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Abstract
Password remains the most widespread means of au-
thentication, especially on the Internet. As such, it
is the Achilles heel of many modern systems. Face-
book pioneered using external cryptographic ser-
vices to harden password-based authentication in a
large scale. Everspaugh et al. (Usenix Security ’15)
provided the first comprehensive treatment of such a
service and proposed the Pythia PRF-Service as a
cryptographically secure solution. Recently, Schnei-
der et al. (ACM CCS ’16) proposed a more efficient
solution which is secure in a weaker security model.

In this work, we show that the scheme of Schnei-
der et al. is vulnerable to offline attacks just af-
ter a single validation query. Therefore, it defeats
the purpose of using an external crypto service in
the first place and it should not be used in practice.
Our attacks do not contradict their security claims,
but instead show that their definitions are simply
too weak. We thus suggest stronger security defi-
nitions that cover these kinds of real-world attacks,
and an even more efficient construction, Phoenix,
to achieve them. Our comprehensive evaluation con-
firms the practicability of Phoenix: It can handle
up to 50% more requests than the scheme of Schnei-
der et al. and up to three times more than Pythia.

1 Introduction

In spite of the research and development in au-
thentication mechanisms such as public-key infras-
tructure or secure hardware tokens, the reality has
shown that password-based authentication remains
the most widespread means, especially on the Inter-
net. As such, password-based authentication is the
Achilles heel of many modern systems. Following a
suggestion from the 70s, passwords are commonly
stored as salted hash values. Yet, it is no longer

adequate in the face of the increasing number of at-
tacks. Prominent breaches of user accounts include
Adobe, Yahoo, and much more [24]. The financial
consequences are also dramatic. Verizon asked for
a 1 billion discount on acquiring Yahoo [20] after
knowing it had been hacked (1.5 billion+ accounts).
We see an urgent need for action.

Obvious Weaknesses in Current Systems. Al-
most all web services store passwords as salted hash
values as shown in Figure 1. The security of the

Alice, 123456

username      password

Alice, salt      H(salt,123456)

Figure 1: Password-based Authentication

passwords relies crucially on the assumption that
the databases are kept secret from external attack-
ers, and the internal administrators are trusted for
not disclosing the databases or guessing the pass-
words themselves. However, the reality shows that
databases get stolen. This is disastrous as pass-
words usually have low entropy and therefore can
be guessed by a brute-force attack easily.

Under the aforementioned threat, there is a need
for new solutions to protect passwords in a setting
where the attacker has full access to the compro-
mised service provider, including its secret keys and
databases. It is not hard to see that any solution
in which the web service can verify a given pass-
word alone is not viable, as a compromised service
provider has all the knowledge (e.g., secret keys)
to carry out a brute-force guessing attack (e.g., de-
crypting by the secret key of the web service) as in a
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normal validation. Additional cryptographic mech-
anisms are needed to enhance security.

Moreover, an ideal solution should not change the
infrastructure from the point of view of users. This
is challenging as it rules out solutions which requires
the end users to perform cryptographic operations.

External Password Hardening Services. A
promising approach for the web service provider is
to use external crypto services [4], where a crypto
server carries out certain cryptographic operations,
such as the computation of pseudorandom functions
(PRF). Its general advantage is that it abstracts
crypto away from developers, freeing them from the
selection and implementation of suitable algorithms
and the involved issue of key management.

Cryptographic PRF services are used in practice
by Facebook [16] for password-based authentication.
In this setting, the end-user Alice enters her user-

Alice, 123456

username      password

Alice            PRF(….)

Alice
resp

Figure 2: Password-based Authentication

name and the corresponding password into the web
service as usual, as in Figure 2. The service provider
no longer stores salted hash values, but only pseu-
dorandom values which can only be computed with
the help of the external PRF server, i.e., the service
provider acts as a client of the PRF service.

While used in practice, such kind of password
hardening services did not receive much atten-
tion from the academia until the seminal work of
Everspaugh et al. [9]. They formalize partially-
oblivious PRFs (PO-PRF) with several security
properties that conventional PRF services do not
offer, with a fairly efficient construction, Pythia.
Even if the web server is compromised and the
database (of pseudorandom values) is stolen, brute-
force offline attacks are no longer possible. The rea-
son is that the adversary must interact with the PRF
service to confirm a guess. The partial oblivious-
ness ensures that the external crypto server does
not learn the password but can still see the user-
name when answering PRF requests. Rate limiting
can thus be applied to make sure that an adversary
cannot guess too many times. For incident response
after key compromise, or to update the key proac-
tively as a prudent practice, both the web server and
the crypto service should be able to rotate their keys,
without the end users noticing anything. Efficient

key rotation [9, 21] means the amounts of commu-
nication and server computation are independent of
the size of the database. It is an important secu-
rity feature that cryptographic password hardening
services must have [9, 21].

Using Pythia for password hardening is not with-
out disadvantages. For example, it is only secure
under a strong assumption [21], and is based on
pairings, which is not as efficient as one can hope
for. Very recently, Schneider et al. [21] claimed
that all the properties expected by Pythia can be
achieved by a weaker cryptographic primitive called
partially-oblivious commitments (PO-COM). Using
PO-COM, the PRF values are replaced with “en-
rollment records” which can be jointly computed by
the client and the server via an enrollment protocol.
The main difference lies in how a password is veri-
fied. Instead of jointly computing a PRF value, the
client and the server engage in a validation proto-
col to verify whether a candidate password matches
an enrollment record. Schneider et al. [21] also sug-
gested a scheme that is twice as efficient as Pythia.
Unfortunately, as we will show, their scheme is vul-
nerable to offline dictionary attacks. This motivates
us to develop a new solution which is secure against
such attacks while achieving even better efficiency.

1.1 Overview of Our Contribution
Formal security definitions are important even from
a practical standpoint. They precisely describe what
level of security can be achieved and serve as a basis
for comparison between different solutions. Find-
ing the “right” security definitions is challenging.
They should be strong enough to cover all real-
world attacks, but not to exclude efficient solution.
In this work, we revisit the security notions of Ev-
erspaugh et al. [9] and Schneider et al. [21]. We argue
that both fail to cover key rotation and rate limit-
ing, while the latter even leaves room for practically-
relevant attacks.

In response, we propose strengthened security def-
initions for password hardening schemes. Next, we
propose a new construction, Phoenix, which is 1)
extremely efficient, 2) reasonably simple, and 3) se-
cure based on simple and well-known assumptions.
With these properties, we believe that Phoenix may
attract deployment interest. Below highlights our
contributions in more details.

Formalizing Key Rotation. The literature [9,
21] highlights the importance of key rotation since
it renders the old key useless and preserves the
(forward-)security of the system as long as both par-
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ties are not compromised simultaneously. Somewhat
surprisingly, none of the existing security definitions
take key rotation into account. To fill the gap, we
formalize forward security of password hardening
services, which captures the security guarantee in
the presence of key rotation mechanisms.

Modeling Online Attacks. We argue that the
definition of obliviousness (renamed to hiding in our
work) given by Schneider et al. [21] is too weak.
The property is supposed to protect the passwords
when the client is compromised. Ideally, it should be
guaranteed that the best attack strategy for guess-
ing a password is to brute-force by repeatedly in-
teracting with the crypto service online (modeled
by the validation oracle in the security definition).
Unfortunately, obliviousness, as defined by Schnei-
der et al. [21], fails to capture this intuition, as its
security experiment denies the adversary access to
the validation oracle after receiving the challenge en-
rollment record. Indeed, permitting the adversary
such accesses would allow it to trivially distinguish
between two possible passwords. Moreover, by re-
sorting to a crypto server to harden the passwords,
one naturally expects it can perform rate limiting.
While it is obviously a crucial feature, we are not
aware of any definition which takes this into account.
To resolve these issues, we suggest a “correct” secu-
rity definition, which covers both online attacks and
rate limiting. The latter is guaranteed by upper-
bounding the advantage of the adversary by the loss
of entropy in guessing and validation.

Attacking against Schneider et al. [21]. The
shortcoming of the obliviousness definition by
Schneider et al. [21] is not just a definitional defi-
ciency. We detail how to perform highly efficient (es-
sentially only one exponentiation for each trial) of-
fline dictionary or direct attacks against their scheme
by just a single interaction with the crypto server!
We stress that our attack is outside of the security
model of Schneider et al. [21]. Below we only show
part of the scheme which matters in the attack.

In their scheme, an enrollment record, stored by
the client C using the crypto service provided by
S, can be seen as an ElGamal encryption under
a secret key sx of S, in the form of (T1,T2) =
(gy,gysx ·pwskC ) ∈G2, where G is a (multiplicative)
finite cyclic group. To validate that this record cor-
responds to a password pw for some username un, C
sends (T1,un,v) for v= pwr·skC . Without any validity
checking, S returns π2, a zero-knowledge proof of sx
with respect to (gy,gysx). This opens the door for
the following generic offline dictionary attack, with-

out exploiting the structure of the zero-knowledge
proof: An adversary A who compromised C (and
hence obtained skC and (T1,T2)) sends (gy,un,h) to
S where h is a random group element independent of
any passwords. After getting π2 from S, A can then
try different passwords pw by testing if the proof
π2 is for (T1,T2/pwskC ). This is doable since the
entropy of pw is assumed to be low. By further ex-
ploiting the structure of the specific instantiation of
the proof, the adversary can even extract the pass-
word directly: It first extracts the value gysx from
the proof π2, then computes pw = (T2/g

ysx)1/skC .
We conclude that one must not use the scheme of
Schneider et al., as our attack defeats its purpose of
using an external crypto service.

