i∈n)← A(p, e, g1, g2, g
x
2 ),

(y, {Yi, Vi, Zi}i∈n)← EA(p, e, g1, g2, g
x
2 )

∣∣∣∣∣∣∣∣∣∣
∀i ∈ {1, . . . , n} :

Dlogg1(Yi) · Dlogg1(Vi)
= Dlogg1(Zi)

∧
∏
i∈n Vi = gx2

∧∀i : gy1 6= Yi


≤ negl(λ).

5.2 Our Construction

Here we introduce our construction for efficient NIZK (without random oracles)
for proving the knowledge of discrete logarithms. Although we sample statements
from G1 it is easy to extend our techniques to handle the same languages in G2.
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Base Protocol. The starting point for our system is the proof suggested
by Abe and Fehr [1] for the knowledge of discrete logarithms: To prove the
knowledge of an x such that gx1 = h the prover computes π = φ(T x), where T is
a randomly sampled group element and it is part of the common reference string.
Such a proof is publicly verifiable by computing e(h, T ) = e(π, g2). Note that
the proving algorithm is deterministic and the proofs are uniquely determined
by the statements and the common reference string. In some application, such
as anonymous credentials, we would like to be able to re-randomize the proof.
To address this issue, we present our first protocol. More formally, we describe
a NIZK scheme for the language LB defined as follows:

LB = {A ∈ G1 : ∃(a) : ga1 = A} .

Clearly every element of a cyclic group have a well defined discrete logarithm
when the base is the generator of the group, therefore the validity of such a
statement can be simply verified by checking that A is a valid encoding of an
element of G1. For groups of prime order this is a trivial task. However, it
is unclear whether the party that outputs A knows the value of its discrete
logarithm with respect to g1. The scheme is depicted in Figure 4.

G(1λ)

α← Zp
crs← gα2

return (crs, α)

P(crs, x, w)

parse crs = T ∈ G2

r ← Zp
R← φ(gr2)

PR ← T r

PA ← φ(T r·w)

return (PA, R, PR)

V(crs, x, π)

parse crs = T ∈ G2

parse x = A ∈ G1

parse π = (PA, R, PR) ∈ G2
1 ×G2

return 1 iff

e(R, T ) = e(φ(PR), g2)∧
e(A,PR) = e(PA, g2)

Fig. 4: The base NIZK protocol.

In the following we prove that our scheme is a secure NIZK protocol.

Theorem 6. The protocol in Figure 4 is a non-interactive statistically sound
unconditionally zero-knowledge argument of knowledge for the language LB un-
der the knowledge of exponent assumption.

Proof. To check whether and element A belongs to an group of order p (for some
prime p) one can simply test whether A is relatively prime to p. Therefore sound-
ness is trivial to prove. For the zero-knowledge property consider the following
simulator:

S(crs, x, α). The simulator parses crs as T ∈ G2 and the statement as A ∈ G1,
then it samples a random r ← Zp and computes R ← φ(gr2), PR ← T r, and
PA ← A(α·r), The output of the simulator is (PA, R, PR).
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The simulator is clearly efficient. It is easy to show that the proof π = (PA, R, PR)
is a correctly distributed proof for x = A, therefore the protocol is perfectly zero-
knowledge. Note that this holds for any choice of the common reference string crs,
as long as it is an element of G2 (which can be efficiently checked). It follows that
the proof is unconditionally zero-knowledge. Argument of knowledge is proven by
constructing an extractor for any valid proof output by any (possibly malicious)
algorithm A. Consider the following algorithm B:

B(crs). The algorithm runs the adversary A on crs, which returns a tuple of
the form (x = A, π = (PA, R, PR)) and it runs the corresponding extractor the

retrieve (x, π, r)← EA(crs). B returns the tuple
(
A, π = (PA)r

−1
)

.

Let extract be the event such that R = gr2. Since we consider only valid argu-
ments, it must be the case that V(crs, x, π) = 1, and therefore we have that
PR = Rα. Thus, by the knowledge of exponent assumption, we have that

Pr[extract] ≥ (1− negl(λ)).

Let us now consider the following algorithm extractor:

E(crs). The extractor exexutes B (defined as describe above) on input crs to
receive the tuple (x = A, π = PA). Concurrently it runs the corresponding
extractor on the same input (x, π, w)← EB(crs) and it returns w.

