
Proceedings on Privacy Enhancing Technologies ; 2019 (1):108–132

Dominic Deuber, Christoph Egger, Katharina Fech, Giulio Malavolta, Dominique Schröder, Sri
Aravinda Krishnan Thyagarajan, Florian Battke, and Claudia Durand
My Genome Belongs to Me:

Controlling Third Party Computation on Genomic Data

Abstract: An individual’s genetic information is pos-
sibly the most valuable personal information. While
knowledge of a person’s DNA sequence can facilitate
the diagnosis of several heritable diseases and allow per-
sonalized treatment, its exposure comes with significant
threats to the patient’s privacy. Currently known so-
lutions for privacy-respecting computation require the
owner of the DNA to either be heavily involved in the
execution of a cryptographic protocol or to completely
outsource the access control to a third party. This mo-
tivates the demand for cryptographic protocols which
enable computation over encrypted genomic data while
keeping the owner of the genome in full control. We envi-
sion a scenario where data owners can exercise arbitrary
and dynamic access policies, depending on the intended
use of the analysis results and on the credentials of who
is conducting the analysis. At the same time, data own-
ers are not required to maintain a local copy of their
entire genetic data and do not need to exhaust their
computational resources in an expensive cryptographic
protocol.

In this work, we present METIS, a system that as-
sists the computation over encrypted data stored in the
cloud while leaving the decision on admissible computa-
tions to the data owner. It is based on garbled circuits
and supports any polynomially-computable function. A
critical feature of our system is that the data owner is
free from computational overload and her communica-
tion complexity is independent of the size of the input
data and only linear in the size of the circuit’s output.
We demonstrate the practicality of our approach with an
implementation and an evaluation of several functions
over real datasets.

Keywords: Secure Multi-Party Computation, Protocols,
DNA security, Genome Privacy

DOI 10.2478/popets-2019-0007
Received 2018-05-31; revised 2018-09-15; accepted 2018-09-16.

Dominic Deuber, Christoph Egger, Katharina Fech,
Giulio Malavolta, Dominique Schröder, Sri Aravinda
Krishnan Thyagarajan: Friedrich-Alexander-Universität

Erlangen-Nürnberg

Florian Battke, Claudia Durand: CeGaT GmbH

1 Introduction

The DNA sequence of each individual is an unparalleled
piece of information: Not only does it uniquely identify
every individual, it also contains the blueprint of that
person and allows predictions about physical features,
health risks and much more. Working with genetic infor-
mation promises groundbreaking medical advances and
at the same time attracts devastating misuses.

Medical practitioners and researchers set high hopes
on the analysis of genomic data: Screening the DNA
sequence for specific biomarkers allows early detection
and diagnosis of hereditary diseases [40]. There are also
many well-known genetic risk factors that can be de-
tected long before the disease onset, with the benefit of
allowing positive lifestyle changes as well as early par-
ticipation in preventive examination to completely pre-
vent the disease through timely treatment. For exam-
ple, BRCA1 and BRCA2 are human tumour suppressor
genes, mutations of which strongly increase the risk of
developing tumours. Medical studies have shown that
women who carry mutations in one or both of these
genes can have a risk of up to 80% of being diagnosed
with breast cancer during their lifetimes [1]. Addition-
ally, research in the field of personalized medicine [63]
promises considerable more e�ective treatment.

As the price of DNA sequencing has dramatically
dropped in the past years, the interest in genomic data
has seen a constant growth also outside the scientific
community. For instance, in 2001, sequencing a person’s
DNA cost roughly 100,000 $ whereas today the price
has dropped to well below 1,000 $ [67]. Given the de-
velopments, the current trend and the incredible value
of these data, it is conjectured that a significant propor-
tion of the population will be sequenced within the next
few decades.

While the analysis of large amounts of genomic data
can bring huge benefits for society, it simultaneously
raises several privacy concerns, such as data ownership,
data privacy, and legitimate uses of such data. For ex-
ample, health insurance companies could use knowledge
of genomic information of a person to estimate the ex-
pected revenue and cost of insuring this person. As ge-
nomic information is heritable, such knowledge extends

My Genome Belongs to Me: Controlling Third Party Computation on Genomic Data 109

to direct o�springs of that person as well as to close rel-
atives namely the person’s siblings, parents, as well as
(with lower predictive power) to more distant relatives.
While some of these ethical and economic concerns are
already being addressed by legislative action, we see an
urgent need to develop cryptographic solutions that en-
sure legitimate interests of both sides (data owner and
data user) are met and regulatory demands can be en-
forced.

This means that we need to support the analysis
of genomic data while simultaneously placing complete
control over who has access to that data and to what
end it can be analysed into the data owners’ hands. To
ensure data privacy, the client that wishes to analyse
a genome sequence must never get direct access to the
original sequence, but may only compute functions on
the encrypted genome.