Reviving the Broken Scheme. In the spirit
of providing password hardening services using
a weaker tool than PO-PRFs [21], we present
Phoenix, a conceptually simple construction from
standard cryptographic primitives. It achieves two
seemingly contradicting goals: a high security level
without sacrificing the efficiency. Our scheme can,
in fact, handle roughly 50% more request per second
than that of Schneider et al. [21], and three times
more than Pythia [9]. Since the scheme of Schnei-
der et al. [21] is vulnerable to the one validation-
query offline dictionary attacks, ours is the first ef-
ficient and fully secure solution based on standard
decisional Diffie-Hellman assumption.

1.2 Notations
Let λ ∈ N be the security parameter. By x←$S we
denote the uniform drawing of a random element
x from set S. Unless stated otherwise, all algo-
rithms run in probabilistic polynomial time (PPT).
x←$A(y) denotes the event that A on input y out-
puts x. If A is deterministic we write x ← A(y)
instead. For two PPT interactive algorithms A,B,
we denote by (a,b)←$〈A(x),B(y)〉X the event that
A and B engage in the protocol X on input x and
y, and produce local outputs a and b, respectively.
If there is only one output, then it is assumed to
be for A. We write B〈A(x),·〉(y) if B can invoke an
unbounded number of executions of the interactive
protocol with A in an arbitrarily interleaved order.

2 Crypto Password Hardening (PH)

Both previous works formulated cryptographic prim-
itives [9, 21] which were supposed to cover the prop-
erties of cryptographic password hardening (PH)
services. We do not follow this approach. Instead,
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we define PH directly, which is simpler and more
natural. A direct definition removes the need for
bridging the security requirements of the underlying
primitives to those expected by PH (e.g., the main
feature of key rotation seems to make more sense in
PH than in the underlying commitment [21]).

2.1 Overview

Our formalization of PH is closely related to the
definition of partially-oblivious commitments (PO-
COM) defined by Schneider et al. [21], with the main
difference being that we consider key rotation in all
security definitions. Roughly speaking, a PH scheme
PH is a two party protocol that is partitioned in
phases. The first phase is the setup phase, in which
a client C and the server S set up their public and se-
cret keys individually without communication. Each
phase after the first is either an enrollment, a valida-
tion, or a key rotation phase, in an arbitrary order.

In an enrollment phase, the client and the server
cooperate to generate an enrollment record T for a
username un, and a password pw, where un is an
input available for both and pw is a private input
from the client. The client then stores the record T .

Subsequently, in a validation phase, the client can
interact with the server to verify if a pair (un,pw)
is stored in a record T . Similar to the enrollment
phase, un is a common input and pw is a private
input from the client. We note that in the original
syntax [21], while un is not an input of the server, it
is supposed to be revealed to the server during the
interactions in the protocol for rate limiting.

Suppose an adversary, who may have knowledge
of some enrollment records, compromises either the
client or the server secret key. It can then act as the
compromised party and interacts with the other in
the protocols to figure out the underlying passwords
of the enrollment records. As soon as the incident
is discovered, the (true) client and the (true) server
communicate to refresh their keys and all enrollment
records. Instead of regenerating them from scratch,
they enter a key rotation phase to update their se-
cret keys. In addition to an updated client secret
key, the client also obtains some auxiliary informa-
tion, using which it is able to update each enrollment
record locally, without further communicating with
the server, nor knowing the underlying password of
the record. Note that our syntax of the key rota-
tion phase is significantly different. In the original
definition [21], the key rotation protocol updates a
single enrollment record instead of all records stored
by the client. We believe that this was an oversight.

2.2 Definition of PH
We provide a formal definition of cryptographic
password hardening schemes. Some algorithms in
our formalization get as input some auxiliary input,
such as a random session identifier. Under normal
circumstances, the auxiliary information is an empty
string denoted by ε. Non-empty auxiliary informa-
tion is only used in defining forward-security.

Definition 1 (PH) Let U and P be the username
and password space respectively. A cryptographic
password hardening service PH consists of the effi-
cient algorithms (Setup,KGenC ,KGenS ,〈C,S〉enrl,〈C,
S〉val,〈C,S〉rot,Udt), to be executed in four phases:

Setup Phase. On input the security parameter λ,
Setup(1λ) outputs the public parameter pp. On input
the public parameter pp, the client runs KGenC(pp)
to generate a client public key pkC, and a client se-
cret skC, while the server runs KGenS(pp) to gener-
ate a server public key pkS , a server secret skS . All
parties will take as input the public parameter pp,
the client public key pkC, and the server public key
pkS in all subsequent protocols.

Enrollment Phase. In the enrollment protocol
〈C(skC ,un,pw,aux),S(skS ,un,aux)〉enrl, the client
inputs its secret key skC, a username un∈ U , a pass-
word pw ∈ P, and some auxiliary information aux.
The server inputs its secret key skS , a username un,
and some auxiliary information aux. The client out-
puts an enrollment record T , while the server outputs
nothing. We say that the enrollment record T stores
the tuple (un,pw). The client stores the tuple (T,un),
and securely deletes the password pw and all inter-
mediate values that are computed locally or obtained
from the server. The server is also supposed to delete
all intermediate values.

Validation Phase. In the validation protocol
〈C(skC ,T,un,pw),S(skS ,un)〉val, the client inputs its
secret key skC, an enrollment record T , a username
un ∈ U , and a password pw ∈ P. The server inputs
its secret key skS , and a username un. The client
outputs a decision b ∈ {0,1} of whether T stores the
tuple (un,pw), while the server outputs nothing.

Key Rotation Phase. In the key rotation pro-
tocol 〈C(skC),S(skS)〉rot, the client and the server
input their secret keys skC and skS respectively. The
client outputs an updated client public key pk′C, an
updated client secret key sk′C and an update token
τ . The server outputs an updated server public key
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pk′S , and an updated secret key sk′S . Using the up-
date token τ , the client runs the update algorithm
Udt(τ,T,un) to update each of the old enrollment
records T into new ones T ′.

Correctness. We require that all honestly gener-
ated enrollment records can pass validation. For-
mally, a cryptographic password hardening service
scheme PH is correct if for all security parameter
λ ∈ N, public parameters pp ∈ Setup(1λ), key pairs
(pkC ,skC) ∈ KGenC(pp) and (pkS ,skS) ∈ KGenS(pp),
username un ∈ U , password pw ∈ P, enrollment
records T ∈ 〈C(skC ,un,pw, ε),S(skS ,un, ε)〉enrl, it
holds that 〈C(skC ,T,un,pw),S(skS ,un)〉val = 1. Note
that it is unnecessary to define the correctness of key
rotation, as it will be captured by forward security
to be introduced below.

2.3 Security of PH

Our security definitions are fundamentally different
from, and arguably stronger than, the originals [21].
In particular, our notions cover important real-world
attacks and ensures security in the presence of key
rotation, as discussed in the introduction. In the
following, we first give an overview of our definitions,
and discuss the differences in details in Section 2.4.

A cryptographic password hardening service is re-
quired to be (partially) oblivious, hiding, binding,
and forward secure. Roughly speaking, partial obliv-
ious means that it is infeasible, even for a malicious
server, to tell which password pw is used by the client
in the enrollment and validation protocols. It is par-
tial in the sense that the username un can be re-
vealed. In fact, un is required to be revealed to the
server for rate limiting. We therefore simply let un
be a common input for both parties in the enroll-
ment and the validation protocols.

Hiding means that, given the client secret key skC ,
a username un, and an enrollment record T of
(un,pw) for some hidden password pw, the best strat-
egy of any adversary to guess pw is by launching an
online dictionary attack which requires interaction
with the server via the validation protocol.

Binding requires that it is computationally infea-
sible, even for a malicious server, to convince the
client that an enrollment record T is valid for two
distinct pairs (un,pw) and (un′,pw′).

Forward security means that compromising either
the client or the server secret key does not help the
adversary to determine the underlying password of
an enrollment record. We formalize this intuition
in an even stronger property. It requires that even

if both the client and server secret keys are adver-
sarially generated, the updated keys and enrollment
records are indistinguishable from the freshly gen-
erated ones. This formalization is simpler because
we do not need to argue about the security of secret
keys which can be rotated for many times.

2.3.1 Partial Obliviousness

Partial obliviousness protects against a malicious
server that wishes to learn the password pw behind
an enrollment record after observing its creation and
several validations. The property is partial since it
does not guarantee anything about the secrecy of the
username un. In fact, in the syntax defined above,
we let the client reveal the username un to the server
explicitly by regarding un as a common input.

