
Proceedings on Privacy Enhancing Technologies ; 2018 (2):64–84

Dominic Deuber, Matteo Ma�ei, Giulio Malavolta*, Max Rabkin, Dominique Schröder, and Mark
Simkin

Functional Credentials
Abstract: A functional credential allows a user to anony-
mously prove possession of a set of attributes that fulfills
a certain policy. The policies are arbitrary polynomially
computable predicates that are evaluated over arbitrary
attributes. The key feature of this primitive is the dele-
gation of verification to third parties, called designated
verifiers. The delegation protects the privacy of the pol-
icy: A designated verifier can verify that a user satisfies a
certain policy without learning anything about the pol-
icy itself. We illustrate the usefulness of this property
in di�erent applications, including outsourced databases
with access control. We present a new framework to
construct functional credentials that does not require
(non-interactive) zero-knowledge proofs. This is impor-
tant in settings where the statements are complex and
thus the resulting zero-knowledge proofs are not e�-
cient. Our construction is based on any predicate en-
cryption scheme and the security relies on standard as-
sumptions. A complexity analysis and an experimental
evaluation confirm the practicality of our approach.

Keywords: Anonymous Credentials, Anonymous Au-
thentication

DOI 10.1515/popets-2018-0013
Received 2017-08-31; revised 2017-12-15; accepted 2017-12-16.

1 Introduction
Anonymous credentials were proposed by Chaum [25]
and first fully realized in the seminal work by Camenisch
and Lysyanskaya [17]. This primitive allows users to
prove possession of a set of attributes that fulfills a cer-
tain policy without disclosing anything about the at-

Dominic Deuber: Friedrich-Alexander-Universität Erlangen-
Nürnberg, E-mail: dd@cs.fau.de
Matteo Ma�ei: TU Wien, matteo.ma�ei@tuwien.ac.at
*Corresponding Author: Giulio Malavolta: Friedrich-
Alexander-Universität Erlangen-Nürnberg, E-mail:
giulio.malavolta@fau.de
Max Rabkin: E-mail: max.rabkin@gmail.com
Dominique Schröder: Friedrich-Alexander-Universität
Erlangen-Nürnberg, E-mail: dominique.schroeder@fau.de
Mark Simkin: Aarhus University, E-mail: simkin@cs.au.dk

tributes beyond what is disclosed by the policy itself.
In this work, we suggest functional credentials (FC) as
a generalization and unification of (anonymous) creden-
tials and their derivates. In a functional credential, poli-
cies are arbitrary polynomially computable functions
that are evaluated on arbitrary attributes. Functional
credentials allow the delegation of verification to third
parties, called designated verifiers. This property states
that a designated verifier can verify that a certain user
holds a credential encoding attributes that satisfy the
desired policy but does not learn anything about the pol-
icy itself. The same holds also for the carrier of the
credential. Beyond constituting a theoretically interest-
ing primitive in its own right, functional credentials are
an ideal primitive in the context of privacy-enhancing
technologies in cloud-based scenarios where the service
provider (the designated verifier) is in charge of perform-
ing access control. In the following, we exemplify some
applications and discuss how our construction improves
the e�ciency of known solutions.

Verifiable Databases with Access Control. Re-
cently, several works have tackled the problem of obliv-
ious outsourced storage for data-sharing applications
with access control being enforced by an honest-but-
curious cloud server, such as, among others, group obliv-
ious RAM as suggested by Ma�ei et al. [37]. Oblivious-
ness in this setting means the cloud provider does not
even learn the access pattern to the data. Policy hid-
ing is crucial in this setting, since obliviousness would
be broken if the cloud provider would learn the access
control policy of the retrieved entry. The construction
of Ma�ei et al. [37] uses Groth-Sahai zero-knowledge
proofs [32] to enforce the access control. Since the ci-
phertexts are very large, these proofs are quite expen-
sive. Replacing Groth-Sahai proofs with functional cre-
dentials improves the e�ciency of the scheme by at least
one order of magnitude. A comprehensive discussion and
comparison is given in Section 4.

Offline Credit Score Systems. Before releasing
a credit card or opening an account, banks want to
check that the client’s financial status is above a cer-
tain threshold. This is achieved by contacting a credit
bureau, which tracks all relevant user activities and,
based on them, classifies the client’s financial status.
Interestingly, the formula used by the credit bureau is

Functional Credentials 65

kept confidential. Functional credentials o�er a privacy-
preserving solution to this problem: The credit bureau
plays the role of the issuer and initially provides the
bank, which plays the role of the verifier, with a del-
egation token encoding the confidential credit policy,
and the client with a credential encoding her financial
status. The client can later prove to the bank that her
credit score satisfies the bank’s requirements, without
any further interaction with the credit bureau.

Dating Systems. Here a central authority certifies the
attributes of each user, providing her with the respec-
tive credential. A user can then upload a delegation to-
ken encoding her partner preferences to the online dat-
ing system, the designated verifier. Other users, playing
the role of the prover, can determine whether their at-
tributes match the user preferences, which preferably
should be concealed from the service provider as well as
from the other users.

1.1 Our Techniques

The construction of an e�cient functional credential
scheme is non-trivial, due to the large expressiveness
and flexibility of the supported policies. Ideally, we
would like to avoid any restriction on the predicates
that can be encoded as verification policies while at the
same time guaranteeing the privacy of the policy. Such
expressive systems often require very heavy theoreti-
cal tools, for example, a straightforward instantiation
of functional credentials might build on top of zero-
knowledge proofs showing the validity of the encrypted
policy for the possessed credentials. However, this would
require the computation of zero-knowledge proofs for
operations over encrypted data (i.e., on fully homomor-
phic encryption schemes [30]), which would lead to pro-
hibitively expensive proofs. In order to avoid costly zero-
knowledge proofs, we present a scheme almost exclu-
sively built on top of predicate encryption. We leverage
the fact that predicate encryption provides a very natu-
ral way to prove statements: Given a ciphertext encod-
ing a given policy, a prover can simply decrypt such a ci-
phertext to convince a verifier that he knows a key for a
set of attributes that matches the policy. Our construc-
tion is largely inspired by the work of Parno, Raykova
and Vaikuntanathan [41], who build a verifiable com-
putation scheme from any attribute-based encryption,
basing on a similar observation. Since almost all anony-
mous credentials are based on encrypted or committed
signatures in combination with zero-knowledge proofs,

we view our approach as a substantial paradigm shift in
the context of anonymous credentials. In the following,
we discuss a strawman approach and explain the main
ideas behind our solution.

A Strawman Approach Based on Predicate En-
cryption. A predicate encryption scheme allows one to
embed an arbitrary set of attributes I in the cipher-
text and distribute decryption keys for predicates f .
The message is disclosed to users holding a key for a
certain predicate f only if f(I) = 1. Additionally, the
primitive guarantees that the set of attributes I is kept
private, except for the information trivially revealed
by the validity of the predicate for the encoded at-
tributes. This allows us to encode access control policies
as classes of attributes and users’ permissions as predi-
cates over these classes to obtain the desired expressive-
ness. The straightforward approach to verify credentials
is to prove in zero-knowledge the successful decryption
of a given ciphertext (for instance by means of Groth-
Sahai proofs [32]). However, the proof would scale with
the size of the ciphertext of a predicate encryption mak-
ing it unusable for practical purposes.

Interactive Proof of Decryption. Improving over
the e�ciency of the verification protocol requires elim-
inating the dependency between the generic zero-
knowledge frameworks and the policy encoded in
the ciphertext. To this extent we sacrifice the non-
interactivity of the zero-knowledge proof to obtain a
3-round interactive protocol for showing the credential
in an anonymous fashion. Leveraging interaction is nat-
ural in cloud-based services, given the online nature of
service providers. Our protocol closely follows the au-
thentication proof by Brandt et al. [10]: To prove the
knowledge of a key, the client simply decrypts the en-
cryption of a random message (sent by the verifier) and
sends a commitment of the resulting plaintext to the
verifier. The verifier reveals afterwards the randomness
that he used to compute the ciphertext so that the client
can locally verify that it was well formed. If this holds
true, the client sends the opening information. The ver-
ifier is now convinced of the possession of the key if
the opening reconstructs to the original plaintext of the
ciphertext that he sent to the client. This simple tech-
nique removes the occurrence of generic zero-knowledge
proofs over predicate encryption schemes.

Delegation of Verification. We realize our dele-
gated verification protocol with a technique very similar
to the one described above. Intuitively, a verification to-
ken is an encryption of a fixed message on the encoding

Functional Credentials 66

of the desired policy, together with the respective sig-
nature of the issuer. While the signature vouches for
the authenticity of the token, the ciphertext allows the
verifier to run a slightly divergent verification algorithm.
Exploiting the homomorphic properties of the predicate
encryption scheme, the designated verifier can modify
the plaintext and rerandomize the ciphertext to obtain
a correctly distributed instance and execute the stan-
dard verification algorithm. Beyond the verification of
a signature, the two interactive protocols are essentially
equivalent in terms of communication and computation.

Instantiation. A nice feature of our scheme is that
it makes only black-box use of the underlying predicate
encryption scheme. While the original motivation for
this was to avoid expensive zero-knowledge proofs, be-
ing independent from the implementation of the prim-
itive gives us the possibility to instantiate our protocol
with any predicate encryption scheme. In particular,
this means that our construction can directly benefit
from future advancements in the field. Currently known
predicate encryption schemes follow the blueprint of
Katz, Sahai, and Waters [34] and they only support
predicates of the family of inner products. Although the
authors show a generic transformation from inner prod-
ucts to boolean formulae, this imposes some limitations
on the resulting family of predicates: One cannot e�-
ciently encode negations of non-boolean attributes and
the size of the formula grows exponentially with the
maximum number of literals in each disjunctive clause.
Therefore the expressiveness of the scheme is limited
to boolean formulae in their k-CNF, for some fixed k.
The implementation of our construction su�ers from the
same shortcomings. For the reason specified above, in
this paper we present our protocol in its full generality
and we show some concrete examples of policies that
we can encode given the current knowledge of predicate
encryption schemes.

1.2 Our Contribution

The contributions of this work can be summarized as
follows:
– We put forward the notion of functional credentials

and formalize the corresponding security notions in
terms of cryptographic games. Functional creden-
tials subsume all known credentials, such as anony-
mous, delegatable, or attribute-based credentials
and we view our formalization as a natural unifica-
tion, along the lines of functional signatures [3, 8].

– We propose a construction that is secure in the stan-
dard model based on black-box cryptographic prim-
itives. Although generic, our scheme enjoys a very
e�cient instantiation in the random oracle model.

– We demonstrate the feasibility of our approach with
a C++ implementation. Even for large parameters,
the computation and verification of a credential
takes only a couple of seconds.

– We show the e�ectiveness of our techniques on
a recently proposed oblivious outsourced storage
scheme [37]: We instantiate the authentication
mechanism with functional credentials, obtaining
better scalability and an improvement in e�ciency
of at least one order of magnitude.

1.3 Related Work

Anonymous credentials were originally envisioned by
Chaum [24] and first fully, and e�ciently, realized by
Camenisch and Lysyanskaya [17]. Such credentials are
an enabling technology for anonymous attributed-based
access control in internet services. They allow users to
prove possession of a set of attributes fulfilling certain
policies in a privacy-preserving way without disclosing
anything more about the attributes than what is already
disclosed by the policy itself. These credentials neither
reveal any unnecessary information about the user, nor
are separate authentications by the same user linkable
by the verifier. Anonymous credentials are one of the
few advanced cryptographic primitives that has made
its way into practice, e.g., in the form of IBM’s Identity
Mixer [20].

Following the seminal paper of Camenisch and
Lysyanskaya, subsequent work has shown how to con-
struct anonymous credentials using �-protocols [19],
Groth-Sahai proofs [32], or other approaches [5]. Apart
from being interesting in their own right, they enjoy
a wide range of features, such as delegatability [1],
blacklistability [2], and revocability [14]. The concept of
anonymous credentials was also extended to support hi-
erarchical delegation of credentials [4] and decentralized
credential systems, where the assumption of a trusted
credential issuer was relaxed in the work of Camenisch
and Lehmann [16].