The algorithm E is obviously efficient. We now have to show that the extraction
is successful with overwhelming probability, i.e., gw1 = A. We split the probability
as follows:

Pr[gw1 = A] = Pr[gw1 = A|extract]Pr[extract] + Pr[gw1 = A|extract]Pr[extract] .

By the argument above we have that

Pr[gw1 = A] ≥ Pr[gw1 = A|extract] (1− negl(λ)) + Pr[gw1 = A|extract] negl(λ).

It follows that
Pr[gw1 = A] & Pr[gw1 = A|extract] .

Note that when extract happens it holds that PA = Aα. Therefore, by the knowl-
edge of exponent assumption, the extraction is successful with probability neg-
ligibly close to 1. This concludes our proof. ut

Logical Conjunctions. We now describe a protocol to prove conjunction of
discrete-logarithm proofs. Specifically we define the following language:

LC =

{
(A0, . . . , An, h1, . . . , hn) ∈ Gn+1

1 ×Gn2 :
∃(a) : ga1 = A0 ∧ ∀i ∈ {1, . . . , n} : hai = Ai

}
.

We show how to modify the previous scheme to handle statements in this lan-
guage in Figure 5. We omit the description of the setup algorithm, since it is
unchanged.
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P(crs, x, w)

parse crs = T ∈ G2

r ← Zp
R← φ(gr2)

PR ← T r

PA ← φ(T r·w)

return (PA, R, PR)

V(crs, x, π)

parse crs = T ∈ G2

parse x = (A0, . . . , An) ∈ Gn+1
1 ,

(h1, . . . , hn) ∈ Gn2
parse π = (PA, R, PR) ∈ G2

1 ×G2

return 1 iff

e(R, T ) = e(φ(PR), g2)∧
e(A0, PR) = e(PA, g2)∧
∀i ∈ {1, . . . , n} :

e(Ai, PR) = e(PA, hi)

Fig. 5: NIZK for conjunctive statements.

Theorem 7. The protocol in Figure 5 is a non-interactive statistically sound
unconditionally zero-knowledge argument of knowledge for the language LC un-
der the knowledge of exponent assumption.

Proof. The proof is the simple observation that the algorithm P is the same
algorithm as the one for the language LB . The formal argument follows along
the same lines of the one for Theorem 6. ut

Logical Disjunctions. We now show a protocol that handles disjunctive state-
ments over the family of discrete logarithms. We formally define the correspond-
ing language LD as follows:

LD = {(A1, . . . , An) ∈ Gn1 : ∃(a, i) : ga1 = Ai} .

The protocol can be found in Figure 6. The basic idea here is to let the adversary
cheat on n−1 statements by letting it choose the corresponding value of Ti (which
can be seen as a temporary reference string). However, since we require that the
relation

∏
i∈n Ti = T is satisfied, at least one Ti∗ must depend on the common

T . By the linear knowledge of exponent assumption, computing a proof over
such a Ti∗ is as hard as computing it over T . In the following we show that our
protocol is a secure NIZK.

Theorem 8. The protocol in Figure 6 is a non-interactive statistically sound
unconditionally zero-knowledge argument of knowledge for the language LD un-
der the linear knowledge of exponent assumption.

Proof. As argued in the proof of Theorem 6, soundness is trivial to show for this
class of statements. In order to prove zero-knowledge we construct the following
simulator:

S(crs, x, α). The simulator parses crs as T ∈ G2 and x as (A1, . . . , An) ∈ Gn1 .
Then it samples some i ∈ {1, . . . , n} and for all j ∈ {1, . . . , n}\i it samples a
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P(crs, x, w)

parse crs = T ∈ G2

parse w = (a, i)

∀j ∈ {1, . . . , n}\i :

tj ← Zp

Tj ← g
tj
2

Pj ← (Aj)
tj

Ti ← T · (
∏
j∈n\i

g
tj
2 )−1

Pi ← φ(T ai )

return (T1, . . . , Tn, P1, . . . , Pn)

V(crs, x, π)

parse crs = T ∈ G2

parse x = (A1, . . . , An) ∈ Gn1
parse π = (T1, . . . , Tn) ∈ Gn2

(P1, . . . , Pn) ∈ Gn1
return 1 iff∏

i∈n

Ti = T∧

∀i ∈ {1, . . . , n} :

e(Ai, Ti) = e(Pi, g2)

Fig. 6: NIZK for disjunctive statements.

random tj ← Zp and sets Pj ← (Aj)
tj and Tj ← (g2)tj . Then it computes

Ti = T · (
∏
j∈n\i g

tj
2 )−1 and Pi ← A

α∑
j∈n\i tj

i . The algorithm returns the tuple

(T1, . . . , Tn, P1, . . . , Pn).