Technically, we consider a security experiment
played between a challenger acting as the client and
an adversary acting as the malicious server. The
challenger generates the client secret key and keeps
it secret (Line 1). Furthermore, it simulates execu-
tions of the enrollment, validation, and key rotation
protocol, where only the client secret key input is
fixed (Line 2). The adversary can provide all other
client inputs, as well as the server side code. The
embedded client secret key can be updated by exe-
cuting the key rotation protocol. The client outputs
of all protocol executions, except for sk′C from the
key rotation protocol, are given to the adversary.

The experiment then proceeds in two stages, a
learning phase and a challenge phase. In the learn-
ing phase, the adversary is free to interact with the
challenger in the above protocols. At the end of
this phase, the adversary outputs a username un∗,
and two passwords pw∗0 and pw∗1 (Line 3). It will
then be challenged on one of the passwords and the
attacker has to guess the password. Formally, the
challenger generates the challenge record T ∗ (for the
password pwb) together with the adversary (line 7).
In addition to the previous protocols, the adversary
gets access to an additional embedded-password val-
idation protocol, which embeds either (un∗,pw∗0) or
(un∗,pw∗1) (Lines 8). Note that the adversary may
query the (normal) enrollment and validation proto-
col on most username-password pairs, and the pro-
tocols only return ⊥ for the pairs (un∗,pw∗b′′) for
b′′ ∈ {0,1} (Lines 10 and 11) to avoid it from winning
trivially. Finally, the adversary outputs b′ guessing
which tuple is embedded (Line 9).

Definition 2 (Partial Obliviousness) A crypto-
graphic password hardening service PH is partially
oblivious if, for any three-stage PPT adversary
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OblbΠ,A(1λ)

1 : pp←$ Setup(1λ), (pkC ,skC)←$ KGenC(pp)
2 : O := {〈C(skC , . . .), ·〉X :X ∈ {enrl,val,rot}}

3 : (un∗,pw∗0,pw∗1,state)←$AO
1 (pp,pkC)

4 : // All client outputs are given to adversary,

5 : // except for sk′C output by 〈C(skC), ·〉rot.

6 : // 〈C(skC), ·〉rot updates skC embedded in all oracles to sk′C .

7 : (T ∗,state)←$〈C(skC ,un∗,pw∗b , ε),A2(st)〉enrl

8 : O′ := O∪{〈C(skC , ·,un∗,pw∗b ), ·〉val}

9 : b′ ←$AO′
3 (state,T ∗)

10 : // 〈C(skC, . . .), ·〉enrl and 〈C(skC, . . .), ·〉val return ⊥

11 : // on input containing (un∗,pw∗b′′ ) for b′′ ∈ {0,1}.

12 : return b′

Figure 3: Partial Obliviousness Experiment

A = (A1,A2,A3), there exists a negligible function
negl (λ) such that∣∣∣Pr

[
Obl0Π,A(1λ) = 1

]
−Pr

[
Obl1Π,A(1λ) = 1

]∣∣∣≤ negl (λ)

where the randomness is taken over the random
coins of the experiments and the adversary. Figure 3
defines the two experiments.

2.3.2 Hiding

The hiding property protects the passwords from an
adversary who compromises the client, learns its se-
cret key and all enrollment records, and wishes to
learn the underlying password behind one of the
records. We formalize this intuition by letting the
adversary play the client role in the enrollment, val-
idation, and key rotation protocols.

Inevitably, since passwords are assumed to have
low entropy, the adversary always succeeds if it at-
tempts to validate the target record with all pos-
sible passwords. Our formulation covers this fact
by adjusting the success determination accordingly.
To explain our idea, consider the following experi-
ment: The challenger chooses a random password.
The adversary is given access to a magical oracle
which, when given a guess, answers whether the
guess equals the chosen password. Suppose that only
Q guesses are allowed. Obviously, the best strategy
of the adversary is to asks for the Q most proba-
ble passwords. If one of them returns true, then the
adversary wins by outputting that password. Other-
wise, its best strategy is to output the most probable
password which is not yet guessed, i.e., the (Q+1)-
th most probable password. Since the adversary can
use the server as the magical oracle by interacting

with it in the validation protocol, the best we can
hope for is that the adversary cannot perform sig-
nificantly better than the above strategy.

Technically, we consider a security experiment
(see Figure 4) played between a challenger acting
as the server and an adversary acting as the ma-
licious client. The challenger generates the server
secret key honestly and keeps it secret (Line 1). The
adversary can interact with the challenger in the
enrollment, validation, and key rotation protocols
using arbitrary client side codes (Line 2). Eventu-
ally, the adversary outputs a client secret key skC ,
a username un∗, and a distribution χ of passwords
(Line 6). The distribution models the real-world sit-
uations where the passwords to be protected are not
uniformly random in {0,1}λ but instead follow a cer-
tain distribution possibly with low entropy, which
might be known by the adversary. The challenger
then chooses a random password pw∗ (Line 7) from
the distribution χ and computes a fresh challenge
enrollment record T ∗ for the tuple (un∗,pw∗) using
the honest client and server code (Line 8). The chal-
lenger sends T ∗ to the adversary (Line 9). The ad-
versary can continue to interact with the server and
finally outputs pw′. It wins if pw∗ is equal to pw′.

Using the above strategy, the adversary wins with
probability at least

∑Q+1
i=1 pi, where Q is the num-

ber of times the validation oracle is queried on in-
puts containing un∗, and pi is the i-th most proba-
ble event in χ. We therefore require that the suc-
cess probability of the adversary be negligibly close
to
∑Q+1
i=1 pi. We remark that similar bounds are

used in the context of password-authenticated key
exchange [3].

Definition 3 (Hiding) A cryptographic password
hardening service PH is hiding if, for any two-stage
PPT adversary A= (A1,A2), there exists a negligi-
ble function negl (λ) such that

Pr
[
HidingΠ,A(1λ) = 1

]
≤
Q+1∑
i=1

pi+negl (λ)

where the randomness is taken over the random
coins of the experiment and the adversary, pi is the
probability of the i-th most probable event in the dis-
tribution χ specified by A1 in the experiment, and Q
is the number of times 〈·,S(skS , ·)〉val is queried by
A2 on server input un∗. Figure 4 defines the exper-
iment HidingΠ,A.

2.3.3 Binding

Similar to commitments, binding guarantees it is in-
feasible to open an enrollment record into two dis-
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HidingΠ,A(1λ)

1 : pp←$ Setup(1λ), (pkS ,skS)←$ KGenS(pp)
2 : O := {〈·,S(skS , . . .)〉X :X ∈ {enrl,val,rot}}
3 : // All server outputs are given to adversary,

4 : // except for sk′S output by 〈·,S(skS)〉rot.

5 : // 〈·,S(skS)〉rot updates skS embedded in all oracles to sk′S .

6 : (skC ,un∗,χ,state)←$AO
1 (pp,pkS)

7 : pw∗ ←$χ

8 : T ∗ ←$〈C(skC ,un∗,pw∗, ε),S(skS ,un∗, ε)〉enrl

9 : pw′ ←$AO
2 (state,T ∗)

10 : return (pw∗ = pw′)

Figure 4: Hiding Experiment

tinct passwords. In our setting, however, the en-
rollment record is never opened but only validated.
The binding property in this context prevents a mali-
cious server from convincing the client that an enroll-
ment record T ∗ is valid for distinct tuples (un∗0,pw∗0)
and (un∗1,pw∗1). Since by the correctness require-
ment if T is the enrollment record for (un,pw), then
(T,un,pw) must pass validation. Thus, the bind-
ing property implicitly guarantees that a malicious
server can never convince the client that an invalid
enrollment record is valid.

Technically, we consider a security experiment
played between a challenger acting as the client and
an adversary acting as the malicious server. At
the beginning, the adversary outputs a client se-
cret key skC , an enrollment record T ∗, and a tuple
(un∗0,pw∗0). The challenger and the adversary then
interact in the validation protocol to validate the tu-
ple (T ∗,un∗0,pw∗0), where the adversary can use arbi-
trary server-side code. After observing the commu-
nication transcript, the adversary outputs another
tuple (un∗1,pw∗1). It interacts with the challenger
again to validate the tuple (T ∗,un∗1,pw∗1). The ad-
versary wins if (un∗0,pw∗0) and (un∗1,pw∗1) are distinct
and both validations output 1. We require that the
probability of this happening is negligible.

Definition 4 (Binding) A cryptographic password
hardening service PH is binding if, for any four-
stage PPT adversary A= (A1,A2,A3,A4), there ex-
ists a negligible function negl (λ) such that

Pr
[
BindingΠ,A(1λ) = 1

]
≤ negl (λ)

where the randomness is taken over the random
coins of the experiment and the adversary. Figure 5
defines the binding experiment.