Recently, Hanser and Slamanig [33] (then revised
by Fuchsbauer et al. [29]) proposed the first credential
system where the communication complexity for cre-
dential showing is independent of the number of its
attributes. Unfortunately, their scheme only supports
conjunctive statements and thus lacks expressiveness.

Functional Credentials 67

Other works [12, 15] obtained similar results in stronger
simulation-based models.

The idea of a hidden policy was introduced in the
context of hidden credentials [9], where the anonymity
of the user is guaranteed by the underlying anonymous
identity-based encryption scheme. In the work of Brad-
shaw et al. [9] and follow up works [28] complex poli-
cies are handled by encoding disjunctions and conjunc-
tions in a secret sharing of the encrypted message. Even
though their approach is very e�cient, it has the funda-
mental drawback of not being collusion resistant. That
is, two users can combine their attributes to decrypt
ciphertexts that neither could decrypt on its own. In
the work of Camenish et al. [13] the notion of oblivious
transfer with hidden access policies is introduced. Their
approach can be seen as a form of implicit authentica-
tion, where a user has access to some data if he has
credentials that fulfill a policy attached to a ciphertext.
There is no verifier that is explicitly notified about the
success of this authentication. In this implicit authen-
tication the scheme is secure against malicious issuers,
but turning their scheme into an explicit authentica-
tion scheme loses security against malicious issuers as
we will show in this work (see Section 2.3). Although
their approach extended to the explicit authentication
setting comes close to our desired notion of functional
credentials, it still lacks expressiveness, since the poli-
cies are limited to eligible subsets of binary attributes.
Camenisch et al. [11] proposed a scheme with improved
expressiveness, but its realization is specific to the predi-
cate encryption scheme of Nishide et al. [38], which hides
the policy embedded in a ciphertext only partially. Both
of the aforementioned schemes rely on q-type assump-
tions, i.e., parametric in the number of queries of the
adversary, making it hard to analyze the concrete secu-
rity of the schemes.

The problem of delegated verification has been first
proposed, but not thoroughly formalized, in the work
of Wei and Ye [44]. Their solution leverages the homo-
morphic properties of the predicate encryption scheme
of Katz et al. [34], but only achieves semi-honest se-
curity. In a recent work Kolesnikov et al. [35] com-
bine attribute-based credentials and attributed-based
encryption to achieve a new notion of attribute-based
key exchange with the goal of letting a server establish
a shared secret key with a client if he has a set of certi-
fied attributes satisfying the server’s policy. The authors
explicitly state policy hiding as an open problem. To the
best of our knowledge, none of the currently known con-
structions provides a general-purpose, fully expressive,

fully secure attribute-based credential system that sup-
ports delegated verification and policy hiding.

Comparison. We outline an asymptotic comparison of
our generic construction with the most prominent cre-
dential schemes in the literature in Table 1. We provide
the reader with an overview over the costs associated
with each scheme, in terms of computation and com-
munication, and over the expressiveness of each scheme.
Our construction is the first to fully achieve the notion
of privacy of the policy without restricting the domain of
access control policies to selective attribute disclosure.
Here the caveat is that our approach relies generically on
predicate encryption and current instantiations support
only inner-product predicates, i.e., the class of predi-
cates that the scheme can encode is restricted to inner
products over a finite field. This means that, in order to
obtain full expressiveness, one must apply the transfor-
mation described by Katz et al. [34]. Such a transfor-
mation introduces an exponential factor in the number
of literals of each disjunctive clause of the resulting for-
mula. As an example, one can encode boolean formulae
in their 3-CNF with a cubic blowup. Nevertheless, we
believe that our construction represents an interesting
theoretical advancement in the landscape of anonymous
credentials, due to its simplicity and generality.

2 Functional Credentials
In this section, we introduce the notation and the def-
inition of functional credentials and the corresponding
notion of security. We denote by ⁄ œ N the security pa-
rameter and we address any function that is negligible
in the security parameter with negl(⁄) and any polyno-
mial function with poly(⁄). We say that an algorithm is
PPT if it is modelled as a probabilistic Turing machine
whose running time is bounded by some polynomially
bounded function in ⁄. We denote by A(·; r) the exe-
cution of the machine A(·) with a fixed random tape
r. Given a set S, we denote by x Ω S the sampling
of an element uniformly at random from S. We denote
an interactive protocol between algorithms A and B as
ÈA, BÍ. The set {1, . . . , n} is abbreviated as [n].

2.1 Definition of Functional Credentials

A basic credential system is composed of users, verifiers,
and issuers. The latter can issue credentials to users rel-
ative to some attributes. Users can prove to verifiers that

Functional Credentials 68

Scheme Assumptions Parameters (– attr.) Issuing Showing (t of –) Policy Properties
CRS Credential Issuer User Verifier User Anon. Unforg. PH

[18] sRSA O(–) O(1) O(–) O(–) O(–) O(–) R X X ≠
[19] LRSW O(–) O(–) O(–) O(–) O(–) O(–) R X X ≠
[21] q-ADHSDH O(1) O(–) O(–) O(–) O(–) O(1) S X X ≠
[22] XDH O(–) O(–) O(–) O(–) O(t) O(t) S X X ≠
[12] SXDH O(–) O(1) O(–) O(–) O(t) O(– ≠ t) S (X) X ≠
[29] SXDH ≠ O(1) O(–) O(–) O(t) O(– ≠ t) S (X) X ≠
[9] BDH ROM O(–) O(–) O(–) O(t) ≠ R X ≠ Part.
[13] BDH,XDH,SDH O(–) O(1) O(–) O(–) O(–) O(–) S (X) X X
[11] SXDH,SFP O(–) O(–) O(–) O(–) O(–) O(1) S (X) X Part.
[45] Gen. O(logk

–) O(logk
–) O(logk

–) O(logk
–) O(logk

–) O(logk
–) k-CNF X Sel. ≠

[44] GGM O(logk
–) O(logk

–) O(logk
–) O(logk

–) O(logk
–) O(logk

–) k-CNF HbC HbC HbC
[35] Gen. O(logc

–) O(logc
–) O(logc

–) O(logc
–) O(logc

–) O(logc
–) R X X ≠

Sec. 3 Gen. O(logk
–) O(1) O(logk

–) O(logk
–) O(logk

–) O(logk
–) k-CNF X X X

Table 1. Asymptotic comparison of the most popular credential schemes. We show the assumptions that the various schemes are
proven against: The strong RSA (sRSA), the Lysyanskaya, Rivest, Sahai, and Wolf (LRSW), the q-Asymmetric Double Hidden Strong
Di�e-Hellman (q-ADHSDH), the external Di�e-Hellman (XDH), the strong external Di�e-Hellman (SXDH), the bilinear Di�e-
Hellman (BDH), and the simultaneous flexible pairing (SFP). Here Gen. means generic assumption, GGM stands for Generic Group
Model, and the presence of a random oracle is denoted by ROM. The policy parameter measures the expressiveness of the policy that
the scheme support: R stands for any arbitrary polynomially computable relation over attributes, whereas S denotes the selective dis-
closure of a subset of the total attributes. k-CNF denotes formulae in their CNF with at most k literals in each clause. We denote by
logc(–) a polylogarithmic factor in –, for some constant c that depends on the underlying encryption scheme used. Whenever we write
logk(–) we refer to k as the bound on the number of literals of the formula. We also compare the schemes in terms of the properties
that they achieve: Anonymity, Unforgeability, and Policy-Hiding. Here (X) means that the anonymity is guaranteed also in the pres-
ence of a malicious issuer, Part. means that the scheme partially achieves the corresponding property, Sel. means that it achieves the
selective version of it, and HbC denotes the Honest-but-Curious settings.

their credentials satisfy a certain policy. Verification can
be delegated to third parties, called designated verifiers,
who can verify that a certain user satisfies a certain
policy but cannot learn anything about this policy. The
sets of users and verifiers (including designated verifiers)
are potentially dynamic and can grow over time. In our
model, the issuer assigns to each user a set of attributes
A and the verifier can later on check that A satisfies a
certain policy f . We denote the attribute universe by
� and the family of circuits that can be computed over
� by �. Note that we allow only the issuer to produce
valid delegation tokens to avoid trivial attacks on the
privacy of the users; see Section 2.3 for a more exten-
sive discussion on the matter.

Definition 1 (Functional Credential). A functional
credential scheme FC = (CKGen, GrantCred, Del,

ÈShowCred, VrfyCredÍ, ÈDelShowCred, DelVrfyCredÍ) for an
attribute universe � and a family of policies � consists
of the following PPT algorithms and protocols:

(osk, opk) Ω CKGen(1⁄): The key generation algorithm
gets as input the security parameter 1⁄ and it outputs a
key pair (osk, opk) for an issuer.

cred Ω GrantCred(osk, A): The grant credential algo-
rithm gets input the secret key osk of an issuer and a

non-empty set of attributes A ™ � and it outputs a cre-
dential cred for the corresponding set of attributes.

tok Ω Del(osk, f): The delegation algorithm gets as in-
put the private key osk of an issuer and a policy f œ C.
The algorithm outputs a verification token tok.

b Ω ÈShowCred(opk, cred, f), VrfyCred(opk, f)Í: This in-
teractive protocol is run by a user and a verifier.
ShowCred takes as input the public key opk of an issuer,
a credential cred, and a policy f , while VrfyCred takes as
input the public key opk of an issuer and a policy f . At
the end of the execution, VrfyCred outputs either 0 or 1.

b Ω ÈDelShowCred(opk, cred, tok), DelVrfyCred(opk, tok)Í:
This interactive protocol is run by a user and a desig-
nated verifier. DelShowCred takes as input the public key
opk of an issuer, a verification token tok, and a creden-
tial cred, while DelVrfyCred takes as input the public key
opk of an issuer and a verification token tok. At the end
of the execution, DelVrfyCred outputs either 0 or 1.

The definition of correctness for functional credentials
looks as follows.

Definition 2 (Correctness). A functional credential
scheme FC is correct if for all ⁄ œ N, for all
(osk, opk) œ CKGen(1⁄) for all A ™ �, for all cred œ

Functional Credentials 69

GrantCred(osk, A), for all f œ C such that f(A) = 1, and
for all tok œ Del(osk, f) it holds that

Pr[1 Ω ÈShowCred(opk, cred, f), VrfyCred(opk, f)Í] = 1

and

Pr
5
1 Ω

=
DelShowCred(opk, cred, tok),
DelVrfyCred(opk, tok)

>6
= 1.

2.2 Security of Functional Credentials

In this section, we propose our security model for func-
tional credentials and formalize the definitions accord-
ing to the game-based paradigm. We formalize the in-
formation that the adversary can gather from a running
system as oracles that the adversary can query adap-
tively and at any time. Furthermore, the adversary is
allowed to open interleaving sessions with each oracle.
Note that we consider a single issuer but the definitions
extend easily to multiple issuers.

Global Variables and Oracles. In the following se-
curity games, the adversary has access to a subset of the
following oracles: OUser adds honest users to the system,
OGrantCred

osk assigns a credential encoding a given a set of
attributes to an input user, OCorrupt allows the adversary
to corrupt any user. Furthermore, the adversary can see
arbitrarily many delegation tokens via the oracle ODel

osk
and is also allowed to play the role of the verifier in
both the verification and delegated verification proto-
col through the oracles OShowCred and ODelShowCred. The
oracles OAnon

b , OAnonDel
b , and OPH

b are used later in the
security experiments to compute the challenges for the
adversary. We assume that two global lists of users are
shared among the oracles: H is a list of honest users and
C is a list of corrupted users. Additionally, we keep a list
of user-credential pairs Q and a list of policy-token pairs
L. We assume Q and L to be available to all of the ora-
cles. We denote the i-th entry of Q by Q[i]. For ease of
notation, we implicitly assume that every oracle takes
as input the public key opk. The oracles are formalized
in the following.

OUser(id): The user adding oracle takes as input a user
identity id. If id œ H or id œ C it returns ‹, else it creates
a fresh entry id in the list of honest users H.