In this work, we present METIS, a cryptographic
system that allows secure computation on encrypted ge-
nomic data with the important feature that the data
owner controls the type of functions that can be com-
puted. We formally characterize the privacy guarantees
of our system and provide a comprehensive performance
evaluation to confirm the practicality of our construc-
tion.

Computation on Genomic Data. The major chal-
lenge in secure computation on genomic data is perfor-
mance, since human genomic data is large: The raw ge-
nomic sequence of a single individual can be encoded
in 1.5 GB by representing each of the four symbols (nu-
cleotides) of the genetic alphabet as two-bit values and
taking into account that one genome copy (23 chromo-
somes) is roughly 3 billion symbols long and that each
individual inherits two such copies from their two par-
ents.

Moreover, the current state of technology does not
allow error-free determination of the two genomic copies
in full-length chromosomes from a single molecule. In-
stead, millions of DNA molecules are obtained (e.g.,
from a blood sample), broken into small fragments of
a few hundred nucleotides and the resulting “library”
of fragments is sequenced yielding billions of so-called
“reads” of between 100 and 1000 nucleotides. These are
stored together with technical quality information (i.e.,
the estimated reliability of the value) using the FASTQ
format [23]. The size of a FASTQ file is in the order of
tens of gigabytes.

Given a known reference sequence, it is in principle
su�cient to only encode the di�erence between an indi-
vidual’s sequence and the reference, i.e., to only store

Sequencing
Center

METIS

Server

MPC of f

ClientData Owner

Encoded
Data

DataK
ey

Encoded
Data

z

f(x, z)|‹
z

€|‹

Fig. 1. High-level overview of METIS system

the “variants” found in the individual. These are stored
in VCF files [26], which in general amount to tens of
megabytes in size. While this reduces the storage size
quite considerably, we cannot make use of VCF files in
METIS as it would leak important information: In con-
trast to FASTQ files, VCF file size directly corresponds
to the number of variants found in the individual. Thus,
we introduce a representation of genetic data that does
not reveal any measure of di�erence to the reference
genome and is tunable to the amount of information
that needs to be encoded.

A High-Level Overview. The objective of METIS is
to allow clients, such as medical researchers, to evalu-
ate functions over genomic data in a controlled manner.
The seemingly contradictory situation that our system
resolves is as follows: We would like to keep the own-
ers of the genome in full control over the information
that is disclosed, while at the same time not strain-
ing them with the computational burden of expensive
cryptographic protocols. Ideally, the owners’ communi-
cation and computation complexity should be indepen-
dent from the size of the genomic information.

We give an overview of the components and partici-
pants in METIS with the help of Figure 1. The genomic
information is collected at the sequencing center, which
encodes and stores them on the server. Note that the in-
formation stored on the server looks random to the eyes
of those who do not know the corresponding decoding
key. The sequencing center sends the (small) decoding
key to the data owner, and erases all the local data.
At any time clients can engage with the server and the
data owner in a multi-party computation protocol to
learn the output of a certain function f over the genomic
data x and the client’s query z. We stress that, while
the decision of whether to allow the computation of the
function on a particular query depends exclusively on

My Genome Belongs to Me: Controlling Third Party Computation on Genomic Data 110

the data owner, the computationally intense tasks are
performed by the server and the client. At the end of
the protocol the client learns the output of f on query z

(if allowed by the owner) and nothing else, whereas the
server learns nothing.

1.1 METIS in the real world

Given both the incredible potential of genetic research
and the worrisome privacy implications, it is impor-
tant for a proposed system to not only provide a cryp-
tographically sound solution but also to balance real
world interests. METIS fits well within the framework of
participant-centered initiatives (PCI) [46] and the feasi-
bility of the METIS system is evaluated in a field study.
PCIs are desirable both for the participants and for re-
searchers alike and can be considered the future of ge-
netic research [46].

In a recent study [45], 48 % of the respondents were
willing to provide their genetic information uncondition-
ally to any study approved by an institutional ethics
committee while 42 % wanted to be asked for every indi-
vidual study where their genetic information was sup-
posed to be used. Only 10 % want to specify a pol-
icy – the approach most commonly found in crypto-
graphic protocols like Controlled Functional Encryp-
tion [62] addressing genetic privacy. Additionally, Kauf-
man et al. [45] identified several relevant dimensions
such a policy would need to address: Apart from the
privacy risks by participating, respondents also deeply
cared about who is doing the research, favoring aca-
demic research with 90 % of participation over industry
research where only 75 % would still want to partici-
pate, as well as the goal of the research. A one-time
consent would need to include all of these constraints
simultaneously.

From the perspective of researchers, a participant-
centered cryptographic protocol is desirable as well.
Both participation rate and privacy concerns are heav-
ily biased [45, 46]. There are social groups who are sig-
nificantly more concerned about medical privacy and
reluctant to participate. Involving people in a case-by-
case basis though makes them feel more involved and
respected [45, 46] and sets up a conversation context
between researchers and participants. Quality genetic
research increasingly needs such a context between re-
searchers and selected participants [46] to provide addi-
tional information and medical records as well as con-
vincing candidates to participate in clinical studies.