BindingΠ,A(1λ)

1 : (pkS ,skC ,T
∗,un∗0,pw∗0,state)←$A1(1λ)

2 : (b0,state)←$〈C(skC ,T ∗,un∗0,pw∗0),A2(state)〉val

3 : (un∗1,pw∗1,state)←$A3(state)
4 : (b1,state)←$〈C(skC ,T ∗,un∗1,pw∗1),A4(state)〉val

5 : b2← ((un∗0,pw∗0) 6= (un∗1,pw∗1))
6 : return b0∧ b1∧ b2

Figure 5: Binding Experiment

2.3.4 Forward Security

Intuitively, the key rotation should render an old
client or server key useless to the adversary. Further,
an old client or server secret key should not help in
recovering information from an updated enrollment
record. To formalize this intuition, one possible but
complicated way is to define a security experiment
which gives the adversary accesses of a special key
rotation oracle apart from the usual enrollment and
validation oracles. The key rotation oracle leaks ei-
ther the client or the server secret key to the ad-
versary, and at the same time rotates the old keys
to the new ones. The goal of the adversary is to
find out the underlying password of an enrollment
record. Alternatively, we consider a simpler defini-
tion based on the intuition that the rotated keys and
enrollment records are indistinguishable from freshly
generated ones.

Technically, we consider a security experiment
played between a challenger, acting as both the
client and the server, and an adversary acting as
a malicious outsider. At the beginning, the adver-
sary outputs both secret keys skC and skS , and a
valid tuple (T,un,pw) under the specified keys. This
models the situations where the adversary somehow
obtains the secret keys which might be rotated many
times. The challenger then either rotates the keys
and updates the enrollment record, or samples a
new pair of keys and generates a fresh enrollment
record for (un,pw), using some auxiliary information
aux = L(T ), for some leakage function L. The up-
dated or fresh keys and enrollment record are then
sent to the adversary, who must guess how those are
produced. We require the probability of the adver-
sary guessing correctly to be negligible.

Definition 5 (Forward Security) Let L be a
leakage function which maps an enrollment record T
to some auxiliary information aux. A cryptographic
password hardening service PH is L-forward secure if
for any two-stage PPT adversary A= (A1,A2) there
exists a negligible function negl (λ) such that
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RotbΠ,A,L(1λ)

1 : pp←$ Setup(1λ)
2 : (skC ,skS ,T,un,pw,state)←$A1(pp)
3 : b0← 〈C(skC ,T,un,pw),S(skS ,un)〉val

4 : if b= 0 then
5 : ((pk′C ,sk

′
C , τ),(pk′S ,sk

′
S))←$〈C(skC),S(skS)〉rot

6 : T ′ ←$ Udt(τ,T,un)
7 : else
8 : (pk′C ,sk

′
C)←$ KGenC(pp), (pk′S ,sk

′
S)←$ KGenS(pp)

9 : aux←L(T )
10 : T ′ ←$〈C(sk′C ,un,pw,aux),S(sk′S ,un,aux)〉enrl

11 : endif
12 : b1 ←$A2(state,sk′C ,sk

′
S ,T

′)
13 : return b0∧ b1

Figure 6: L-Forward Security Experiment

∣∣∣Pr
[
Rot0Π,A,L(1λ) = 1

]
−Pr

[
Rot1Π,A,L(1λ) = 1

]∣∣∣≤ negl (λ)

where the randomness is taken over the random
coins of the experiments and the adversary. Figure 6
defines the two experiments.

2.4 Comparison with the Definitions
of Schneider et al. [21]

We comprehensively explain the differences between
our definitions and those of Schneider et al. [21]. We
argue that ours either capture the intended security
features better, or imply their counterparts.

2.4.1 Partial Obliviousness

The property was introduced in the name “partially
hiding”, which we believe is an oversight since the
primitive was called “partially-oblivious” commit-
ment schemes. The adversary in the original security
experiment is stronger such that it generates both
the client and server secret keys. However, it is also
weaker in other abilities:

• Their embedded-password validation oracle em-
beds an enrollment record T output by the ad-
versary. In contrast, ours allow the adversary
to query on any enrollment record T .

• The client secret key embedded in the oracles is
fixed. The adversary cannot instruct the chal-
lenger to rotate it into a new one.

• The adversary does not learn the client outputs
from the embedded-password oracles. We think
this violates the general philosophy of crypto-
graphic definitions where, for most of the time,

only the secret keys are assumed to be hidden
from the adversary.

2.4.2 Hiding

The property was introduced in the name of “obliv-
iousness”, which we believe is an oversight since
obliviousness is supposed to be a security property
against a malicious server. However, the original se-
curity experiment models a malicious client, who is
trying to figure out the underlying password pw of a
given enrollment record T .

Recall that the whole point of introducing PO-
PRF and PO-COM is to prevent against offline dic-
tionary attacks. The idea is that, even given the
client secret key skC and the enrollment record T for
some username un, the adversary can only guess the
underlying password pw one at a time with the aid of
the server. This rate-limits validation queries based
on the username un. Assuming there is enough en-
tropy in the password pw, the adversary is unable to
recover pw before the limited number of validation
query quota is used up. Curiously, the definition of
Schneider et al. [21] does not model such an attack:
In the second stage, after specifying the challenge
passwords pw0 and pw1, the adversary is no longer
given access to the validation oracle. If they allow
the adversary to query the validation oracle even
once in this stage, the adversary can win trivially by
simply querying the oracle with either pw0 or pw1.

We fix this issue by requiring the adversary to
specify a distribution χ of passwords instead of just
two, and allowing it to query the validation oracle
as many times as it wants. The resistance against
offline dictionary attacks is then modeled by the suc-
cess probability of the adversary: We require that
the adversary must only be able to rule out at most
one possible password from each query to the valida-
tion oracle. Finally, note that the adversary in the
original definition cannot access any rotation oracle.

2.4.3 Binding

In the original definition, the binding property is
only guaranteed for honestly generated keys and
honestly validated enrollment records. It is not clear
what this security guarantee means in the context
of password hardening, the main motivating appli-
cation. We thus make the following changes with
a malicious server in mind. First, although it is
not necessary for the context of password hardening,
we let the adversary provide the client secret key.
Second, it does not output the two pairs (un0,pw0)
and (un1,pw1) right away. Instead, it first outputs
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(un0,pw0), waits until the validation protocol is exe-
cuted on this pair, and then adaptively outputs the
second pair. Third, the server-side code for validat-
ing the two pairs (un0,pw0) and (un1,pw1) is pro-
vided by the adversary. This formulation makes
more sense in the context of password hardening.
It models a malicious server which is trying to con-
vince the client that an enrollment record is valid for
two pairs (un0,pw0) and (un1,pw1), whereas at least
one of which must be invalid.

3 Phoenix

We propose a conceptually simple, almost generic
construction, Phoenix, based on (partially) homo-
morphic encryption and pseudorandom functions.

In the enrollment protocol, S receives a username
un. It returns hS← PRFkS (un,nS) for some random
nonce nS . C computes hC ← PRFkC (un,pw,nC) for
another random nonce nC , and encrypts the product
hS ·hC under the server public key. Then, it stores
the ciphertext as the enrollment record of (un,pw)
in its database, and securely deletes the password
pw and all intermediate values computed locally or
received from the server. S should also delete all its
intermediate values.

To validate a candidate password pw′, C computes
the pseudorandom value h′C ← PRFkC (un,pw′,nC),
and performs a homomorphic operation on the ci-
phertext such that it now encrypts the product
hS · hC/h′C . It then sends the resulting ciphertext
to S, who attempts to decrypt it. Suppose the can-
didate password is correct, the term hC is canceled
out, and S is left with a ciphertext of hS . S thus
verifies whether the message obtained from decryp-
tion equals hS , and proves the correctness of the
decryption if so. C is convinced that the candidate
password is correct if and only if the proof is valid.

To support key rotation, we need key homomor-
phism in addition to message homomorphism. We
thus instantiate the above generic construction with
an encryption scheme which is inspired by ElGa-
mal [8] and Cramer-Shoup [6], and the pseudoran-
dom function PRFk(·) = H(·)k [17], where k ∈ Zq
and the hash function H is modeled as a ran-
dom oracle. We cannot use ElGamal or Cramer-
Shoup directly, as the former is only CPA-secure
(so it is difficult to simulate the validation oracle
in the security reduction) while the latter (or any
CCA-secure scheme in general) is not homomor-
phic. Interestingly, with such an instantiation, an
enrollment record is an encryption of HS(un,nS)kS ·
HC(un,pw,nC)kC , from which we can draw connec-
tion to Pythia [9], in which the record is computed

Setup(1λ)

crs←$ Π.Gen(1λ), g←$G
return (crs,g)

KGenC(pp)

pkC ←⊥, skC ← kC ←$Zq
return (pkC ,skC)

KGenS(pp)

s,x,y,kS ←$Zq
h← gs

z← gxhy

pkS ← (h,z)
skS ← (s,x,y,kS)
return (pkS ,skS)

Figure 7: Setup Phase of Phoenix

as e(HS(un),HC(pw))kS . The pairing function e(·, ·)
is used in Pythia mainly for partial blinding by the
client, i.e., blinding pw but not un. In our construc-
tion, the server only evaluates the PRF on the user-
name un but not the password pw, which perhaps
explains why we do not need pairing.