OCorrupt(id): The input of the corruption oracle is a user
identity id. If id ”œ H it returns ‹, else it moves the entry
corresponding to id from the list of honest users H to
the list of corrupted users C. Then, for all items of the
form (id, Ai, credi) œ Q, the oracle returns credi.

ODel
osk(f): On input a policy f the delegation oracle re-

turns tok Ω Del(osk, f) and adds (f, tok) to the list of
tokens L.

OGrantCred
osk (id, A): The credential granting oracle takes as

input a user identity id and a non-empty set of attributes
A ™ �. If id ”œ H and id ”œ C it returns ‹, else it runs
cred Ω GrantCred(osk, A) and adds the entry (id, A, cred)
to Q. If id œ C the oracle returns cred.

OShowCred(i, f): The credential showing oracle takes as
input an index i and a policy f . If i > |Q| the oracle
returns ‹, else it parses Q[i] as (id, A, cred) and executes:

ÈShowCred(opk, cred, f), ·Í

in interaction with the adversary.

ODelShowCred(i, tok): The delegated credential showing
oracle takes as input an index i and a verification token
tok. If i > |Q| the oracle returns ‹, else it parses Q[i] as
(id, A, cred) and executes:

ÈDelShowCred(opk, cred, tok), ·Í

in interaction with the adversary.

OAnon
b (i0, i1, f): The inputs to the anonymity oracle are

two indices (i0, i1) and a policy f . If i0 > |Q| or
i1 > |Q| the oracle returns ‹, else it parses Q[i0] as
(id0, A0, cred0) and Q[i1] as (id1, A1, cred1). If f(A0) ”=
f(A1), the oracle returns ‹. Otherwise it runs:

ÈShowCred(opk, credb, f), ·Í

in interaction with the adversary.

OAnonDel
b (i0, i1, tok): The inputs to the delegation

anonymity oracle are two indices (i0, i1) and a verifi-
cation token tok. If i0 > |Q| or i1 > |Q| the oracle re-
turns ‹, else it parses Q[i0] as (id0, A0, cred0) and Q[i1]
as (id1, A1, cred1). If there exists an entry of the form
(f, tok) œ L, the oracle checks whether f(A0) ”= f(A1)
and returns ‹ if this is the case. Otherwise it runs:

ÈDelShowCred(opk, credb, tok), ·Í

in interaction with the adversary.

OPH
b (f0, f1): The policy-hiding oracle takes as input two

challenge policies f0 and f1. If there exists an entry
(id, A, cred) œ Q such that id œ C and f0(A) ”= f1(A),
the oracles returns ‹. Otherwise it returns the token
tokb Ω Del(osk, fb). From this moment on, the queries
to OCorrupt are restricted to inputs id such that for all en-
tries (id, Ai, credi) œ Q it holds that f0(Ai) = f1(Ai). The

Functional Credentials 70

ExpUnfFC,A(1⁄)
(opk, osk) Ω CKGen(1⁄)
{f, tok} Ω AOosk (opk).
if f then

if ’(id, A, ·) œ Q s.t. id œ C : f(A) = 0 then
return ÈA, VrfyCred(opk, f)Í

if tok
if ’(ftok, tok) œ L, ’(id, A, ·) œ Q s.t. id œ C :
ftok(A) = 0 then

return ÈA, DelVrfyCred(opk, tok)Í
return 0

Fig. 1. Game for unforgeability.

same restriction is applied for the oracle ODelShowCred

when queried on tokb.

Unforgeability. The notion of unforgeability captures
the fact that any adversary cannot fool the verifier into
accepting a credential for a policy that he does not sat-
isfy. Intuitively, an adversary wins the unforgeability ex-
periment if he is able to convince an honest verifier that
he satisfies a certain policy while not holding an ap-
propriate credential. We allow the adversary to specify
any policy that no corrupted client can satisfy. The ad-
versary can also win the game by fooling a designated
verifier; in that case we check that no corrupted client
has a valid attribute set only if the token was the result
of a query of the adversary to the oracle ODel

osk . If the
verification token is fresh, i.e., not an output of ODel

osk ,
we do not run any additional check.

Definition 3. A functional credential scheme
FC is unforgeable if, for all PPT adver-
saries A having access to the oracles Oosk :=
(OUser, OCorrupt, ODel

osk , OGrantCred
osk , OShowCred, ODelShowCred),

there exists a negligible function negl(⁄) such that

Pr
#
ExpUnfFC,A(1⁄) = 1

$
Æ negl(⁄) ,

where ExpUnfFC,A(1⁄) is defined in Figure 1.

Anonymity. The definition of anonymity models the
fact that a corrupted verifier cannot distinguish between
any two users with di�erent credentials, as long as they
both satisfy or not satisfy the policy that they are tested
against. The essence of the game is captured by the or-
acles OAnon

b and OAnonDel
b . Depending on the internal bit

b, the oracles impersonate either one of the two input
credential owners in the verification algorithm, on some

ExpAno
b
FC,A(1⁄)

(opk, osk) Ω CKGen(1⁄)

bÕ Ω AO
ExpAno
b,osk (opk)

return (b = bÕ)

Fig. 2. Game for anonymity

ExpPH
b
FC,A(1⁄)

(opk, osk) Ω CKGen(1⁄)

bÕ Ω AO
ExpPH
b,osk (opk)

return (b = bÕ)

Fig. 3. Game for policy-hiding

policy chosen by the adversary. In both cases, to make
the game non-trivial, we must impose the restriction
that the policy (or the policy associated with the token)
is either satisfied or not by both credentials. We stress
that the oracles can be queried adaptively and polyno-
mially many times on arbitrary policies (or tokens) and
pairs of users. This implies that our definition captures
the notion of unlinkability: Any two credentials that sat-
isfy a certain policy (or that both do not satisfy it) are
indistinguishable to the eyes of the attacker.

Definition 4. A functional credential scheme FC is
anonymous if, for all PPT adversaries A having access
to oracles OExpAno

b,osk := (OUser, OCorrupt, ODel
osk , OGrantCred

osk ,

OShowCred, ODelShowCred, OAnon
b , OAnonDel

b), there exists a
negligible function negl(⁄) such that
--Pr

#
ExpAno

0
FC,A(1⁄) = 1

$
≠ Pr

#
ExpAno

1
FC,A(1⁄) = 1

$--
Æ negl(⁄) ,

where the two experiments are defined in Figure 2.

Policy-Hiding. The policy-hiding property describes
the fact that each honestly issued verification token does
not reveal any information about the policy that it is en-
coding beyond the validity of the credentials possessed
by the adversary. The core of the security is modeled by
the oracle OPH

b that, on input two policies by the adver-
sary, returns the verification token for either one of the
two depending on some internal coin b. To avoid triv-
ial attacks we must ensure that clients corrupted by the
adversary do not have any credential that have di�erent
access with respect to the two policies. Also the queries
to the oracle ODelShowCred are restricted to those creden-
tials having the same output on both of the challenge
policies.

Definition 5. A functional credential scheme FC is
policy-hiding if, for all PPT adversaries A having access
to oracles OExpPH

b,osk := (OUser, OCorrupt, ODel
osk , OGrantCred

osk ,

OShowCred, ODelShowCred, OPH
b), there exists a negligible

Functional Credentials 71

function negl(⁄) such that
--Pr

#
ExpPH

0
FC,A(1⁄) = 1

$
≠ Pr

#
ExpPH

1
FC,A(1⁄) = 1

$--
Æ negl(⁄) ,

where the two experiments are defined in Figure 3.

2.3 Discussion

Credential Delegation. Our model can be easily
adapted to support delegation of credentials by defining
the appropriate interface and providing the adversary
with the corresponding oracle in the security games. For
ease of explanation we, however, omit this functionality
in our formal description.

Unconditional Anonymity. We shall note that our
definitions, in particular the anonymity one, require a
trusted setup of the parameters of the issuer. This im-
plies that our security definitions guarantee anonymity
only under the assumption of a trustworthy issuer
that distributes the credentials. The reason behind this
choice is that unconditional anonymity in the presence
of delegated verifier is, according to our definition, im-
possible to achieve. In fact, it appears that the policy-
hiding property is in an inherent conflict with our goal:
An adversary could adaptively generate tokens for ar-
bitrarily restrictive policies and test the credential of a
user against them, eventually uniquely identifying the
carrier of a credential. Therefore, a scheme satisfying
anonymity in the presence of an untrustworthy issuer
must not support delegation of verification with policy-
hiding. Due to the novelty of this feature, our work
sacrifices the unconditional anonymity in favor of the
delegation of verification feature. For completeness, we
also outline how to modify our construction in order to
achieve full anonymity in Section 3.4.

Revocation. As identified in the work of Camenisch
et al. [15], an important feature to handle the dynamic
nature of the set of users of a credential system is the
possibility of revoking the credentials of some parties.
Although our model does not directly support such a
functionality, we can leverage the expressiveness of func-
tional credentials in order to achieve it. The basic idea
is to handle the revocation at the policy level: Since
the verification algorithm can test credentials against
any polynomial-time computable predicate, it is enough
to add a conjunctive clause to the policy that prevents
all the credentials possessing a certain attribute from
satisfying it. That is, given a certain attribute a to re-
voke, the verifier must update the verification policy f to

f Õ = f ·¬a. Whitelisting can be done analogously, using
disjunctive clauses instead. Note that, given the policy-
hiding property of the functional credential scheme, one
can even keep the set of revoked/whitelisted attributes
private by issuing a verification token tokf Õ for the up-
dated policy.

3 Generic Construction
In this section we introduce our generic construction.

3.1 Preliminaries

Here we recall the definitions of our cryptographic build-
ing blocks.

Predicate Encryption Scheme. A predicate encryp-
tion scheme allows one to embed attributes into the ci-
phertext and to encode arbitrary polynomial predicates
in the decryption keys. We use the following notation: �
denotes an arbitrary attribute domain and F the fam-
ily of polynomially computable predicates over �, which
may depend on the security parameter ⁄ and/or on the
public parameters of the scheme. Our definition follows
almost verbatim from the work of Katz et al. [34].

Definition 6. A predicate encryption scheme � for a
class of predicates F over the domain � consists of four
PPT algorithms (Setup, KGen, Enc, Dec) such that:

Setup(1⁄). The setup algorithm outputs a master secret
key dk and a master public key pk.

KGen(dk, f). The key generation algorithm takes as in-
put the master secret key and a predicate f œ F . It
outputs a key dkf .

Enc(pk, I, m). The encryption algorithm takes as input
the public key pk, a set of attributes I œ �, and a mes-
sage m in some associated message space. It returns a
ciphertext c.

Dec(dkf , c). The decryption algorithm takes as input a
secret key dkf and a ciphertext c. It outputs either a
message m or a distinguished message ‹.

For correctness, we require that for all ⁄ œ N, all m œ
{0, 1}poly(⁄), all (pk, dk) œ Setup(1⁄), all f œ F , all skf œ
KGen(dk, f), and all I œ �:
– If f(I) = 1 then Dec(dkf , Enc(pk, I, m)) = m.
– If f(I) = 0 then Dec(dkf , Enc(pk, I, m)) = ‹ with

all but negligible probability.

Functional Credentials 72

A predicate encryption achieves payload-hiding if the
message of a ciphertext is hidden from the eyes of the
users whose predicate does not satisfy the encoded set
of attributes. The attribute-hiding notion additionally
requires that the ciphertext conceals the corresponding
set of attributes. In the following we recall the definition
for the latter. Note that we consider the adaptive variant
of it.

Definition 7. A predicate encryption scheme � is
attribute-hiding with respect to F and � if for all PPT

adversaries A, there exists a negligible function negl(⁄)
such that:

--Pr
#
ExpAH

0
�,A(1⁄) = 1

$
≠ Pr

#
ExpAH

1
�,A(1⁄) = 1

$--
Æ negl(⁄) ,

where ExpAH
b
�,A(1⁄) is defined as follows.