The simulation is clearly efficient. To show that the proof is correctly distributed
it is enough to observe that the tuple (T1, . . . , Tn) is sampled identically to P
and that for all i ∈ {1, . . . , n} : Pi = A

Dlogg1 (Ti)

i . Hence the scheme is a perfect
zero-knowledge proof. As before, one can easily show that the proof is correctly
distributed for all crs as long as crs is an element of G2. Therefore the scheme
achieves unconditional zero-knowledge. The formal argument to show that our
protocol is an argument of knowledge consists of the following extractor for any
ppt A:

E(crs). The extractor runs A on the common reference string and it receives
the tuple (x = (A1, . . . , An), π = (T1, . . . , Tn, P1, . . . , Pn)). Then it executes the
extractor EA on the same random tape to obtain (x, π, w). The extractor checks
for all i ∈ {1, . . . , n} whether Ai = gw1 , if this is the case it returns (w, i).

The algorithm runs in polynomial time. To show that the extraction is successful
whenever the proof correctly verifies, we observe that it must hold that

∏
i∈n Ti =

T = gα1 and that for all i ∈ {1, . . . , n} : Dlogg1(Pi) = Dlogg1(Ti) · Dlogg1(Ai).
Let fail be the event such that there exists no i such that Ai = gw1 , where w is
defined as above. Assume towards contradiction that

Pr[fail] ≥ ε(λ)

for some non-negligible function ε. Then it is easy to see that E contradicts the
linear knowledge of exponent assumption with the same probability. It follows
that

Pr[fail] ≤ negl(λ)
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which implies that the extraction is successful with overwhelming probability
and it concludes our proof. ut

5.3 The Hardness of L-KEA Against Generic Attacks

In the following we show that L-KEA holds against generic algorithms. We
model the notion of generic group algorithms as introduced by Shoup [40]. In
this abstraction, algorithms can solve hard problems only by using operations
and the structure of the group. In particular, generic algorithms cannot exploit
the encoding of the elements. Although a hardness proof in the generic group
model shall not be interpreted as a comprehensive proof of security, is also states
that an algorithm that solves that specific problem will have to necessarily use
the encoding of the group in some non-trivial way.

Our generic model for groups with a bilinear map is taken almost in verbatim
from [5]: In such a model elements of G1, G2, and GT are encoded as unique
random strings. Given such an encoding one can only test whether two strings
correspond to the same element. The group operations between elements are
substituted by oracle queries to five oracles: Three oracles to compute the group
operation in each of the three groups (G2,G2,GT ), one for the homomorphism
φ : G2 → G1, and one for the bilinear map e : G1,×G2 → GT . We denote such
set of oracles by O. The encoding of elements of G1 is defined as an injective
function δ1 : Zp → S1, where S1 ⊂ {0, 1}∗. Mappings δ2 : Zp → S2 for G2 and
δT : Zp → ST for GT are defined analogously.

The main result of this section is the proof of the following theorem.

Theorem 9. Let (δ1, δ2, δT ) be random encoding functions for (G1,G2,GT ), re-
spectively. For all n ∈ poly(λ) and for all generic algorithms A with oracle access
to O there exists a non-uniform ppt algorithm EA running on the same random
tape of A and a negligible function negl such that

Pr

 ({δ1(yi), δ2(vi), δ1(zi)}i∈n)← A(p, δ1(1), δ2(1), δ2(x)),
(y, {δ1(yi), δ2(vi), δ1(zi)}i∈n)← EA(p, δ1(1), δ2(1), δ2(x))

∣∣∣∣∣∣∣∣
∀i ∈ {1, . . . , n} :
yi · vi = zi

∧
∑
i∈n vi = x

∧∀i : y 6= yi


≤ negl(λ).