3.1 Formal Description
Let G be a (multiplicative) finite cyclic group of or-
der q = q(λ). Let Hi∈{C,S} : {0,1}λ×{0,1}∗ → G
be hash functions to be modeled as random oracles.
Let Π be a standard non-interactive zero-knowledge
proof of knowledge system for length-2 discrete loga-
rithm representation (instantiated in Figure 11). We
construct our cryptographic password hardening ser-
vice, Phoenix, as follows.

Setup Phase. Figure 7 shows the setup algorithm
as well as the key generation algorithms. The setup
algorithm samples a common reference string crs of
the proof system Π and a random generator g of the
group G, and outputs them as the public parame-
ter pp. The client secret key is a random integer
kC . The server secret key consists of random inte-
gers s,x,y,kS , while the corresponding public key
consists of h= gs and z = gxhy.

Enrollment Phase. Figure 8 shows the enroll-
ment protocol. The input auxiliary information aux
is either an empty string denoted by ε, or a tu-
ple (nS ,nC) of server and client nonces which is
purely for proving forward security. In the former
usual case, the server and the client sample their
nonces nS and nC respectively independently and
randomly. Next, the server sends the server PRF
value hS = HS(un,nS)kS and the server nonce nS
to the client, who computes the client PRF value
hC = HC(un,nS)kC locally, and encrypts the value
hS ·hC using an ElGamal-like encryption scheme as
(gr,hr ·hS ·hC ,zr). The element zr serves as an in-

USENIX Association 26th USENIX Security Symposium    907



tegrity tag which is important for proving the hiding
property. The client then store the ciphertext and
the nonces as the enrollment record.

Validation Phase. Figure 9 shows the validation
protocol. The client wishes to validate whether
T is a valid enrollment record of the given candi-
date username un and password pw. Recall that
an enrollment record is of the form T = (gr,hr ·
hS ·hC ,zr,nS ,nC). To prepare for a validation re-
quest, the client divides the element hr ·hS ·hC by
the candidate PRF value HC(un,nS)kC , and reran-
domizes the ciphertext components. It then sends
the rerandomized ciphertext and the server nonce to
the server. The latter checks if the ciphertext is in-
deed a valid encryption of hS = HS(un,nS)kS and,
if so, returns a proof of knowledge of this fact. If
the proof passes verification, then the client is con-
vinced that the candidate username and password
satisfy hS = HS(un,nS)kS and hC = HC(un,nS)kC ,
and concludes that the enrollment record T is valid.

Key Rotation Phase. Figure 10 shows the key
rotation protocol and the update algorithm. In a
nutshell, the protocol and the algorithm work to-
gether to perturb the secret keys and the enroll-
ment records randomly yet consistently through ho-
momorphisms. To be concrete, in the key rota-
tion protocol, the server samples random integers
α,β,γ,δ and η, such that the secret key compo-
nents of the client and the server are computed as
(s′,x′,y′,k′S ,k′C) = (αs+β,αx+ δ,y+ η,αs+ γ,αs).
The client then updates each of the stored enroll-
ment records T as follows. Recall that an enroll-
ment record T = (T1,T2,T3,nS ,nC) is of the form
(T1,T2,T3) = (gr,gsrgkSS gkCC ,g

(x+sy)r). Denote r′ :=
r+v. For consistency, T2 is updated as

T ′2 = (T2 ·hv)α · (T1 ·gv)β ·gγS
= gαs(r+v)gαkSS gαkCC ·gβ(r+v) ·gγS
= g(αs+β)(r+v)gαkS+γ

S gαkCC

= gs
′r′g

k′S
S g

k′C
C .

To update T3, the client obtains from the server the
value ζ = δ+α ·η ·s+β · (y+η), and computes

T ′3 = (T3 ·zv)α · (T1 ·gv)ζ

= gα(x+sy)(r+v) ·g(δ+α·η·s+β·(y+η))(r+v)

= g((αx+δ)+(αs+β)(y+η))(r+v)

= g(x′+s′y′)r′ .

The client runs the update algorithm on all of its
stored enrollment records.

Correctness. The correctness of Phoenix follows
immediately from the completeness of Π.

3.2 Security Analysis
We give intuitions behind why Phoenix is partially
oblivious, hiding, binding, and forward secure in the
random oracle model, assuming the DDH assump-
tion holds in G. We refer the curious readers to
Appendix C for the formal security analysis.

Partial Obliviousness. Partial obliviousness
means that a compromised server cannot distinguish
which password among pw∗0 and pw∗1 was used to
generate an enrollment record for some known
username un∗. To show why this requirement is
satisfied, recall that in the challenge enrollment
record T ∗ = (T ∗1 ,T ∗2 ,T ∗3 ,n∗S ,n∗C), the only compo-
nent which is dependent on the password pw∗b is T ∗2 ,
which is of the form T ∗2 = hrhSHC(un∗,pw∗b ,n∗C)kC .
Since HC is modeled as a random oracle, both
HC(un∗,pw∗0,n∗C) and HC(un∗,pw∗1,n∗C) can be
programmed to random values independent of the
passwords, which perfectly hide the bit b from
the server. One subtlety here is the consistency
of the simulation of the random oracle, which can
be ensured as long as no oracles are queried on
inputs containing the random nonce n∗C before T ∗

is generated. Fortunately, the latter happens with
overwhelming probability as n∗C is randomly picked
by the challenger during the generation of T ∗.

Hiding. The hiding property, which defends
against dictionary attacks by a compromised client,
is the most difficult property to prove. Our proof is
inspired by the techniques used to prove the security
of password-authenticated key exchange (PAKE)
protocols. The main idea is to gradually and un-
noticeably replace the challenge enrollment record
with a truly random one, such that it hides the pass-
word perfectly. During the course, we argue that the
only ways for the adversary to notice the changes are
either solving the DDH problem or guessing the cor-
rect password in a query to the validation oracle.
Since DDH is assumed to be hard, we conclude that
the adversary cannot perform better than guessing.

Binding. The binding property requires that a
malicious cannot convince the client that an enroll-
ment record T ∗ is valid for two distinct username-
password tuples (un∗0,pw∗0) and (un∗1,pw∗1). This
property follows straightforwardly from the DL
assumption, which states that finding the dis-
crete logarithm of g2 base g1 is hard for random
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Enrollment Protocol

Client C(skC ,un,pw,aux) Server S(skS ,un,aux)
parse pkS as (h= gs,z = gxhy), skC as kC parse skS as (s,x,y,kS)
if aux 6= ε then parse aux as (nS ,nC) if aux 6= ε then parse aux as (nS ,nC)

else nC ←{0,1}λ else nS ←{0,1}λ

r←$Zq, hC ←HC(un,pw,nC)kC hS ,nS hS ←HS(un,nS)kS

return T ← (gr,hr ·hS ·hC ,zr,nS ,nC)

Figure 8: Enrollment Protocol of Phoenix

Validation Protocol

Client C(skC ,T,un,pw) Server S(skS ,un)
parse pkS as (h,z), skC as kC parse skS as (s,x,y,kS)
parse T as (T1,T2,T3,nS ,nC)
u←$Zq, b← 0[
c1
c2
c3

]
←

 T1 ·gu

T2 ·hu/HC(un,pw,nC)kC
T3 ·zu

 (c1, c2, c3,nS) if
[
c2
c3

]
=
[

cs1 ·HS(un,nS)kS
cx1(c2/HS(un,nS)kS )y

]
then

b←Π.Vf((g,h,c1, c2,HS(un,nS)),π) π π←$ Π.PoK{(s,kS) : c2 = cs1 ·HS(un,nS)kS ∧ h= gs}

return b endif

Figure 9: Validation Protocol of Phoenix

(g1,g2). To see why, note that if the enrollment
record T ∗ = (T ∗1 ,T ∗2 ,T ∗3 ,n∗S ,n∗C) stores both tuples
(un∗b ,pw∗b), b ∈ {0,1}, then T ∗2 is of the form T ∗2 =
hrHS(un∗b ,n∗S)kSHC(un∗b ,pw∗b ,n∗C)kC . Then it must
be the case that HS(un∗0,n∗S)kSHC(un∗0,pw∗0,n∗C)kC =
HS(un∗1,n∗S)kSHC(un∗1,pw∗1,n∗C)kC . To exploit this
collision, the challenger simulates HS and HC such
that their inputs are mapped to ga1 and gb2 respec-
tively for random exponents a and b. Doing so allows
it to extract the discrete logarithm from the ratio of
the exponents associated with HS and HC in the
expression respectively.

Forward Security. Phoenix achieves L-forward
security with a mild leakage defined by the leakage
function L which, on input T = (T1,T2,T3,nS ,nC),
merely outputs the nonces (nS ,nC). This can be
proved by an information-theoretic argument that,
all possible combinations of client and server secret
keys obtainable from fresh key generation can also be
obtained by key rotation. Then, no matter how the
new secret keys are generated, the enrollment record
T can be updated to be consistent with the new keys,
and is indistinguishable to a fresh enrollment record

generated using the same nonces.