ExpAH
b
�,A(1⁄)

(dk, pk) Ω Setup(1⁄)

((m0, m1), (I0, I1)) Ω AKGen(dk,·)(pk)
Let Q denote the set of oracle query-answer pairs.
if ’f s.t. (f, ·) œ Q : f(I0) = f(I1) and m0 = m1

or ’f s.t. (f, ·) œ Q : f(I0) = f(I1) = 0 then
c Ω Enc(pk, Ib, mb)

bÕ Ω AKGenú(dk,·)(c)
return b = bÕ

else return 0

Where KGen
ú, on input some f , checks the same condi-

tion as above and returns KGen(osk, f) if it holds.

Additional Properties. Let the message space of the
scheme be a multiplicative cyclic group of prime order
p. We additionally require the existence of an opera-
tor ¢ and an algorithm ReRand(·, ·) such that for all
key pairs (pk, dk) œ Setup(1⁄), for all pairs of messages
(m, n) œ {0, 1}2poly(⁄), for all attributes I œ �, for all
c œ Enc(pk, I, m), it holds that ReRand(pk, c ¢ n) ¥
Enc(pk, I, m · n), where ¥ denotes statistical indistin-
guishability.

Hierarchical Predicate Encryption. Recent devel-
opments in the field of predicate encryption explored the
possibility of a hierarchical delegation of predicates. The
work of Okamoto and Takashima [39] first introduced
the concept of hierarchical predicate encryption scheme,
where possessors of capabilities for certain predicates
can delegate to other users more restrictive capabilities.
Here the property is formalized only for inner-product

predicates but one can extend it to more generic classes
of functions. Loosely speaking, the owner of a key dkf ,
for a certain predicate f , can delegate keys for any predi-
cate f Õ such that, for all I œ �, f Õ(I) = 1 =∆ f(I) = 1.
Since our scheme does not primarily focus on delegation
of credentials, we refrain from formally defining such a
primitive and we only sketch how one can extend our
construction using hierarchical predicate encryption.

Commitment Scheme. We recall the notion of non-
interactive, equivocable, and extractable commitment
schemes. These commitments fulfill the usual definitions
of binding and hiding, but in addition they are equiv-
ocable and extractable, properties that were first intro-
duced by Canetti and Fischlin in the context of univer-
sally composable commitments [23].

Definition 8. A non-interactive commitment scheme
(P, V) is a two-phase protocol between two PPT par-
ties P and V, called the committer and the receiver,
respectively, such that the following holds: in the first
phase, the commitment phase, given the common refer-
ence string crs, P commits to a message m by computing
a pair (com, decom) and sending com to V. In the sec-
ond phase (the decommitment phase) P reveals the key
decom to V. V checks whether the decommitment key is
valid; if not, V outputs ‹, meaning that he rejects the
decommitment from P, otherwise V can e�ciently com-
pute the message m.

For correctness, we require that for all crs œ {0, 1}poly(⁄),
for all m œ {0, 1}poly(⁄), for all (com, decom) œ P(crs, m)
there exists a negligible function negl(⁄) in the security
parameter ⁄ such that:

Pr[m Ω V(crs, com, decom)] Ø 1 ≠ negl(⁄) .

A commitment scheme is hiding if any honestly gen-
erated commitment com reveals no information about
the committed message m. Additionally, a commit-
ment scheme is binding if there does not exist any
e�cient algorithm that is able to output two keys
(decom0, decom1) for the same commitment com such
that they open it to two di�erent values. We do not for-
mally define these two properties as they are implied
by the following two (stronger) requirements. Loosely
speaking, a commitment scheme is equivocable if one
can sample a trapdoor common reference string from
a distribution that is computationally indistinguishable
from that of the original that allows the possessor of the
trapdoor to cheat during the opening of a commitment.
In fact, the trapdoor makes it possible for the prover to

Functional Credentials 73

convince the verifier that a previously computed com-
mitment opens to an arbitrary message. Additionally,
the extractability property guarantees that the posses-
sor of the trapdoor can extract the committed value
from any honestly generated commitment, without the
opening.

Definition 9. A non-interactive commitment scheme
(P, V) is equivocable and extractable if there exists a
tuple of PPT algorithms (E , E0

Eq, E1
Eq, EExt) such that for

all m œ {0, 1}poly(⁄), for all (crs, –) œ E(1⁄), com œ
E0

Eq(crs, –), and decom œ E1
Eq(crs, –, com, m) it holds that:

m Ω V(crs, com, decom) and the families of random vari-
ables

;
crs Ω {0, 1}poly(⁄); (com, decom) Ω P(crs, m) :
(crs, com, decom)

<

and
I

{(crs, –) Ω E(1⁄); com Ω E0
Eq(crs, –);

decom Ω E1
Eq(crs, –, com, m) : (crs, com, decom)

J

are computationally indistinguishable. Additionally it
must hold that there exists a negligible function negl(⁄)
such that for all algorithms Pú, for all m œ {0, 1}poly(⁄):

Pr

S

WWU

(crs, –) Ω E(1⁄);
(com, decom) Ω Pú(crs, m);
mÕ Ω EExt(crs, –, com) :
V(crs, com, decom) = mÕ

T

XXV ≠

Pr

S

U
crs Ω {0, 1}poly(⁄);
(com, decom) Ω Pú(crs, m) :
V(crs, com, decom) = m

T

V

Æ negl(⁄) .

Digital Signature Scheme. We assume that the
reader is familiar with the standard definition of ex-
istentially unforgeable [31] signature schemes Sig =
(SKGen, Sig, Vf) and omit the formal definition.

3.2 The Scheme

In the following we present our construction for a func-
tional credential scheme FC. Our construction makes
black-box usage of any predicate encryption scheme
whose attribute space � is a set of binary strings of
length polynomial in the security parameter and whose
family of predicates F is a collection of polynomial-
time computable functions over �. We encode binary
descriptions of policies (which belong to �) in cipher-
texts, and we define f as the predicate that evaluates

the circuit encoded in the ciphertext over some hard-
coded set of attributes. Note that f is a polynomially
computable function over � and it is therefore a valid
predicate for a secret key of the scheme. Jumping ahead
to our instantiation, we can avoid the costly dual func-
tion encoding by exploiting the structure of the underly-
ing predicate encryption scheme. A concrete example of
our encoding for a boolean formula is given in Section 4.
Let � = (Setup, KGen, Enc, Dec) be a predicate encryp-
tion scheme, let (P, V) be a non-interactive commitment
scheme and let Sig = (SKGen, Sig, Vf) be a digital signa-
ture scheme. The formal description of the construction
is elaborated below.

CKGen(1⁄): The key generation algorithm runs
(dk, pk) Ω Setup(1⁄), (sk, vk) Ω SKGen(1⁄), and
uniformly samples crs Ω {0, 1}poly(⁄). It returns
opk = (pk, vk, crs) and osk = (dk, sk, opk).

GrantCred(osk, A): The grant credential algorithm parses
osk as (dk, sk, opk) and defines the predicate fA(g) that
takes as input the description of some predicate g and
returns g(A). Then the algorithm executes dkfA Ω
KGen(dk, fA) and returns cred = dkfA .

Del(osk, f): The delegation algorithm parses osk as
(dk, sk, opk) and opk as (pk, vk, crs). It generates c Ω
Enc(pk, f, 1), where f is a description of the input pred-
icate. The algorithm runs ‡ Ω Sig(sk, c) and returns
tok = (c, ‡).

ÈShowCred(opk, cred, f), VrfyCred(opk, f)Í: The idea be-
hind the interactive protocol is that the prover shows
the possession of a certain credential cred by decrypting
a ciphertext c Ω Enc(pk, f, s; t) that encodes the de-
sired policy and is uniformly distributed in the appro-
priate domain. To make sure that the ciphertext was
honestly computed, the prover first commits to the re-
sult of the decryption and let the verifier disclose the
randomness t that was used to compute the ciphertext.
If indeed the ciphertext was honestly generated, then
the prover sends the decommitment information, other-
wise it aborts the protocol. The verifier accepts if the de-
commitment information reconstructs to the plaintext
s of the original ciphertext. A similar technique based
on the commitment of the randomness r is used to en-
sure that the ciphertext is randomly generated. The full
protocol is depicted in Figure 4.

ÈDelShowCred(opk, cred, tok), DelVrfyCred(opk, tok)Í: The
interactive algorithm for delegated verification closely
resembles the one above, with the di�erence that the ci-
phertext to be decrypted is not generated by the verifier
but is a rerandomization of a token received from the

Functional Credentials 74

VrfyCred(opk, f) ShowCred(opk, cred, f)

parse opk = (pk, vk, crs) parse opk = (pk, vk, crs)

r Ω {0, 1}poly(⁄); (com0, decom0) Ω P(crs, r)

com0
≠≠≠≠≠≠≠≠≠≠≠æ

rÕ Ω {0, 1}poly(⁄)

r
Õ

Ω≠≠≠≠≠≠≠≠≠≠≠

sÎt = r ü rÕ; c Ω Enc(pk, f, s; t)

c

≠≠≠≠≠≠≠≠≠≠≠æ

m Ω Dec(cred, c); (com1, decom1) Ω P(crs, m)

com1
Ω≠≠≠≠≠≠≠≠≠≠≠

decom0
≠≠≠≠≠≠≠≠≠≠≠æ

if V(crs, com0, decom0) ü rÕ = sÕ||tÕ

such that c = Enc(pk, f, sÕ; tÕ) then

decom1
Ω≠≠≠≠≠≠≠≠≠≠≠

return s = V(crs, com1, decom1) else abort

Fig. 4. Verification protocol.

issuer. The token is signed with the key of the issuer
to vouch for its authenticity. We elaborate a pictorial
description of the protocol in Figure 5.

3.3 Security Analysis

In the following we formally state the security of our
construction as defined in Section 3.

Theorem 1. Let � = (Setup, KGen, Enc, Dec) be
a homomorphic attribute-hiding predicate encryption
scheme, Sig = (SKGen, Sig, Vf) be an existentially un-
forgeable digital signature scheme, and (P, V) be an
equivocable and extractable commitment scheme, then
FC is an unforgeable, anonymous, and policy-hiding
functional credential scheme.

Security is defined as the existence of a simulator for
each corrupted party. Note that, as opposed to generic
proofs of knowledge, our simulator cannot extract the
witness (the secret key for a certain predicate) of a suc-
cessful run. However, the payload-hiding of the predi-
cate encryption scheme guarantees that the possession

of the key is necessary to decrypt a given ciphertext.
It follows that we can prove the scheme secure without
additional assumptions. For a formal treatment of the
security proof we refer the reader to Appendix A.

3.4 Extensions

Unconditional Anonymity. We now show how to
modify our construction to achieve anonymity in the
presence of a malicious issuer, in the common reference
string model: The main observation is that the verifi-
cation protocol remains anonymous even if the master
secret key of the predicate encryption scheme is leaked,
i.e., the anonymity of our construction does not rely on
the security of the predicate encryption scheme (see Ap-
pendix A for details). Therefore, in order to obtain full
anonymity, our construction must guarantee that the
public parameters and the credentials issued by any is-
suer are constructed accordingly to the specifications
of the algorithms. This can be easily realized by at-
taching non-interactive zero-knowledge proofs of well-
formedness to the public key and to each credential,

Functional Credentials 75

DelVrfyCred(opk, tok) DelShowCred(opk, cred, tok)

parse opk = (pk, vk, crs) parse opk = (pk, vk, crs)
parse tok = (cÕ, ‡) parse tok = (cÕ, ‡)
if 1 ”= Vf(vk, cÕ, ‡) then abort if 1 ”= Vf(vk, cÕ, ‡) then abort

r Ω {0, 1}poly(⁄); (com0, decom0) Ω P(crs, r)

com0
≠≠≠≠≠≠≠≠≠≠≠æ

rÕ Ω {0, 1}poly(⁄)

r
Õ

Ω≠≠≠≠≠≠≠≠≠≠≠

sÎt = r ü rÕ; c Ω ReRand(pk, cÕ ¢ s; t)

c

≠≠≠≠≠≠≠≠≠≠≠æ

m Ω Dec(cred, c); (com1, decom1) Ω P(crs, m)

com1
Ω≠≠≠≠≠≠≠≠≠≠≠

decom0
≠≠≠≠≠≠≠≠≠≠≠æ

if V(crs, com0, decom0) ü rÕ = sÕ||tÕ

such that c = ReRand(pk, cÕ ¢ sÕ; tÕ) then

decom1
Ω≠≠≠≠≠≠≠≠≠≠≠

return s = V(crs, com1, decom1) else abort

Fig. 5. Delegated Verification protocol.

which can be e�ciently checked by any user. Proofs in
the common reference string model can be instantiated
using the Groth-Sahai framework [32]. Note that this so-
lution introduces a significant computational overhead
in the system initialization and in the credential issu-
ing (the issuer must compute the proofs and each user
must verify them), but it does not a�ect the verification
algorithm, arguably the most frequently executed oper-
ation of a credential system. As we discussed before,
unconditional anonymity cannot be achieved together
with a policy-hiding delegation of verification, therefore
the credential system must not support delegation of
verification tokens. This means that a payload-hiding
predicate encryption scheme would su�ce to guarantee
the security of our protocol, allowing us to instantiate
our construction with a broader class of schemes [7, 43].