Proof. In the following we describe an extractor E that simulates the oracle set O
to extract a well-formed y. At the beginning of the simulation, E initializes three
empty lists (Q1,Q2,QT ), then it samples three random strings (r1, r2, rx) ∈
{0, 1}∗ and it appends (1, r1) and (x, rx) to Q1 and (1, r2) to Q2. Note that we
can express all of the entries in all of the lists as (F, r), where r is a random
string and F ∈ Zp[x] is a polynomial in the indeterminate x with coefficients
in Zp. We assume without loss of generality that A makes oracle queries only
on encodings previously received by E , since we can set the range {0, 1}∗ to be
arbitrarily large. E provides A with the tuple (p, r1, r2, rx) and simulates the
queries of A to the different oracles as follows.
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– Group Operation: On input two strings (ri, rj), E parses Q1 to retrieve
the corresponding polynomials Fi and Fj , then it computes Fk = Fi ± Fj
(depending on whether a multiplication or a division is requested). If an
entry (Fk, rk) is present in Q1 then E returns rk, else samples a random
r′k ∈ {0, 1}∗, adds (Fk, r

′
k) to Q1 and returns r′k. Group operation queries

for G2 and GT are treated analogously.
– Homomorphism: On input a string ri, E fetches the corresponding Fi from
Q2. If there exists an entry (Fi, rj) ∈ Q1, then it returns rj . Otherwise it
samples an r′j ∈ {0, 1}∗, appends (Fi, r

′
j) to Q1, and returns r′j .

– Pairing: On input two strings (ri, rj), E retrieves the corresponding Fi and Fj
fromQ1 andQ2, respectively. Then it computes Fk = Fi ·Fj . If (Fk, rk) ∈ QT
then E returns rk. Otherwise it samples a random r′k ∈ {0, 1}∗, adds (Fk, r

′
k)

to QT and returns r′k.

At some point of the execution, A outputs a list of encodings of the form
((y1, v1, z1), . . . , (yn, vn, zn)). As argued above, we can assume that such a list
is composed only by valid encodings, i.e., returned by E as a response to some
oracle query. For all i ∈ {1, . . . , n} E parses Q1 to retrieve the Fyi correspond-
ing to yi. If there exists an Fyi that is a constant (a polynomial of degree 0 in
x), then E returns such an Fyi . Otherwise it aborts. The simulation is clearly
efficient. Note that whenever E does not abort, its output is an element o such
that δ1(o) = yi, for some i ∈ {1, . . . , n}. What is left to be shown is that E does
not abort with all but negligible probability. First we introduce the following
technical lemma from Schwarz [38].

Lemma 1. Let F (x1, . . . , xm) be a polynomial of total degree d ≥ 1. Then the
probability that F (x1, . . . , xm) = 0 mod n for randomly chosen values (x1, . . . ,
xm) ∈ Zmn is bounded above by d/q, where q is the largest prime dividing n.

Observe that at any point of the execution, for all elements (Fi, ri) ∈ Q1, Fi is
a polynomial of degree at most 1 and the same holds for the elements of Q2.
Consequently, for each element (Fj , rj) ∈ QT , Fj is a polynomial of degree at
most 2 in x. We can now show the following:

Lemma 2. For all i ∈ {1, . . . , n}:

Pr[degree of Fyi in x is ≥ 1 ∧ degree of Fvi in x is ≥ 1] ≤ negl(λ)

where Fyi and Fvi are the polynomials corresponding to yi in Q1 and vi in Q2,
respectively.

Proof (Lemma 2). Let Fzi be the polynomial corresponding to zi in Q1. As
we argued above Fzi is a polynomial of degree at most 1 in x. Therefore if
Fzi = Fyi · Fvi , then it is clear that either Fyi or Fvi must be a constant. Note
that we require that Fzi(x) = Fyi(x) · Fvi(x), for a randomly chosen x. By
Lemma 1 we can bound the probability of the case (Fzi 6= Fyi · Fvi)∧ (Fzi(x) =
Fyi(x) ·Fvi(x)) to happen to 1/p, which is a negligible function. It follows that if
Fzi(x) = Fyi(x) ·Fvi(x) then Fzi = Fyi ·Fvi , with overwhelming probability and
thus either Fyi or Fvi is a polynomial of degree 0 with the same probability. ut
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We proved that for all i at least one between Fyi and Fvi is a polynomial of
degree x in 0. We now want to show that in at least one case Fyi is a constant.
More formally:

Lemma 3. Let Fvi be the polynomial corresponding to vi in Q2. Then

Pr[∀i : degree of Fvi in x is 0] ≤ negl(λ).