4 Evaluation

We implemented a prototype using Python3, Fal-
con as web framework, and Charm for the cryp-
tographic computations. We used NIST P-256
for all TLS public key operations and as the
base group for Phoenix. Information was passed
to Phoenix via HTTP GET parameters and re-
turned as a text/json response (with group ele-
ments encoded in base64): therefore, an enroll-
ment interaction would go as follows. The client
sends an http request to /enroll?tweak=john and
would get back a response in the following form:
{hs="rPHu...LcQ==",ns="4qKM...uWQ="}

We then measured the performance of Phoenix
in comparison with Pythia and the scheme by
Schneider et al. [21] on Amazon EC2 using t2.micro
instances with the server running in Frankfurt and
clients both on a separate t2.micro instance in
Frankfurt and Ireland. At the time of writing,
t2.micro instances were equipped with 1 GB of RAM
and one core Intel XEON E5-2676.
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Rotation Protocol

Client C(skC) Server S(skS)
parse pkS as (h,z) parse skS as (s,x,y,kS)
parse skC as kC α,β,γ,δ,η←$Zq

ζ := δ+α ·η ·s+β · (y+η)

k′C ← α ·kC α,β,γ,ζ k′1← α ·kS +γ, s′← α ·s+β

pk′C ←⊥ x′← α ·x+ δ, y′← y+η

sk′C ← k′C pk′S ← (hα ·gβ ,zα ·gζ)

τ ← (α,β,γ,ζ) sk′S ← (s′,x′,y′,k′S)

return (pk′C ,sk
′
C , τ) return (pk′S ,sk

′
S)

Udt(τ,T,un)

// Use the old server public key.

parse pkS as (h,z)
parse τ as (α,β,γ,ζ)
parse T as (T1,T2,T3,nS ,nC)
gS ←HS(un,nS)
v←$Zq
T ′1← T1 ·gv

T ′2← (T2 ·hv)α · (T1 ·gv)β ·gγS
T ′3← (T3 ·zv)α · (T1 ·gv)ζ

return T ′← (T ′1,T ′2,T ′3,nS ,nC)

Figure 10: Rotation Protocol of Phoenix

Frankfurt Ireland
HTTP HTTPS HTTPS HTTP HTTPS HTTPS

keep-alive keep-alive
RTT (64 bytes) 1.2 23
Pythia eval 17.93 25.28 16.01 62.03 113.79 38.56
Schneider et al. enroll 9.80 22.86 8.14 53.72 111.40 30.89
Schneider et al. validate 12.30 25.65 10.73 56.32 115.32 33.49
Phoenix enroll 5.43 17.93 3.89 50.30 107.25 26.52
Phoenix validate 9.74 22.78 8.06 53.92 113.02 30.73

Table 1: Latency in millisecond (ms)

We used the Nginx web server configured with
ECDHE-ECDSA-AES128-GCM-SHA256 for TLS
and uWSGI for the Python applications.

Latency. For the latency measurements, a full in-
teraction was executed between the cryptographic
service and the consuming web service. The num-
bers take both server and client-side processing
into account. As the client-side computations for
Phoenix are significant compared to the server-side
computations, the total latency is significantly larger
than the pure latency of the HTTP(S) requests. The
latency measurements try to answer the question
“How long does the user have to wait for the website
to check the password?”.

The presented numbers are an average over 5,000
executions of the respective protocol. We measured
HTTP and HTTPS setups as well as HTTPS with
keep-alive which removes all costs for TCP and TLS
handshakes and is therefore close to the inherent la-
tency of the cryptographic scheme.

As shown in Table 1, even in a single datacenter
setup, the full TLS handshake takes approximately
as much time as the computations of Phoenix: Re-

using a keep-alive connection it takes approximately
half the time compared to a fresh HTTPS connec-
tion in the same datacenter setting. If the crypto
service is hosted by a different datacenter from the
web application, network round-trip time quickly
dominates the overall execution time of Phoenix:
There is only one round-trip inherently needed for
either Phoenix protocol execution and the differ-
ence between the one-datacenter and same-continent
setting is almost exactly this one round-trip using
keep-alive. In a real world setup for a large website,
we expect the web service to keep a connection to
the cryptographic service open at any time and the
HTTPS with keep-alive measurements is realistic.

Throughput. For throughput measurements, we
used the Apache benchmark tool with 10,000 itera-
tions and 400 parallel requests. uWSGI and Nginx
were both configured to run with two processes to
keep OS overhead on the single core server low.

As shown in Table 2, Phoenix can process ap-
proximately 50 % more requests than the scheme by
Schneider et al. and about three times as many as
Pythia. It can even be easily scaled to multiple
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HTTPS HTTPS
keep-alive

static page > 10,000 795.22
parameter 2,607.16 807.50
Pythia eval 128.50 125.75
Schneider et al. enroll 380.37 278.51
Schneider et al. validate 221.75 183.92
Phoenix enroll 1,557.81 697.66
Phoenix validate 371.34 275.42

Table 2: Requests per second

cores or even servers if needed.
Current suggestions for state of the art pass-

word hashing [23] suggest choosing a work factor
of up to one second. Apple uses 10,000 iterations
of PBKDF2 for iTunes [12], which takes around
278.80 ms on our Amazon instance. Both computa-
tion cost and latency of Phoenix are considerably
below this mark which suggests Phoenix is highly
practical and can even be combined with traditional
password hardening in a hybrid approach.

5 Conclusion

We revisit the existing security notions of crypto-
graphic password hardening service and found that
some important properties were overlooked or not
well defined. While Pythia [9] and the subsequent
work by Schneider et al. [21] highlight the impor-
tance of key rotation, none of their security no-
tions take this feature into account. Furthermore,
we argue that the security definitions of Schnei-
der et al. [21] are weak. We give a stronger definition
and show that the scheme of Schneider et al. is in-
secure under our security definition. The attack is
simple yet of high practical relevance since it allows
an offline password dictionary attack, which is sup-
posedly avoided by the password hardening service.

We propose the Phoenix password hardening ser-
vice which greatly improves efficiency while satisfies
all desirable security properties. Specifically, it is
more efficient than the insecure protocol of Schnei-
der et al. and the seminal Pythia PRF service.
With its efficiency and simplicity, Phoenix is the
first readily deployable password hardening service.
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A Related Work

Many primitives are related to partially-oblivious
pseudorandom functions [9], such as delegatable
PRFs [14] and fully oblivious PRFs [18, 11]. They
do not allow partial obliviousness [9].

One-more unpredictability formalized for partially
oblivious PRFs [9] draws some similarities to one-
more unforgeability of blind signature schemes [13,
19, 10, 22]. This similarity inspires the subsequent
analysis [21] that the “one-more” type assumptions
are needed for proving the security of Pythia [9].

One should not confuse the resistance against
offline dictionary attack with a similar property
achieved by threshold password-authenticated key-
exchange (t-PAKE) [15]. We only consider protocols
between two parties, namely, a client and the server.
On the other hand, to authenticate using t-PAKE,
a client has to interact with a threshold number of
available servers. There are other schemes [15, 1, 7]
which support blinding, but they fail to achieve par-
tial blinding (and hence rate-limiting).

One may also consider our primitive to be simi-
lar to other proof-of-knowledge protocols such as P-
Signatures [2] since both share a mechanism to ver-
ify if two commitments are committing to the same
value. However, they are different in general. In
particular, ours does not involve any signature.

B Preliminaries

Non-Interactive Zero-Knowledge Proof of
Knowledge (NIZKPoK). Π = (Gen,Prove,Vf) is
an adaptive non-interactive zero-knowledge (NIZK)
proof system for a language L∈NP with the witness
relation R if it satisfies the following properties:
Completeness: For all x,w such that R(x,w) = 1,
and common reference strings crs∈Gen(1λ), we have
Vf(crs,x,Prove(crs,x,w)) = 1.
Soundness: For all adversaries A,

Pr[x /∈ L ∧ Vf(crs,x,π)→ 1 : crs←$ Gen(1λ);
(x,π)←$A(crs)] = ε(λ).

Zero-Knowledge: There exists PPT simulator S =
(Scrs,SProve) such that, for all PPT adversaries A,

|Pr[AProve(crs,·,·)(crs)→ 1 : crs← Gen(1λ)]−

Pr[AS
′(crs,td,·,·)(crs)→ 1 : (crs, td)←Scrs(1λ)]|= ε(λ)

where S ′(crs, td,x,w) = SProve(crs, td,x).
Furthermore, Π is a proof of knowledge (PoK) sys-

tem if, for all PPT provers P ∗, there exists a PPT

algorithm EP∗ such that

|Pr[Vf(crs,x,π) = 1 ∧ (x,w) /∈R : crs← Gen(1λ);
(x,π)← P ∗(crs),w← EP∗(crs,x,π)]|= ε(λ)

For ease of reading, we denote by PoK{w :
R(x,w) = 1} the execution of Prove(crs,x,w).

Discrete Logarithm (DL) Assumption. Let G
be a finite cyclic group of order q = q(λ). Let g be
a generator of G, and h be a group element. The
discrete logarithm problem asks to find an integer
x ∈ Zq such that h = gx. The discrete logarithm
assumption states that, for any PPT algorithm A,
the probability of A solving a random instance of
the discrete logarithm problem is negligible.