Delegation of Credentials. Hierarchical predicate
encryption provides a very natural way to delegate cre-
dentials: A credential for a set of attributes A corre-
sponds to a decryption key dkfA , therefore the owner
of dkfA can delegate a credential for a set A

Õ by gener-

ating the corresponding secret key dkf Õ
A
. Note that one

can only delegate keys for less powerful predicates, i.e.,
it must hold that f Õ

A(g) = 1 =∆ fA(g) = 1. Since
fA evaluates some input function g on A, we have that
A

Õ ™ A. Clearly the same holds for the specific case of
inner-product schemes.

4 Experimental Evaluation
In this section we show how to instantiate our generic
construction and we provide the reader with an experi-
mental evaluation of our scheme.

Predicate Encoding. Recall that our protocol relies
generically on a predicate encryption scheme and known
instances of predicate encryption support only inner-
product predicates. Specifically, the schemes have an
attribute domain � = Zn

p and a corresponding class of
predicates F =

)
fy̨

--y̨ œ Zn
p

*
, where fy̨ : Zn

p æ {0, 1} is

Functional Credentials 76

defined as

fy̨(x̨) =
I

1 if Èx̨, y̨Í © 0, and,
0 otherwise.

Using the generic transformation described by Katz et
al. [34], we can encode boolean formulae in their k-CNF
(for some fixed k) as inner product evaluations. As an
example, consider the policy X > 18. Let (X1, . . . , Xm)
and (L1, . . . , Lm) be the bit representations (starting
from the most significant bit) of X and 18, respectively.
Such a policy admits an e�cient representation as a
DNF formula:

mfl

i=1

Q

a
i≠1fi

j=1
(Xj ü Lj) · (Xi ü Li) · Xi

R

b .

Note that such a formula can be converted into an equiv-
alent CNF using De Morgan’s law, which may cause an
exponential expansion of the formula. For this reason we
consider only a constant amount of boolean variables.
In our encoding each boolean variable B is associated
with a unique variable b œ Zp that can take one of the
two values: b0 if B = 0 and b1 if B = 1, so in this con-
text checking B = 1 means checking whether b = b1.
Consider the following multivariate polynomial

P (x1, . . . , xm) =
mr

i=1

A
i≠1q
j=1

ri,j

1
xj ≠ e

Lj

j

2
+ si

1
xi ≠ eLi

i

2
+ ti

!
xi ≠ e1

i

"
B

where the terms
)

e0
i , e1

i

*
iœ[m] correspond to unique Zp

elements and the vectors (r̨, s̨, t̨) are randomly chosen
by the encoder. Recall that in our scheme policies are
encoded at encryption time so the randomness is taken
from the random coins of the encryption algorithm. We
stress that boolean negations are handled associating
an independent element of Zp, e.g., Lj is encoded as
e

Lj

j . Expanding the equation above and assigning a new
variable to each monomial, we obtain a polynomial P (x̨)
that evaluates to 0 only if the vector x̨ is a satisfying as-
signment for the formula as described above. Note that
the evaluation of P corresponds to the computation of
an inner product over vectors in Zn

p , where any n Ø 2m

su�ces to evaluate P . The vector size n imposes a bound
on the size of the boolean formula that can be encoded
in each ciphertext, due to the exponential blowup of the
disjunctive clauses. Therefore one must show that the
scheme remains e�cient for large values of n, in order
to encode meaningful policies.

4.1 Implementation

In the following we elaborate on the details of the imple-
mentation and we present an experimental evaluation of
our construction.

Cryptographic Instantiations. In our instantia-
tion, we use the adaptively secure inner-product en-
cryption scheme of Okamoto and Takashima [40] as
a predicate encryption, and Schnorr’s signatures [42].
Although equivocable and extractable commitment
schemes are known to exist in the common reference
string model [27], for e�ciency reasons we instantiate
our commitment scheme in the random oracle model [6]
with the well known construction H(m, r). Throughout
the following paragraphs, we fix the security parameter
to be ⁄ = 128. The random oracle is implemented us-
ing SHA-256. Note that the length of the messages that
we commit to is proportional to the security parameter,
but fixed throughout the execution of our protocol.

Experiments. We implemented our cryptographic con-
struction in C++ using the PBC library [36] with the
default curve, which is y2 = x3 ≠ x over the field Fp for
some prime p © 3 mod 4, on commodity hardware (i7
processor with 8 threads). We use OpenMP [26] for par-
allelization. The running times of our scheme are largely
dominated by the operations relative to the predicate
encryption scheme. We evaluated the computational ef-
ficiency of the algorithms of our construction in rela-
tion to the length n of the vector of the inner-product
predicate encryption scheme. Recall that the value of n

induces an upper bound on the size of the policy that
one can encode in our construction. Our prototype im-
plementation neglects one-time operations such as setup
and credential generation and focuses on the recurrent
interactive algorithms for showing and verifying the va-
lidity of a credential. We report the running times of
the verification and the showing algorithms in Figure 6
and Figure 7, respectively. Each measurement is the av-
erage of 100 trials with standard deviation error bars.
The magnitude of the standard deviation is explained
by the fact that the runtime of the algorithms is largely
dominated by the operations over the predicate encryp-
tion scheme (two encryptions and one decryption). Since
a credential corresponds to a secret key of the scheme
of Okamoto and Takashima [40], the size of a credential
is constant and corresponds to 11 elements of the corre-
sponding cyclic group. Note that the computation per-
formed in the interactive protocol of delegated verifica-
tion is the same as the standard verification (except for
the verification of a signature from both parties) which

Functional Credentials 77

0 200 400 600 800 1,000
0

5

10

15

Vector length n

R
un

ni
ng

tim
e

(s
)

Fig. 6. Running times of VrfyCred.

0 200 400 600 800 1,000
0

10

20

Vector length n

R
un

ni
ng

tim
e

(s
)

Fig. 7. Running times of ShowCred.

is why we do not explicitly state the numbers here. Re-
markably, in our parallelized implementation, the total
computation of the interactive verification protocol for
n = 103 is on the order of seconds (approximately 21).

Functional Credentials in ORAM. To demonstrate
the general applicability of our functional credential
construction, we deploy it in the setting of Group
ORAM (GORAM) [37], a state-of-the-art multi-client
oblivious outsourced storage in which access control is
enforced via predicate encryption and zero-knowledge
proofs. More precisely, the authors encode the access
control policy for each entry in a predicate encryption
ciphertext and distribute a key to each client accord-
ing to her permissions. Upon modification of a certain
entry, the client must show a proof of knowledge of a
key that allows her to successfully decrypt the associ-
ated predicate encryption ciphertext. Note that here the
length n of the vector space supported by the predi-
cate encryption bounds from above the total number
of users of the system. Our delegated verification pro-
tocol can be plugged in GORAM in order to provide
the same functionality while significantly boosting the
performance. We compare in Table 2 the time associ-
ated with the computation and verification of a zero-
knowledge proof (as implemented inGORAM) over a

Number of clients 3 4 5 6 7 8 9 10
GORAM (Server) 1002 1282 1489 1845 2111 2388 2793 3113
GORAM (Client) 1719 2184 2675 3136 3620 4121 4753 5239

This work (Server) 44 56 66 74 86 98 105 115
This work (Client) 65 83 100 114 133 152 164 181

Table 2. E�ciency improvements over GORAM [37] in terms of
computation time for showing (Client) and verifying (Server) a
credential. All of the measurements are expressed in milliseconds.

predicate encryption scheme with our functional cre-
dential scheme, parametrized by the number of clients
n supported by the system. We stress that GORAM
implements the scheme of Katz et al. [34] and there-
fore achieves a weaker notion of security compared to
our scheme. Nevertheless, we observe that our approach
substantially increases the scalability of the system with
respect to the number of users, resulting in an e�ciency
improvement of one order of magnitude for 10 clients (5 s
vs 0.2 s on the client-side and 3 s vs 0.1 s on the server
side). We expect the gap to increase together with the
number of clients.

5 Conclusions
This work introduces functional credentials. We formal-
ize anonymous functional credentials and their security
notions in terms of cryptographic games. We propose
a general realization in the standard model with an ef-
ficient instantiation in the random oracle model. Our
performance evaluations show that even for large pa-
rameters the computations for showing and verifying
credentials is feasible for practical applications.

Acknowledgments
This research is based upon work supported by the
German research foundation (DFG) through the collab-
orative research center 1223, by the German Federal
Ministry of Education and Research (BMBF) through
the project PROMISE (16KIS0763), and by the state
of Bavaria at the Nuremberg Campus of Technol-
ogy (NCT). NCT is a research cooperation between
the Friedrich-Alexander-Universität Erlangen-Nürnberg
(FAU) and the Technische Hochschule Nürnberg Georg
Simon Ohm (THN). This works was partly supported
by the FFG Bridge 1 project pDLART, the ERC con-
solidator grant Browsec, and the FWF Doctoral College
LogiCS.

Functional Credentials 78

References
[1] T. Acar and L. Nguyen. Revocation for delegatable anony-

mous credentials. In D. Catalano, N. Fazio, R. Gennaro,
and A. Nicolosi, editors, PKC 2011, volume 6571 of LNCS,
pages 423–440, Taormina, Italy, Mar. 6–9, 2011. Springer,
Heidelberg, Germany.

[2] M. H. Au, A. Kapadia, and W. Susilo. BLACR: TTP-free
blacklistable anonymous credentials with reputation. In
NDSS 2012, San Diego, California, USA, Feb. 5–8, 2012.
The Internet Society.

[3] M. Backes, S. Meiser, and D. Schröder. Delegatable func-
tional signatures. In C.-M. Cheng, K.-M. Chung, G. Per-
siano, and B.-Y. Yang, editors, PKC 2016, Part I, volume
9614 of LNCS, pages 357–386, Taipei, Taiwan, Mar. 6–9,
2016. Springer, Heidelberg, Germany.

[4] M. Belenkiy, J. Camenisch, M. Chase, M. Kohlweiss,
A. Lysyanskaya, and H. Shacham. Randomizable proofs
and delegatable anonymous credentials. In S. Halevi, edi-
tor, CRYPTO 2009, volume 5677 of LNCS, pages 108–125,
Santa Barbara, CA, USA, Aug. 16–20, 2009. Springer, Hei-
delberg, Germany.

[5] M. Belenkiy, M. Chase, M. Kohlweiss, and A. Lysyanskaya.
P-signatures and noninteractive anonymous credentials.
In R. Canetti, editor, TCC 2008, volume 4948 of LNCS,
pages 356–374, San Francisco, CA, USA, Mar. 19–21, 2008.
Springer, Heidelberg, Germany.

[6] M. Bellare and P. Rogaway. Random oracles are practical:
A paradigm for designing e�cient protocols. In V. Ashby,
editor, ACM CCS 93, pages 62–73, Fairfax, Virginia, USA,
Nov. 3–5, 1993. ACM Press.

[7] J. Bethencourt, A. Sahai, and B. Waters. Ciphertext-policy
attribute-based encryption. In 2007 IEEE Symposium on

Security and Privacy, pages 321–334, Oakland, California,
USA, May 20–23, 2007. IEEE Computer Society Press.