Proof (Lemma 3). Assume towards contradiction that for all i it holds that Fvi
is a polynomial of degree 0 in x with probability ε(λ), for some non-negligible
function ε. Note that we require that

∑
i Fvi(x) = x, or equivalently a − x = 0

for some constant a = Fvi(x). By Lemma 1 this happens only with negligible
probability over the random choice of x. Therefore we have that ε is a negligible
function, which is a contradiction. ut

Combining Lemma 2 and Lemma 3 we have that with all but negligible proba-
bility there exists an i such that Fvi is a polynomial of degree 1 in x and that the
corresponding Fyi is a constant. It follows that the extractor E does not abort
with the same probability. This concludes our proof. ut

6 A Ring Signature Scheme in the Standard Model

We now have all the tools to upgrade to the standard model our construc-
tion presented in Section 4.2. Our first observation is that our ring signature
scheme uses the common reference string only for the computation of the zero-
knowledge argument. In particular, the signature scheme is completely inde-
pendent from the crs. Therefore we can potentially use different strings for
different rings without compromising the correctness of the scheme. Consider
our instantiation of a NIZK scheme as presented in Section 5: If we include a
different crsi = gαi2 in each verification key vki, the linear combination of the
crsi for a given ring R = (vk1, . . . , vkn) is still a correctly distributed common

reference string crs =
∏
i∈n g

αi
2 = g

∑
i∈n αi

2 . The crux of this transformation
is that the common reference string has no underlying hidden structure, other
than being composed by a uniformly chosen group element, and that the cor-
responding group is closed under composition. We can modify our construction
to obtain a scheme without setup as follows: Each verification key has extra
element Ci = gαi2 . On input a ring R = (vk1, . . . , vkn), the signing algorithm sets
crs =

∏
i∈n Ci. The verification algorithm is modified analogously and the rest

of the scheme is unchanged. A complete description of the scheme can be found
in Figure 7. Note that the unconditional zero-knowledge of the proof system is
a fundamental component for the security of our scheme, as it guarantees that
the construction stays anonymous even in presence of adversarially chosen keys.
The formal analysis is elaborated below.

Theorem 10. Let NIZK be an unconditional zero-knowledge argument, and let
H = (HGen,HEval) be a programmable hash function, then the construction in
Figure 7 is an anonymous ring signature scheme.
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RGen(1λ)

(x, α)← Z2
p

k ← HGen(1λ)

C ← gα2

return (x, (gx2 , k, C))

RSig(sk,m,R)

parse R = (vk1, . . . , vkn)

if 6 ∃i : vk = vki

return ⊥
parse vk = (z, k, C)

parse vki = (zi, ki, Ci)

(s, ρ, δ)← Z3
p

z′ ← z · gρ2
x′ ← sk + ρ

c← HEval(k,m||R)δ

x := R||z′||c||(m,R)

π ← P

(∏
i

Ci, (ρ, δ, i), x

)
y ← c

1
x′

σ = (s, y, c)

return (σ, π, z′)

RVer(R, σ,m)

parse R = (vk1, . . . , vkn)

parse vki = (zi, ki, Ci)

parse σ = (σ′, π, z′)

parse σ′ = (s, y, c)

x := R||z′||c||(m,R)

b← V

(∏
i

Ci, x, π

)
b′ = 1 if

e(y, vk′ · gs2) = e(c, g2)

return (b = b′ = 1)

Fig. 7: A ring signature in the standard model

Proof. The proof is essentially equivalent to the one for Theorem 4. The only
subtlety that we need to address is that the simulator does not necessarily know
the trapdoor for the common reference string corresponding to the challenge ring,
since it may contain adversarially generated keys. However, note that any crs
has a well defined discrete logarithm that the simulator can compute and use as
a trapdoor to output the simulated proof. We stress that, since we are proving
statistical anonymity, we do not require the simulator to run in polynomial
time. By the unconditional zero-knowledge of the NIZK, the indistinguishability
argument follows. ut

Theorem 11. Let NIZK be a computationally sound argument of knowledge that
is extractable in presence of a signing oracle and let H = (HGen,HEval) be a
programmable hash function, then the construction in Figure 7 is an unforgeable
ring signature scheme under the q-strong Diffie-Hellman assumption.