Decisional Diffie-Hellman (DDH) Assump-
tion. Let G be a finite cyclic group of order q =
q(λ). Let g be a generator of G, and a,b,c ∈ Zq.
The decisional Diffie-Hellman problem asks to dis-
tinguish the tuple (g,ga,gb,ga·b) from (g,ga,gb,gc).
The decisional Diffie-Hellman assumption states
that, for any PPT algorithm A, the probability of
A solving a random instance of the decisional Diffie-
Hellman problem is negligible.

C Formal Security Analysis

We will show that Phoenix is partially oblivious,
hiding, binding, and forward secure, relying mainly
on the DDH assumption.

Note that the instantiation of Π in Figure 11 is
a well-known extension of the Schnorr proofs [5],
which is complete, sound, and zero-knowledge, as-
suming the DL assumption holds in G (implied by
the DDH assumption) and the two hash functions
are modeled as random oracles. Thus, in the follow-
ing, we will assume Π is sound and zero-knowledge.

For conciseness, consider an extended DDH prob-
lem, which asks to distinguish whether ci←$Zq for
i ∈ [t] or ci = a · bi for i ∈ [t], when given a tuple
(g,ga,gbi ,gci)ti=1 for some t= poly (λ). By standard
hybrid argument, it can be shown that if DDH is
hard in G, then so does the extended DDH.

Theorem C.1 (Partial Oblivious) Suppose the
DDH assumption holds in G, and HC is modeled as a
random oracle, then Phoenix is partially oblivious.

Proof: The idea of the proof is to replace the pseu-
dorandom values HC(un∗,pw∗b ,n∗C)kC for b∈{0,1} by
truly random values. Then, we can reverse the role
of pw0 and pw1. Formally, we prove by defining a
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Π.Gen(1λ)

H ←$H= {H : {0,1}∗→ Zq}
return crs :=H

Π.Vf((g,h,c1, c2,gS),π)

parse π as (h̄, c̄1, ḡS , s̄, k̄S)
c :=H(g,h,c1, c2,gS , h̄, c̄1, ḡS)

b1 := (cs̄1gk̄SS = c̄1 · ḡS · cc2)

b2 := (gs̄ = h̄ ·hc)
return b := (b1∧ b2)

Π.PoK{(s,kS) : c2 = cs1 ·g
kS
S ∧ h= gs}

r1, r2 ←$Zq
h̄ := gr1

c̄1 := cr1
1

ḡS := gr2
S

c :=H(g,h,c1, c2,gS , h̄, c̄1, ḡS)
s̄ := r1 + c ·s
k̄S := r2 + c ·kS
return π := (h̄, c̄1, ḡS , s̄, k̄S)

Figure 11: Instantiation of Π

sequence of hybrid experiments for b ∈ {0,1}, each
differs slightly from the previous:
EXPb,0: is identical to OblbΠ,A.
EXPb,1: The challenger simulates the random oracle
HC as follows. On query HC(un,pw,nC), it samples
a←$Zq and returns ga. This experiment is func-
tionally equivalent to Expb,0.
EXPb,2: When executing 〈C(skC ,un∗,pw∗b , ε),
A2(st)〉enrl, since aux = ε, the challenger picks the
client nonce n∗C randomly and programs the random
oracle HC on (un∗,pw∗b ,n∗C) and (un∗,pw∗1−b,n∗C). If
any oracle (including the random oracle) is queried
on input containing n∗C before, the challenger
aborts. This happens with probability O(2−λ)
for each oracle query. Thus, this experiment is
computationally indistinguishable to Expb,1.
EXPb,3: The challenger is given an extended DH-
tuple (g,gkC ,gγ ,gθ,gδ,gξ) with δ= kCγ and ξ = kCθ.
Since the challenger does not know kC , it com-
putes the pseudorandom values HC(un,pw,nC)kC
differently. Let a be such that HC(un,pw,nC)
is programmed to ga. The challenger com-
putes HC(un,pw,nC)kC as (gkC )a. Since no or-
acle is queried on input containing n∗C before
the challenge is requested, HC(un∗,pw∗b ,n∗C) is
not yet programmed. Upon receiving the chal-
lenge request (un∗,pw∗0,pw∗1) from A, it programs
HC(un∗,pw∗b ,n∗C) := gγ and HC(un∗,pw∗b ,n∗C)kC :=
gδ. Additionally, it programs HC(un∗,pw∗1−b,n∗C) :=
gθ and HC(un∗,pw∗1−b,n∗C)kC := gξ. This experiment
is functionally equivalent to EXPb,2.
EXPb,4: The challenger is given a random tuple (g,
gkC ,gγ ,gθ,gδ,gξ) with δ,ξ←$Zq. It simulates HC
as in EXPb,3. This experiment is computationally
indistinguishable from EXPb,3, by the (extended)
DDH assumption.

Observe that EXP0,4 and EXP1,4 are functionally

equivalent. Thus, we have Obl0Π,A being computa-
tionally indistinguishable from Obl1Π,A. �

Theorem C.2 (Hiding) Let q > 2λ. Suppose that
the DDH assumption holds in G, and HS is modeled
as a random oracle, then Phoenix is hiding.

Proof: The idea of the proof is to gradually switch
the challenge enrollment record to an entirely ran-
dom one using hybrid argument. After arriving at
that hybrid experiment, the information that can
be obtained by the adversary from the oracles can
also be obtained by guessing the password. Thus,
no adversary can perform better than the one which
performs an online dictionary attack. We prove for-
mally by defining a sequence of hybrid experiments,
each differs slightly from the previous:
EXP0: is identical to HidingΠ,A.
EXP1: The proofs are now simulated using the sim-
ulator S of the proof system Π. This experiment is
computationally indistinguishable from EXP0 by the
computational zero-knowledge property of Π.
EXP2: The challenger simulates the random ora-
cle HS as follows. When A queries HS(un,nS),
it samples γ←$Zq and programs HS(un,nS) := gγ .
It further computes HS(un,nS)kS = (gkS )γ . No-
tice that the knowledge of kS is no longer required
by the challenger. Furthermore, when executing
〈C(skC ,un∗,pw∗, ε),S(skS ,un∗, ε)〉enrl, since aux = ε,
the challenger picks fresh client and server nonces n∗C
and n∗S respectively randomly and programs the ran-
dom oracle HS on (un∗,n∗S). If any oracle (including
the random oracle) is queried on input containing
n∗S before, the challenger aborts. This happens with
probability O(2−λ) for each oracle query. Thus, this
experiment is computationally indistinguishable to
Exp1.

914    26th USENIX Security Symposium USENIX Association



EXP3: The challenger is given a DH-tuple
(g,gδ,gkS ,gη) with η = δ · kS . It sets pp := g and
computes pkS honestly. Eventually, A requests to
receive an enrollment record for un∗. The chal-
lenger programs HS(un∗,n∗S) := gδ and replaces
HS(un∗,n∗S)kS by gη. This experiment differs from
EXP2 only if A queries an oracle for inputs contain-
ing n∗S before requesting the challenge, which by our
assumption will never happen.
EXP4: The challenger is given a random tuple
(g,gδ,gkS ,gη) with η←$Zq. It simulates HS as in
EXP3. This experiment is computationally indistin-
guishable from EXP3 by the DDH assumption.
EXP5: In the validation oracle the server ig-
nores the first condition c2 = cs1 · HS(un,nS)kS ,
and only checks the second condition c3 =
cx1(c2/HS(un,nS)kS )y. At this point, note that s is
not used anywhere. We show by a Cramer-Shoup-
like argument [6] that this experiment is statistically
indistinguishable from EXP3.

Note that the only information about x and y
available to an unbounded distinguisher is the rela-
tions which are linearly dependent to logg z= x+sy.
Therefore, in the view of the distinguisher, the val-
ues of x and y are not uniquely determined, and can
only be guessed correctly with a probability of at
most 1/q. Suppose that the two experiments can
be distinguished with a probability higher than 1/q.
In such an event, A must have sent (c1, c2, c3,nS)
as the first message in an interaction with the val-
idation oracle on username un, such that the tuple
satisfies only the second condition but not the first
one. Let hS :=HS(un,nS)kS . Since the first condi-
tion is not satisfied, it holds that c2 6= cs1 ·hS . Let
s′ 6= s be such that c2 = cs