[8] E. Boyle, S. Goldwasser, and I. Ivan. Functional signa-
tures and pseudorandom functions. In H. Krawczyk, editor,
PKC 2014, volume 8383 of LNCS, pages 501–519, Buenos
Aires, Argentina, Mar. 26–28, 2014. Springer, Heidelberg,
Germany.

[9] R. W. Bradshaw, J. E. Holt, and K. E. Seamons. Conceal-
ing complex policies with hidden credentials. In V. Atluri,
B. Pfitzmann, and P. McDaniel, editors, ACM CCS 04,
pages 146–157, Washington D.C., USA, Oct. 25–29, 2004.
ACM Press.

[10] J. Brandt, I. Damgård, P. Landrock, and T. P. Pedersen.
Zero-knowledge authentication scheme with secret key ex-
change (extended abstract) (rump session). In S. Gold-
wasser, editor, CRYPTO’88, volume 403 of LNCS, pages
583–588, Santa Barbara, CA, USA, Aug. 21–25, 1990.
Springer, Heidelberg, Germany.

[11] J. Camenisch, M. Dubovitskaya, R. R. Enderlein, and
G. Neven. Oblivious transfer with hidden access control
from attribute-based encryption. In I. Visconti and R. D.
Prisco, editors, SCN 12, volume 7485 of LNCS, pages 559–
579, Amalfi, Italy, Sept. 5–7, 2012. Springer, Heidelberg,
Germany.

[12] J. Camenisch, M. Dubovitskaya, K. Haralambiev, and
M. Kohlweiss. Composable and modular anonymous cre-

dentials: Definitions and practical constructions. In T. Iwata
and J. H. Cheon, editors, ASIACRYPT 2015, Part II, volume
9453 of LNCS, pages 262–288, Auckland, New Zealand,
Nov. 30 – Dec. 3, 2015. Springer, Heidelberg, Germany.

[13] J. Camenisch, M. Dubovitskaya, G. Neven, and G. M. Za-
verucha. Oblivious transfer with hidden access control poli-
cies. In D. Catalano, N. Fazio, R. Gennaro, and A. Nicolosi,
editors, PKC 2011, volume 6571 of LNCS, pages 192–209,
Taormina, Italy, Mar. 6–9, 2011. Springer, Heidelberg, Ger-
many.

[14] J. Camenisch, M. Kohlweiss, and C. Soriente. Solving re-
vocation with e�cient update of anonymous credentials. In
J. A. Garay and R. D. Prisco, editors, SCN 10, volume 6280
of LNCS, pages 454–471, Amalfi, Italy, Sept. 13–15, 2010.
Springer, Heidelberg, Germany.

[15] J. Camenisch, S. Krenn, A. Lehmann, G. L. Mikkelsen,
G. Neven, and M. Ø. Pedersen. Formal treatment of
privacy-enhancing credential systems. Cryptology ePrint
Archive, Report 2014/708, 2014. http://eprint.iacr.org/
2014/708.

[16] J. Camenisch and A. Lehmann. (Un)linkable pseudonyms for
governmental databases. In I. Ray, N. Li, and C. Kruegel:,
editors, ACM CCS 15, pages 1467–1479, Denver, CO, USA,
Oct. 12–16, 2015. ACM Press.

[17] J. Camenisch and A. Lysyanskaya. An e�cient system
for non-transferable anonymous credentials with optional
anonymity revocation. In B. Pfitzmann, editor, EURO-

CRYPT 2001, volume 2045 of LNCS, pages 93–118, Inns-
bruck, Austria, May 6–10, 2001. Springer, Heidelberg, Ger-
many.

[18] J. Camenisch and A. Lysyanskaya. A signature scheme with
e�cient protocols. In S. Cimato, C. Galdi, and G. Persiano,
editors, SCN 02, volume 2576 of LNCS, pages 268–289,
Amalfi, Italy, Sept. 12–13, 2003. Springer, Heidelberg, Ger-
many.

[19] J. Camenisch and A. Lysyanskaya. Signature schemes and
anonymous credentials from bilinear maps. In M. Franklin,
editor, CRYPTO 2004, volume 3152 of LNCS, pages 56–
72, Santa Barbara, CA, USA, Aug. 15–19, 2004. Springer,
Heidelberg, Germany.

[20] J. Camenisch and E. Van Herreweghen. Design and imple-
mentation of the idemix anonymous credential system. In
V. Atluri, editor, ACM CCS 02, pages 21–30, Washington
D.C., USA, Nov. 18–22, 2002. ACM Press.

[21] S. Canard and R. Lescuyer. Anonymous credentials from
(indexed) aggregate signatures. In DIM’11, Proceedings of

the 2013 ACM Workshop on Digital Identity Management,

Chicago, IL, USA - October 21, 2011, 2011.
[22] S. Canard and R. Lescuyer. Protecting privacy by sanitizing

personal data: a new approach to anonymous credentials. In
K. Chen, Q. Xie, W. Qiu, N. Li, and W.-G. Tzeng, editors,
ASIACCS 13, pages 381–392, Hangzhou, China, May 8–10,
2013. ACM Press.

[23] R. Canetti and M. Fischlin. Universally composable commit-
ments. In J. Kilian, editor, CRYPTO 2001, volume 2139 of
LNCS, pages 19–40, Santa Barbara, CA, USA, Aug. 19–23,
2001. Springer, Heidelberg, Germany.

[24] D. Chaum. Verification by anonymous monitors. In A. Ger-
sho, editor, CRYPTO’81, volume ECE Report 82-04, pages
138–139, Santa Barbara, CA, USA, 1981. U.C. Santa Bar-

http://eprint.iacr.org/2014/708
http://eprint.iacr.org/2014/708

Functional Credentials 79

bara, Dept. of Elec. and Computer Eng.
[25] D. Chaum. Blind signatures for untraceable payments.

In D. Chaum, R. L. Rivest, and A. T. Sherman, editors,
CRYPTO’82, pages 199–203, Santa Barbara, CA, USA,
1982. Plenum Press, New York, USA.

[26] L. Dagum and R. Menon. Openmp: An industry-standard
api for shared-memory programming. IEEE Comput. Sci.

Eng., 5(1):46–55, Jan. 1998.
[27] I. Damgård and J. B. Nielsen. Perfect hiding and per-

fect binding universally composable commitment schemes
with constant expansion factor. In M. Yung, editor,
CRYPTO 2002, volume 2442 of LNCS, pages 581–596,
Santa Barbara, CA, USA, Aug. 18–22, 2002. Springer, Hei-
delberg, Germany.

[28] K. B. Frikken, J. Li, and M. J. Atallah. Trust negotiation
with hidden credentials, hidden policies, and policy cycles.
In NDSS 2006, San Diego, California, USA, Feb. 2–3, 2006.
The Internet Society.

[29] G. Fuchsbauer, C. Hanser, and D. Slamanig. Structure-
preserving signatures on equivalence classes and constant-
size anonymous credentials. Cryptology ePrint Archive,
Report 2014/944, 2014. http://eprint.iacr.org/2014/944.

[30] C. Gentry. Fully homomorphic encryption using ideal lat-
tices. In M. Mitzenmacher, editor, 41st ACM STOC, pages
169–178, Bethesda, Maryland, USA, May 31 – June 2, 2009.
ACM Press.

[31] S. Goldwasser, S. Micali, and R. L. Rivest. A digital sig-
nature scheme secure against adaptive chosen-message at-
tacks. SIAM Journal on Computing, 17(2):281–308, Apr.
1988.

[32] J. Groth and A. Sahai. E�cient non-interactive proof sys-
tems for bilinear groups. In N. P. Smart, editor, EURO-

CRYPT 2008, volume 4965 of LNCS, pages 415–432, Istan-
bul, Turkey, Apr. 13–17, 2008. Springer, Heidelberg, Ger-
many.

[33] C. Hanser and D. Slamanig. Structure-preserving signa-
tures on equivalence classes and their application to anony-
mous credentials. In P. Sarkar and T. Iwata, editors, ASI-

ACRYPT 2014, Part I, volume 8873 of LNCS, pages 491–
511, Kaoshiung, Taiwan, R.O.C., Dec. 7–11, 2014. Springer,
Heidelberg, Germany.

[34] J. Katz, A. Sahai, and B. Waters. Predicate encryption sup-
porting disjunctions, polynomial equations, and inner prod-
ucts. In N. P. Smart, editor, EUROCRYPT 2008, volume
4965 of LNCS, pages 146–162, Istanbul, Turkey, Apr. 13–17,
2008. Springer, Heidelberg, Germany.

[35] V. Kolesnikov, H. Krawczyk, Y. Lindell, A. J. Malozemo�,
and T. Rabin. Attribute-based key exchange with general
policies. In ACM CCS 16, pages 1451–1463. ACM Press,
2016.

[36] B. Lynn. The pairing-based cryptography (pbc) library,
2010.

[37] M. Ma�ei, G. Malavolta, M. Reinert, and D. Schröder. Pri-
vacy and access control for outsourced personal records.
In 2015 IEEE Symposium on Security and Privacy, pages
341–358, San Jose, California, USA, May 17–21, 2015. IEEE
Computer Society Press.

[38] T. Nishide, K. Yoneyama, and K. Ohta. Attribute-based
encryption with partially hidden encryptor-specified access
structures. In S. M. Bellovin, R. Gennaro, A. D. Keromytis,

and M. Yung, editors, ACNS 08, volume 5037 of LNCS,
pages 111–129, New York, NY, USA, June 3–6, 2008.
Springer, Heidelberg, Germany.

[39] T. Okamoto and K. Takashima. Hierarchical predicate
encryption for inner-products. In M. Matsui, editor, ASI-

ACRYPT 2009, volume 5912 of LNCS, pages 214–231,
Tokyo, Japan, Dec. 6–10, 2009. Springer, Heidelberg, Ger-
many.

[40] T. Okamoto and K. Takashima. Achieving short cipher-
texts or short secret-keys for adaptively secure general inner-
product encryption. In D. Lin, G. Tsudik, and X. Wang,
editors, CANS 11, volume 7092 of LNCS, pages 138–159,
Sanya, China, Dec. 10–12, 2011. Springer, Heidelberg, Ger-
many.

[41] B. Parno, M. Raykova, and V. Vaikuntanathan. How to
delegate and verify in public: Verifiable computation from
attribute-based encryption. In R. Cramer, editor, TCC 2012,
volume 7194 of LNCS, pages 422–439, Taormina, Sicily,
Italy, Mar. 19–21, 2012. Springer, Heidelberg, Germany.

[42] C.-P. Schnorr. E�cient signature generation by smart cards.
Journal of Cryptology, 4(3):161–174, 1991.

[43] B. Waters. Ciphertext-policy attribute-based encryption:
An expressive, e�cient, and provably secure realization. In
D. Catalano, N. Fazio, R. Gennaro, and A. Nicolosi, editors,
PKC 2011, volume 6571 of LNCS, pages 53–70, Taormina,
Italy, Mar. 6–9, 2011. Springer, Heidelberg, Germany.

[44] R. Wei and D. Ye. Delegate predicate encryption and its ap-
plication to anonymous authentication. In W. Li, W. Susilo,
U. K. Tupakula, R. Safavi-Naini, and V. Varadharajan,
editors, ASIACCS 09, pages 372–375, Sydney, Australia,
Mar. 10–12, 2009. ACM Press.

[45] S. Yamada, N. Attrapadung, B. Santoso, J. C. N. Schuldt,
G. Hanaoka, and N. Kunihiro. Verifiable predicate encryp-
tion and applications to CCA security and anonymous pred-
icate authentication. In M. Fischlin, J. Buchmann, and
M. Manulis, editors, PKC 2012, volume 7293 of LNCS,
pages 243–261, Darmstadt, Germany, May 21–23, 2012.
Springer, Heidelberg, Germany.

A Security Analysis
In the following we analyze the security of our construc-
tion as defined in Section 3, by proving that it achieves
all of the properties specified in Section 2.

Lemma 1. [Unforgeability] Let (Setup, KGen, Enc, Dec)
be an attribute-hiding predicate encryption scheme,
(SKGen, Sig, Vf) be an existentially unforgeable digital
signature scheme, and (P, V) be an equivocable and ex-
tractable commitment scheme, then FC is an unforge-
able functional credential scheme.