Proof. The proof of unforgeability follows along the same lines of the one for
Theorem 5: For the extraction it is enough to observe that the challenge ring
R∗ must be composed exclusively by honest verification keys. It follows that

the corresponding crs is a random element of G2 of the form g
∑
i∈n αi

2 . We can
therefore execute the extractor E on input

∑
i∈n αi and learn a correct witness

with overwhelming probability. ut
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Efficiency. For our standard model ring signature scheme as defined in Fig-
ure 7 a signing key sk is composed by a single integer in Zp and a verification key
is a collection of λ elements of G1 and two elements of G2. For a ring of size n,
signatures are composed by (2 · n+ 2) elements of G1, (2 · n+ 1) elements of G2

and an integer in Zp. Signing requires (4 ·n+ 3) modular exponentiations and n
computations of a programmable hash. The verification algorithm is roughly as
efficient as (4 · n + 2) pairings, a modular exponentiation, and n computations
of a programmable hash function.

6.1 Alternative Instantiations

We observe that our techniques are generically applicable to all NIZK systems
whose common reference string has suitable homomorphic properties. Let us
consider the NIZK of Groth [29], here the common reference string comes in two
forms: The honestly generated string (g, h = gx, f = gy, fr, hs, gt) gives per-
fectly sound proofs, whereas the simulated string (g, h = gx, f = gy, fr, hs, gr+s)
gives perfectly zero-knowledge proofs and allows one to simulate proofs with
the knowledge of (x, y, r, s). Assume that an independently sampled simulated
string (g, hi, fi, ui, vi, wi) is included in each key vki and that the each ar-
gument of knowledge for a ring (vk1, . . . , vkn) is proven against the reference
string crs :=

(
g,
∏
i∈n hi,

∏
i∈n fi,

∏
i∈n ui,

∏
i∈n vi,

∏
i∈n wi

)
, similarly as what

has been done before. Our observation is that, if all of the strings are distributed
according to the simulated variant, then one can simulate and extract proofs
with the knowledge of

(∑
i∈n xi,

∑
i∈n yi,

∑
i∈n ri,

∑
i∈n si

)
and, since crs is a

simulated string, the resulting proof is correctly distributed. Thus, the result-
ing ring signature scheme is anonymous as long as all the keys in the challenge
ring are honestly generated. This weaker variant of the property is called basic
anonymity in [4]. For unforgeability we leverage the fact that the challenge ring
has to be composed exclusively of honestly generated keys. It follows that the
relation Dlogf

(∏
i∈n ui

)
+ Dlogh

(∏
i∈n vi

)
= Dlogg

(∏
i∈n wi

)
holds. Since the

simulator knows the trapdoor, we can conclude that the extraction succeeds with
overwhelming probability. The rest of the argument stays unchanged.

It follows that one could also implement our construction of Section 4.2 with
the zero-knowledge argument in [29] to obtain a standard model instantiation
provably secure against the Decisional-Linear assumption (DLIN). This yields
a ring signature scheme without setup from more ”classical” assumptions, al-
though at the cost of a slower running time of the signing and verification algo-
rithms, an increased size of the signatures, and weaker anonymity guarantees.
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37. Sven Schäge and Jörg Schwenk. A CDH-based ring signature scheme with short
signatures and public keys. In Radu Sion, editor, FC 2010: 14th International
Conference on Financial Cryptography and Data Security, volume 6052 of Lec-
ture Notes in Computer Science, pages 129–142, Tenerife, Canary Islands, Spain,
January 25–28, 2010. Springer, Heidelberg, Germany.

38. J. T. Schwartz. Fast probabilistic algorithms for verification of polynomial identi-
ties. J. ACM, pages 10–1145, 1980.

39. Hovav Shacham and Brent Waters. Efficient ring signatures without random ora-
cles. In Tatsuaki Okamoto and Xiaoyun Wang, editors, PKC 2007: 10th Interna-
tional Conference on Theory and Practice of Public Key Cryptography, volume 4450
of Lecture Notes in Computer Science, pages 166–180, Beijing, China, April 16–20,
2007. Springer, Heidelberg, Germany.

40. Victor Shoup. Lower bounds for discrete logarithms and related problems. In
Walter Fumy, editor, Advances in Cryptology – EUROCRYPT’97, volume 1233 of
Lecture Notes in Computer Science, pages 256–266, Konstanz, Germany, May 11–
15, 1997. Springer, Heidelberg, Germany.

41. Brent R. Waters. Efficient identity-based encryption without random oracles. In
Ronald Cramer, editor, Advances in Cryptology – EUROCRYPT 2005, volume
3494 of Lecture Notes in Computer Science, pages 114–127, Aarhus, Denmark,
May 22–26, 2005. Springer, Heidelberg, Germany.

30


	Efficient Ring Signatures in the Standard Model