′
1 ·hS . Then, by the sec-

ond condition, we have c3 = cx1(c2/hS)y = cx+s′y
1 . In

other words, logc1 c3 = x+s′y. Since s′ 6= s, the rela-
tions logg z=x+sy and logc1 c3 =x+s′y are linearly
independent, meaning that the distinguisher is able
to figure out the values of x and y. However, this
contradicts to the fact that this cannot happen with
probability higher than 1/q.
EXP6: The challenger is given a DH-tuple (g,
gr,gs,gu) with u = rs. It sets pkS := (h,z)
where h := gs and z := gx(gs)y. The challenge
enrollment record is replaced by (T ∗1 ,T ∗2 ,T ∗3 ) =
(c∗1, c∗2 · HC(un,pw,nC)kC , c∗3), where (c∗1, c∗2, c∗3) :=
(gr,gu+η,grx+uy) (since HS(un∗,n∗S)kS has been
programmed to gη). Note that c∗3 can be pre-
computed before answering any oracle queries. This
experiment is functionally equivalent to EXP5.
EXP7: The challenger is given a random tuple
(g,gr,gs,gu) with u←$Zq. It simulates the chal-

lenge enrollment record as in EXP6. This experiment
is computationally indistinguishable from EXP6 by
the DDH assumption.
EXP8: The challenger samples r,s←$Zq (so that
it knows s again) and u←$Zq \ {rs} instead. This
experiment is different from EXP7 with probability
only 1/q, which is negligible.
EXP9: This is the most technical transition. In this
and the next (which is also the last) experiment,
we assume an unbounded challenger and only use
information-theoretic arguments. SupposeA queries
the validation oracle on un and sends (c1, c2, c3,n∗S)
to the server. We split into two cases. First,
(c1, c2, c3) = (c∗1 · gv, c∗2 · hv, c∗3 · zv) for some v ∈ Zq
(which is checkable by an unbounded challenger).
In this case, we call the adversary successful, and
the challenger outputs a simulated proof without
checking the second condition (it must be satisfied).
Otherwise, (c1, c2, c3) 6= (c∗1 · gv, c∗2 ·hv, c∗3 · zv) for all
v ∈ Zq. In this case, the challenger outputs ⊥ with-
out checking the second condition. We claim that
this experiment is indistinguishable from EXP8 by
the following information-theoretic argument.

Throughout the experiment, A learns the rela-
tions z = gx+sy, c∗2 = gu+η, and c∗3 = grx+uy. If A
is powerful, it might know logz = x+ sy, logc∗2 =
u+ η, and logc∗3 = rx+ uy. Substituting the first
and second into the third, we have logc∗3− r logz =
(logc∗2 − rs)y− ηy. Note that this is a quadratic
equation with two variables (y,η) which has expo-
nentially many solutions. η also counts as a variable
since HS(un,n∗S)kS are never revealed to A for all
un, and in particular for un = un∗. Suppose that A
queries the validation oracle on (un,nC ,nS) where
(un,nS) = (un∗,n∗S), and (c1, c2, c3) received from
the A satisfies the second condition. We have c3 =
cx1c

y
2g
−η·y. By substituting logz = x+ sy, we have

logc3− logc1 logz= (logc2− logc1 ·s)y−ηy. For this
relation to be satisfied, Amust either guess the tuple
(y,η) correctly, which happens with negligible prob-
ability, or keep the coefficients unchanged. For the
latter case, we have logc∗2−rs= logc2− logc1 ·s and
logc∗3−r logz = logc3− logc1 logz. Let logc1 = r+v
for some v ∈ Zq, or equivalently, c1 = c∗1 · gv. We
obtain c2 = c∗2 · (gs)v = c∗2 ·hv and c3 = c∗3 ·zv.
EXP10: The challenger replaces T ∗1 , T ∗2 and
T ∗3 by random group elements in G, and hence
the challenge enrollment record is independent
of pw∗. Internally, it stores (c∗1, c∗2, c∗3) :=
(T ∗1 ,T ∗2 /HC(un,pw,nC)kC ,T ∗3 ) so as to answer
queries to the validation oracle. This experiment
is functionally equivalent to EXP9.

In EXP10, the view of A is independent of pw∗
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unless it is successful in one of the Q queries to
the validation oracle on un∗. Among all successful
adversaries, A cannot do better than guessing pw∗
and hence (c∗1, c∗2, c∗3) correctly, and re-randomizes
the latter. Note that the probability of guessing the
correct pw∗ is upper-bounded by

∑Q+1
i=1 pi. To con-

clude, the probability that A wins in EXP0, that is
HidingΠ,A, is upper-bounded by

∑Q+1
i=1 pi+ ε(λ). �

Theorem C.3 (Binding) Suppose that the DL as-
sumption holds in G, and HS and HC are modeled
as random oracles, then Phoenix is binding.

Proof: Our idea is to program the random oracles
so that they map inputs to random group elements,
with their discrete logarithms known to the simula-
tor. Thus, if the adversary outputs two valid tuples
for the same enrollment record, the simulator can
solve a system of linear equations of the exponents.
It is then able to recover the discrete logarithm of a
group element which is used as a generator for sim-
ulating the random oracles. Formally, we prove by
reduction.

Suppose a PPT adversary A breaks binding
with non-negligible probability, we construct a PPT
solver B of the discrete logarithm problem. Let B
be a simulator which receives a discrete logarithm
problem instance (g1,g2). It generates crs honestly
and sends pp := (crs,g1) to A. B maintains dictio-
naries D1 and D2 mapping (un,nS) and (un,pw,nC)
respectively to random exponents. When A queries
the random oracle HS on (un,nS), it checks whether
HS(un,nS) is programmed. If so, it retrieves and
returns HS(un,nS). Otherwise, it samples a ran-
dom exponent a← Zq, records D1[un,nS ] := a, and
programs HS(un,nS) := ga1 . B simulates HC sim-
ilarly. When A queries the random oracle HC
on (un,pw,nC), it checks whether HC(un,pw,nC)
is programmed. If so, it retrieves and returns
HC(un,pw,nC). Otherwise, it samples a random ex-
ponent b← Zq, records D2[un,pw,nC ] := b, and pro-
grams HC(un,pw,nC) := gb2.

Assuming A is successful, it outputs (skC ,
T ∗,un∗0,pw∗0,state) such that 〈C(skC ,T ∗,un∗0,pw∗0),
A2(state)〉val outputs 1 at the client side. Parse
skC = kC , and T ∗ = (T ∗1 ,T ∗2 ,T ∗3 ,n∗S ,n∗C). Let
a0 and b0 be such that HS(un∗0,n∗S) = ga0

1 and
HC(un∗0,pw∗0,n∗C) = gb0

2 . This means that A is
able to produce a proof π0 of the knowledge of
(s,kS,0) such that T ∗2 = (T ∗1 )s ·HS(un∗0,n∗S)kS,0 ·
HC(un∗0,pw∗0,n∗C)kC = (T ∗1 )s ·ga0·kS,0

1 ·gb0·kC
2 and h=

gs1. Using the extractor of Π, B extracts (s,kS,0).
Next, A outputs (un∗1,pw∗1,state) such that

〈C(skC ,T ∗,un∗1,pw∗1),A(state)〉val outputs 1 at the

client side. Let a1 and b1 be such thatHS(un∗1,n∗S) =
ga1 and HC(un∗1,pw∗1,n∗C) = hb1 . This means that
A is able to produce a proof π1 of the knowledge
of (s,kS,1) such that T ∗2 = (T ∗1 )s ·HS(un∗1,n∗S)kS,1 ·
HC(un∗1,pw∗1,n∗C)kC = (T ∗1 )s ·ga1·kS,1

1 ·hb1·kC and h=
gs1. Using the extractor of Π, B extracts (s,kS,1).

Through simple arithmetic, we obtain the re-
lation g

a0·kS,0
1 · gb0·kC

2 = g
a1·kS,1
1 · gb1·kC

2 . That is,
logg1 g2 = (a1 ·kS,1−a0 ·kS,0)/(kC · (b0− b1)). Since
(un∗0,pw∗0) 6= (un∗1,pw∗1), b0 and b1 are sampled inde-
pendently at random. Thus the above expression is
well defined with overwhelming probability. B thus
outputs a1·kS,1−a0·kS,0

kC ·(b0−b1) and solves the discrete loga-
rithm problem with overwhelming probability. �

Theorem C.4 (Forward Security) Let L be a
leakage function such that L(T ) := (nS ,nC) for T =
(T1,T2,T3,nS ,nC). Phoenix is L-forward secure.

Proof: We prove by showing that each pair of
client and server secret keys output by the key gen-
eration algorithms can also be obtained via rotation
from any old pair of secret keys, and vice versa.

Consider the RotbΠ,A,L experiment. Let
(s,x,y,kS ,kC) ∈ Z5

q be the client and server secret
key components chosen by A. There is a one-to-one
correspondence between each (s′,x′,y′,k′S ,k′C) ∈ Z5

q

and each (α,β,γ,δ,η) ∈ Z5
q , given equivalently by

s′ = α ·s+β

x′ = α ·x+ δ

y′ = y+η

k′S = α ·kS +γ

k′C = α ·kC

and



α = k′C/kC

β = s′−α ·s
γ = k′S −α ·kS
δ = x′−α ·x
η = y′−y

.

Thus, the distribution of (s′,x′,y′,k′S ,k′C) which is
sampled uniformly from Z5

q and that which is com-
puted from a uniformly random tuple (α,β,γ,δ,η)
are identical.

Next, let T = (T1,T2,T3) given byA be of the form
(gr,gsrgkSS gkCC ,g

(x+sy)r). The new record T ′ is of
the form T ′ = (gr′ ,gs′r′gk

′
S
S g

k′C
C ,g

(x′+s′y′)r′), where if
b= 0 then r′ = r+v for a uniformly random v←$Zq,
and if b = 1 then r′←$Zq is sampled uniformly at
random. The two cases give identical distributions.
�
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