Proof. We use a series of games to gradually modify the
experiment for unforgeability and prove that the success

http://eprint.iacr.org/2014/944

Functional Credentials 80

probability of any PPT adversary A is negligible in the
security parameter.

Game0. Resembles exactly the experiment described
in Definition 3.

Game1. The algorithm DelShowCred(opk, tok) is modified
to always abort the execution in step 4. if tok is not the
output of a query of A to the oracle ODel

osk .

Game2. The algorithm CKGen(1⁄) is modified by hav-
ing crs generated by E(1⁄) (along with – that is kept
locally).

Game3. In the next step, we modify the two algorithms
ShowCred(opk, cred, f) and DelShowCred(opk, cred, tok)
as follows: in step 2. com0 is extracted by mÕ Ω
EExt(crs, –, com0) and in step 6. the string sÕ||tÕ is com-
puted as mÕ ü rÕ.

Game4. In this transition, we change the two algorithms
ShowCred(opk, cred, f) and DelShowCred(opk, cred, tok)
as follows: in step 4. com1 is computed as com1 Ω
E0

Eq(crs, –). In step 6. the algorithms compute decom1 Ω
E1

Eq(crs, –, com1, m).

Game5. In the next step, we modify the two algorithms
ShowCred(opk, cred, f) and DelShowCred(opk, cred, tok)
as follows: in step 4 the decryption algorithm is no
longer evaluated and in step 6. the algorithms compute
decom1 Ω E1

Eq(crs, –, com1, sÕ) if the attributes A associ-
ated to the input credential cred satisfy the input policy
f (the policy ftok associated with tok in case of delegated
verification), or return ‹ otherwise.

Game6. The algorithms VrfyCred(opk, f) and
DelVrfyCred(opk, tok) are changed as follows: in step
1. the commitment com0 is generated by E0

Eq(crs, –) and
in step 5. decom0 is generated by E1

Eq(crs, –, com0, r).

Game7. The algorithms VrfyCred(opk, f) and
DelVrfyCred(opk, tok) are further changed as follows:
in step 5. it is executed mÕ Ω EExt(crs, –, com1) and
in step 7. the algorithm verifies whether s = mÕ and
returns 1 if this is the case and 0 otherwise.

Game0 ¥ Game1 Intuitively, the two games are indis-
tinguishable because the probability of the adversary to
produce a valid verification token without asking the
corresponding oracle ODel

osk corresponds to the probabil-
ity of forging a valid signature. Assume towards contra-
diction that there exists an adversary A such that

--Pr
#
1 Ω Game0

A
$

≠ Pr
#
1 Ω Game0

A
$-- Ø ‘(⁄)

for some non-negligible function ‘(⁄). Then we can build
the following reduction against the existential unforge-

ability of the digital signature scheme (SKGen, Sig, Vf).
The reduction is elaborated below.

R(1⁄, vk)O
Sig : the reduction takes as input the security

parameter 1⁄ and the verification key vk and has access
to the oracle OSig. It simulates the game that A is ex-
pecting by inserting vk in the public key opk while the
other elements are freshly generated with the appropri-
ate algorithm. The oracles are simulated as dictated by
the security definition except for ODel

osk where R queries
OSig on c instead of signing it itself. Upon each query
of A to the oracle ODelShowCred on some toki it parses it
as (ci, ‡i): if Vf(vk, ci, ‡i) = 1 and ci was not queried to
OSig, then R outputs (ci, ‡i) and interrupts the simula-
tion.

We note that the reduction is clearly e�cient and
faithfully simulates all the inputs that the adversary
is expecting, except that the simulation is interrupted
whenever the adversary guesses a valid fresh pair (ci, ‡i).
We call such an event forge. By initial assumption we
have that
--Pr

#
1 Ω Game0

A
$

≠ Pr
#
1 Ω Game0

A
$-- = forge Ø ‘(⁄)

This represents a contradiction with respect to exis-
tential unforgeability of (SKGen, Sig, Vf) and proves our
claim.

Game1 ¥ Game2 The di�erence between the two games
lies only in the common reference string crs, thus any
adversary that has a di�erent success probability con-
stitutes a valid distinguisher between a crs sampled uni-
formly at random and a trapdoor crs. More formally,
assume that there exists an adversary that

--Pr
#
1 Ω Game1

A
$

≠ Pr
#
1 Ω Game2

A
$-- Ø ‘(⁄)

for some non-negligible function ‘(⁄). We can construct
the following reduction against the equivocability and
extractability of (P, V).

R(crs): the reduction simulates Game1 by plugging crs

in the public parameters opk. If the adversary succeeds
in the game it outputs 1, otherwise it returns 0.

It is easy to see that the reduction is e�cient.
Furthermore, whenever crs is sampled uniformly in
{0, 1}poly(⁄), then R perfectly simulates Game1, on the
other hand whenever crs Ω E(1⁄) then R perfectly sim-
ulates Game2. Therefore we have that

Pr
#
1 Ω Game1

A
$

= Pr
Ë
1 Ω R | crs Ω {0, 1}poly(⁄)

È

and

Pr
#
1 Ω Game2

A
$

= Pr
#
1 Ω R | (crs, –) Ω E(1⁄)

$
.

Functional Credentials 81

It follows that

Pr
#
1 Ω R | crs Ω {0, 1}poly(⁄) $

≠
Pr

#
1 Ω R | (crs, –) Ω E(1⁄)

$
---- Ø ‘(⁄)

which represents a contradiction to the equivocability
and extractability of the non-interactive commitment
scheme. This proves our claim.

Game2 ¥ Game3 The two games are indistinguishable
due to the fact that the probability of EExt to extract
the wrong message out of a commitment is negligible.
We shall note that the only di�erence between the two
games is that, for all executions of the ShowCred and
DelShowCred algorithms, in Game2 the strings sÕ||tÕ are
computed as V(crs, com0, decom0) ü rÕ, while in Game3
sÕ||tÕ are computed as EExt(crs, –, com0) ü rÕ. Thus the
two games di�er only whenever V(crs, com0, decom0) ”=
EExt(crs, –, com0). By the equivocability and extractabil-
ity property of (P, V) we have that

Pr[V(crs, com0, decom0) ”= EExt(crs, –, com0)] Æ negl(⁄)

therefore
--Pr

#
1 Ω Game2

A
$

≠ Pr
#
1 Ω Game3

A
$-- Æ negl(⁄) .

Game3 ¥ Game4 The indistinguishability of the two
games follows again from the equivocability and ex-
tractability of the commitment scheme. In particular,
assume towards contradiction that there exists an ad-
versary A such that

--Pr
#
1 Ω Game3

A
$

≠ Pr
#
1 Ω Game4

A
$-- Ø ‘(⁄)

for some non-negligible function ‘(⁄). Then we can build
the following distinguisher against the equivocability
and extractability property of (P, V). The reduction
looks as follows.

R(crs): the reduction simulates the inputs of Game3
plugging crs in the public parameters opk. In the simu-
lation of the oracles OShowCred and ODelShowCred it mod-
ifies the algorithms ShowCred and DelShowCred as fol-
lows: in step 4 it evaluates the decryption and sends
m Ω Dec(cred, c) and sends m to the challenger. In re-
sponse it receives the commitment com1, then it pro-
ceeds with the execution until step 6. where it recom-
putes c. If the check succeeds, then R sends m to the
challenger and it receives decom1, which is forwarded to
A. R continues with the simulation and outputs 1 if the
adversary succeeds and 0 otherwise.

It is easy to see that the reduction is e�cient. We
note that whenever com1 and decom1 are honestly com-
puted, the reduction perfectly simulates the inputs that

the adversary is expecting Game3, while when the algo-
rithms E0

Eq and E1
Eq are executed by the challenger, R

faithfully simulates Game4. It follows that

Pr
#
1 Ω Game3

A
$

=
Pr[1 Ω R | (com1, decom1) Ω P(crs, m)]

and

Pr
#
1 Ω Game4

A
$

=

Pr

C
1 Ω R

com1 Ω E0

Eq(crs, –);
decom1 Ω E1

Eq(crs, –, com1, m)

D
.

Therefore, by the initial assumption, we can estimate
the success probability of the distinguisher as

Pr[1 Ω R | (com1, decom1) Ω P(crs, m)] ≠

Pr

C
1 Ω R

com1 Ω E0

Eq(crs, –);
decom1 Ω E1

Eq(crs, –, com1, m)

D

Ø ‘(⁄).

Since crs Ω {0, 1}poly(⁄) ¥ crs Ω E(1⁄), we have

Pr
5
1 Ω R

crs Ω {0, 1}poly(⁄);
(com1, decom1) Ω P(crs, m)

6
≠

Pr

S

WU1 Ω R

crs Ω E(1⁄);
com1 Ω E0

Eq(crs, –);
decom1 Ω E1

Eq(crs, –, com1, m)

T

XV

& ‘(⁄)

which is a contradiction to the equivocability and ex-
tractability property of (P, V). This proves our claim.

Game4 ¥ Game5 The indistinguishability of the two
games follows from the correctness of the predicate en-
cryption scheme and builds upon three main observa-
tions:
1. In the simulation of the algorithms ShowCred and

DelShowCred, the policy f associated to the cipher-
text c is always known to the challenger: in the for-
mer case it is given as in input, while in the lat-
ter it is associated with the input verification token
tok, since all the verification tokens not coming from
ODel

osk are discarded.
2. The ciphertext c is deterministically recomputed

so it must be the case that it is generated by
Enc(pk, f, ·).

3. The ciphertext c is uniformly distributed on
the ciphertext space: in order to see that we
point out that the string sÕ||tÕ is computed as
EExt(crs, –, com0) ü rÕ and since rÕ is uniformly dis-
tributed and EExt(crs, –, com0) is clearly independent
from rÕ, then sÕ||tÕ is distributed uniformly in the set
{0, 1}2⁄.

Functional Credentials 82

It follows that c is always a ciphertext of the
form Enc(pk, f, ·), for some well-defined policy f ,
uniformly distributed in its domain. Therefore by
the correctness of the predicate encryption scheme
(Setup, KGen, Enc, Dec) we have that, for all the set of
attributes A associated with cred and for all m,
– If f(A) = 1 then Dec(cred, Enc(pk, A, m)) = m.
– If f(A) = 0 then Dec(cred, Enc(pk, A, m)) = ‹ with

all but negligible probability.

Which implies that Game5 simulates Game4 with over-
whelming probability.

Game5 ¥ Game6 The two games are indistinguishable
following from the equivocability and extractability of
the commitment scheme. In particular, assume towards
contradiction that there exists an adversary A such that

--Pr
#
1 Ω Game5

A
$

≠ Pr
#
1 Ω Game6

A
$-- Ø ‘(⁄)

for some non-negligible function ‘(⁄). Then we can build
the following distinguisher against the equivocability
and extractability property of (P, V). The reduction
looks as follows.

R(crs): the reduction simulates the inputs of Game5
plugging crs in the public parameters opk. In the simu-
lation of VrfyCred and DelVrfyCred it modifies the algo-
rithms as follows: in step 1. the algorithms send r to the
challenger and receive com0 in response. They proceed
then with the normal execution until step 5. where they
send r to the challenger and receive decom0, which is
forwarded to A. R continues with the simulation and
outputs 1 if the adversary succeeds and 0 otherwise.

It is easy to see that the reduction is e�cient. We
note that whenever com0 and decom0 are honestly com-
puted, the reduction perfectly simulates the inputs that
the adversary is expecting Game5, while when the algo-
rithms E0

Eq and E1
Eq are executed by the challenger, R

faithfully simulates Game6. It follows that

Pr
#
1 Ω Game5

A
$

=
Pr[1 Ω R | (com0, decom0) Ω P(crs, r)]

and

Pr
#
1 Ω Game6

A
$

=

Pr

C
1 Ω R

com0 Ω E0

Eq(crs, –);
decom0 Ω E1

Eq(crs, –, com0, r)

D
.

Therefore, by the initial assumption, we can estimate
the success probability of the distinguisher as

Pr[1 Ω R | (com0, decom0) Ω P(crs, r)] ≠

Pr

C
1 Ω R

com0 Ω E0

Eq(crs, –);
decom0 Ω E1

Eq(crs, –, com0, r)

D

Ø ‘(⁄)

which is a contradiction to the equivocability and ex-
tractability property of (P, V). This proves our claim.

Game6 ¥ Game7 The two games are indistinguishable
by the overwhelming probability of EExt to extract the
correct message out of a commitment generated by the
adversary. It is clear that Game6 and Game7 only dif-
fer in the fact that the success of the adversary is de-
termined by the check s = V(crs, com1, decom1) in the
former case and by s = EExt(crs, –, com1). Therefore the
two games di�er only whenever V(crs, com1, decom1) ”=
EExt(crs, –, com1). By the equivocability and extractabil-
ity property of (P, V) we have that

Pr[V(crs, com1, decom1) ”= EExt(crs, –, com1)] Æ negl(⁄)

therefore
--Pr

#
1 Ω Game6

A
$

≠ Pr
#
1 Ω Game7

A
$-- Æ negl(⁄) .

Game0 ¥ · · · ¥ Game7 By the previous propositions it
follows that the success probability of the adversary is
negligibly di�erent between each pair of neighboring ex-
periments. Since a polynomially-bounded sum of negli-
gible functions is still a negligible function, we have that
there is a negligible di�erence between the success prob-
ability of the adversary in Game0 and in Game7. There-
fore, in order to prove our lemma, it is enough to show
that the advantage of the adversary in Game7 is bounded
by a negligible function in the security parameter.

Pr[1 Ω Game7] Æ negl(⁄) Intuitively, if the adversary
would be able to win the game with more than negli-
gible probability, then it would imply that the adver-
sary is able to break the attribute-hiding property of
the predicate encryption scheme with the same proba-
bility, which we assumed to be infeasible. More formally,
assuming towards contradiction that there exists an ad-
versary A such that

|Pr[1 Ω Game7]| Ø ‘(⁄)

for some non-negligible function ‘(⁄). Then we
can construct the following reduction against the
attribute-hiding of the predicate encryption scheme

Functional Credentials 83

(Setup, KGen, Enc, Dec). The reduction is elaborated in
the following.

R(pk): The reduction plugs pk into the public parame-
ters opk and simulates Game7 by maintaining the same
lookup lists with the only di�erence that the oracle
OGrantCred

osk , when queried on a user id id œ H simply
records the corresponding set of attributes A without
generating the corresponding credential. The reduction
instead generates credentials for the user id only upon a
query id from A to the oracle OCorrUser. Credentials are
generated by querying the challenger on the Boolean
formula for the corresponding set of attributes FA and
setting cred to be the answer dkFA . The rest of the or-
acles stay unchanged. At some point of the execution
the adversary outputs either a policy f or a verification
token tok: the challenger sets as ftok the policy associ-
ated to the token tok and performs the same checks as
dictated by the unforgeability experiment. In the simu-
lation of ShowCred (DelShowCred, respectively), R sam-
ples two random messages (r0, r1) and sends them to
the challenger along with the tuple (f, f) ((ftok, ftok), re-
spectively). The challenger returns cú and R sets c = cú

in step 3. of the algorithm. Once the adversary returns
com1 in step 4., R runs mú Ω EExt(crs, –, com1) and re-
turns 1 if mú = r1, 0 if mú = r0 otherwise it flips a
random coin. The simulation of A is interrupted at this
point.

It is easy to see that the reduction runs in polyno-
mial time. In the following we argue that the inputs the
R provides to the adversary perfectly resembles what
A is expecting from Game7. We firstly point out that
in the simulation of the oracles there is no noticeable
di�erence: the decrpytion algorithm is in fact no longer
evaluated in OShowCred (ODelShowCred, respectively) and
its execution depends only on the set of attributes A

associated with the input credential cred. Therefore it is
su�cient to generate the credentials only when the ad-
versary corrupts a certain user. In the last phase of the
simulation we note that the uniform randomness r of
the ciphertext c is revealed to A only in step 5. (which
is not executed due to the early interruption of A) and
com0 is computed independently from r. Since the ran-
domness of cú is also sampled uniformly at random, it
follows that the ciphertext cú is correctly distributed
according to the view of the adversary (up to step 4).
Moreover it is easy to see that the tuples (r0, r1) and
(f, f) ((ftok, ftok), respectively) are considered admissi-
ble by the challenger since the experiment requires that
all the corrupted users (thus all the credential requested

to the challenger) do not satisfy the target policy f (ftok,
respectively). Now we provide a bound for the success
probability of the reduction in the attribute-hiding game
of the predicate encryption scheme. We shall remark
that by assumption we have that |Pr[1 Ω Game7]| Ø
‘(⁄), which means that with the same probability cú =
Enc(pk, {f, ftok}, s) = Enc(pk, {f, ftok}, mú) (see the win-
ning conditions of Game7). We denote this event by
guess. Since the probability of the event guess to happen
is independent from the random coins of the challenger
(both r0 and r1 are correctly distributed) we can rewrite
the success probability of the reduction in the attribute-
hiding game as

Adv
R(⁄) = 1

2 ≠3
Pr

#
1 Ω R

-- b = 1 and guess
$

Pr[b = 1] +
Pr

#
0 Ω R

-- b = 0 and guess
$

Pr[b = 0]

4

·guess

+
3

Pr
#
1 Ω R

-- b = 1 and guess
$

Pr[b = 1] +
Pr

#
0 Ω R

-- b = 0 and guess
$

Pr[b = 0]

4

·guess.

Note that whenever the event guess does not happen we
can upperbound the success probability of the reduction
by 1

2 , therefore, by our initial assumption, we have that

Adv
R(⁄) & 1

2 ≠3
Pr

#
1 Ω R

-- b = 1 and guess
$

Pr[b = 1] +
Pr

#
0 Ω R

-- b = 0 and guess
$

Pr[b = 0]

4
‘(⁄)

+ 1
2 (1 ≠ ‘(⁄)) .

On the other hand whenever guess happens, the reduc-
tion successfully guesses the bit of the challenger with
probability 1, therefore the advantage of R is

Adv
R(⁄) & 1

2 ≠
3

1 · ‘(⁄) + 1
2 · (1 ≠ ‘(⁄))

4

& 1
2 ≠

3
1
2 + 1

2 ‘(⁄)
4

& 1
2 ‘(⁄)

which is a non-negligible function in the security pa-
rameter. This is a contradiction to the attribute-hiding
property of the predicate encryption scheme and it con-
cludes our proof.

Lemma 2. [Anonymity] Let (Setup, KGen, Enc, Dec)
be an attribute-hiding predicate encryption scheme,
(SKGen, Sig, Vf) be an existentially unforgeable digital
signature scheme, and (P, V) be an equivocable and ex-
tractable commitment scheme, then FC is an anonymous
functional credential scheme.

Functional Credentials 84

Proof. In the proof we gradually modify the experiment
through a series of games and then we argue about the
success probability of the adversary in the last step.

Game0 ¥ · · · ¥ Game5 Here we define Game0 as the ex-
periment described in Definition 4 and we apply the
same modifications as in the proof of unforgeability up
to Game5. The proofs follow along the same lines.

Pr[1 Ω Game5] Æ 1
2 + negl(⁄) The claim follows from a

simple observation: in Game5 the algorithms ShowCred

and DelShowCred no longer evaluate the decryption us-
ing the credential credb associated to the input ib, rather
it returns decom1 depending on the bit f(Ab) (ftok(Ab),
respectively), where Ab is the set of attributes associated
with credb. Since ftok is always well defined (see Game1)
and since the experiment requires that f(A0) = f(A1)
(ftok(A0) = ftok(A1), respectively), the random coin
b of the oracles OAnon

b and OAnonDel
b is hidden in an

information-theoretic sense. This implies that the ad-
vantage of the adversary is negligibly close to 1

2 , and it
concludes our proof.

Lemma 3. [Policy Hiding] Let (Setup, KGen, Enc, Dec)
be an attribute-hiding predicate encryption scheme,
(SKGen, Sig, Vf) be an existentially unforgeable digital
signature scheme, and (P, V) be an equivocable and
extractable commitment scheme, then FC is a policy-
hiding functional credential scheme.

Proof. We prove the lemma through a series of games.
The proof is elaborated below.

Game0 ¥ · · · ¥ Game5 Game0 is defined as the experi-
ment described in Definition 5 and we modify it as de-
scribed in the proof of unforgeability up to Game5. It is
easy to see that the indistinguishability argument still
applies.

Pr[1 Ω Game5] Æ 1
2 + negl(⁄) The proof of the claim

follows from the attribute-hiding property of the predi-
cate encryption scheme and we elaborate in the follow-
ing why this is the case. Assume towards contradiction
that there exists an adversary A such that

--Pr
#
1 Ω A

-- b = 1
$

≠ Pr
#
1 Ω A

-- b = 0
$-- Ø ‘(⁄)

for some non-negligible function ‘(⁄). Then we
can construct the following reduction against the
attribute-hiding of the predicate encryption scheme
(Setup, KGen, Enc, Dec).

R(pk): The reduction punctures pk into the public pa-
rameters opk and faithfully simulates Game5 except that

the credential for each user are initialized only when
the user is corrupted by A. For honest users R simply
records the attribute set A queried by the adversary
and simulates the oracles OShowCred and ODelShowCred

as specified by the experiment. Once a user is cor-
rupted, R queries the challenger on all of the attribute
sets Ai associated to it and sets each credi as the re-
sponse dkFA of the challenger. The set of credentials is
then handed over to the adversary. Upon a valid query
(f0, f1) of the adversary to the oracle OPH

b , R forwards
the tuple ((1, 1), (f0, f1)) to the challenger. The chal-
lenger returns in response a ciphertext cú and R sets
tokb = (cú, ‡ = Sig(sk, cú)). The reduction continues the
simulation as specified in Game5. When A outputs his
guess bÕ, R forwards the bit to the challenger and inter-
rupts the execution.

The reduction is clearly e�cient. Furthermore it is
easy to show that the simulation provided to A perfectly
mimics the inputs of Game5. Specifically, the modifica-
tion to the oracles OShowCred and ODelShowCred do not
a�ect the view of the adversary since the execution
of the functions ShowCred and DelShowCred (for hon-
est users) does not depend on the credentials anymore,
rather on the set of attributes associated to them (see
Game5). Also tokb is correctly distributed since cú is a
uniformly distributed encryption of 1 under either f0
or f1. We shall point out that the tuple ((1, 1), (f0, f1))
sent to the challenger by the reduction is always ad-
missible since for all the set of attributes Ai queried
by the challenger it must hold that f0(A) = f1(A).
The same restrictions that the challenger applies to
R are then applied to the oracles o�ered to A, there-
fore the simulation of R is consistent throughout the
whole experiment. What is left to be shown is that the
success probability of A carries over the advantage of
R in the attribute-hiding experiment. In order to see
we note that whenever the random coin of the chal-
lenger is b = 1, then the reduction simulates the same
choice Game5 and the same holds for b = 0. Therefore it
holds that Pr

#
1 Ω A

-- b = 1
$

= Pr
#
1 Ω R

-- b = 1
$

and that Pr
#
1 Ω A

-- b = 0
$

= Pr
#
1 Ω R

-- b = 0
$
.

By the initial assumption we have that
--Pr

#
1 Ω R

-- b = 1
$

≠ Pr
#
1 Ω R

-- b = 0
$-- Ø ‘(⁄)

which is a contradiction to the attribute-hiding property
of the predicate encryption scheme. This concludes our
proof.

	Functional Credentials
	1 Introduction
	1.1 Our Techniques
	1.2 Our Contribution
	1.3 Related Work

	2 Functional Credentials
	2.1 Definition of Functional Credentials
	2.2 Security of Functional Credentials
	2.3 Discussion

	3 Generic Construction
	3.1 Preliminaries
	3.2 The Scheme
	3.3 Security Analysis
	3.4 Extensions

	4 Experimental Evaluation
	4.1 Implementation

	5 Conclusions
	A Security Analysis