The METIS system can be adopted to o�er such a
context with candidate participants. After the partici-
pant has agreed to have her genetic data evaluated for
the study she can be contacted (via a pseudonym con-
trolled by METIS) and asked to volunteer to reveal her
identity and participate in follow-up research. In such a
system, the server is still oblivious to the actual genetic
information and the client only learns as much as the
data owner agrees to reveal.

METIS requires participants to regularly interact
with the system to agree to new studies. In our vision for
the METIS system, data owners usually can be reached
within a week to provide their consent. Especially if
follow-up interaction is needed in a study these delays
are unavoidable. While this is slightly inconvenient for
researchers, the success of 23andMe [3] using Apple’s
ResearchKit [4] indicates this is indeed feasible. Typi-
cal sample sizes for genetic studies range from less than
1,000 up to 20,000 samples [37]. This is well within the
range of what METIS can process in reasonable time.

1.2 Our Contribution

We propose METIS, a fully generic construction for ge-
nomic multi-party computation which is based on gar-
bled circuits. We demonstrate the feasibility of our ap-
proach with an e�cient implementation. The fundamen-
tal cryptographic building blocks of our scheme are in-
stantiated in the standard model and therefore we do
not rely on any heuristics, such as the random oracle
model [16].

Using METIS, we give the data owner complete con-
trol over the genomic computation while maintaining
minimal – in particular independent of the size of the
genome – communication and computation. The data
owner is only required to give permission to the client
to receive the output of a query. An experimental eval-
uation shows that our system allows one to compute
appropriate functions over genomic data while provid-
ing strong security guarantees. As an example, our sys-
tem can securely compute whether a variant of a gene is
expressed in a dataset of 10,000 participants in approx-
imately 40 seconds.

1.3 Related Work

We review the recent related works to this paper.

Secure Function Evaluation. Kamara et al. [41, 42]
provide protocols for single-server-aided Secure Func-

My Genome Belongs to Me: Controlling Third Party Computation on Genomic Data 111

tion Evaluation (SFE). By outsourcing the evaluation
of the garbled circuit to the server the evaluator’s com-
putational amount is reduced to be linear in its input
and not in the circuit. Beforehand the parties have to
run a coin-tossing protocol to share a secret key. Carter
et al. [20] propose a model for SFE in a mobile device
based environment. Mood et al. [58] propose the use of
partial computation in the same setting. Both consider
a computation among two users with one of them as a
garbled circuit generator and the mobile device as the
circuit evaluator. To facilitate ease of evaluation given
the low computational resource of a mobile device, the
computation is outsourced to a cloud which is consid-
ered a non-colluding entity. The parties know each other
ahead of time as the mobile device is required to be on-
line and to participate in an oblivious transfer with the
client. This contrasts to our setting where the cloud is
the circuit generator and the data owner (the mobile de-
vice) is only involved in lending permission to any client
request. Moreover, there is no preprocessing involving
the data owner.

Jakobsen et al. [36] proposed a framework for out-
sourcing secure computation where a single client with
inputs outsources computation in a secure manner to
possibly untrusted workers. Their framework considers
a security model that has all but one worker to be ma-
licious. This is in contrast with our model where the
data owner is not supposed to learn the output of the
computation.

Carter et al. [19] presented Whitewash, a protocol
to outsource garbled circuit generation in mobile device
constrained environments. In their setting however, the
mobile device is the one generating garbled inputs and
the randomness to the circuit for every computation.

Secure Computation over Genomic Data. Ad-
vancements in secure function evaluation have recently
produced several e�cient protocols for the evaluation
of specific functionalities over genomic data, such as
edit distance comparison, private-set intersection, and
Hamming distance [11, 28, 38, 47, 65, 66]. Although
they achieve surprising results, all of these works ad-
dress specific problems and do not quite satisfy our need
for a fully generic system where clients are allowed to
compute any polynomially-computable function over ge-
nomic data.

One possible way to solve the problem of the data
owner having to store her genomic data locally is to out-
source this data and the burden of the computation to
a semi-trusted party. This solution has been extensively
studied in literature [8–10, 43], and the main idea be-

hind these approaches is to store data on the cloud in
an encrypted form. Any client can request the server
for some function that the server can compute leverag-
ing homomorphic properties of the encryption scheme.
Unfortunately, these settings have the shortcoming that
they only consider a�ne functionalities to be evaluated
over the homomorphic encryption. For general function-
alities they have to either use fully homomorphic encryp-
tion which is highly ine�cient for practical purposes or
add interactions which is not desirable.

Naveed et al. [62] proposed a new primitive called
Controlled Functional Encryption (CFE) where compu-
tations can be performed on encrypted data in a con-
trolled manner, i.e. only if the function satisfies the pol-
icy of the data owner. In their setting the data owner
goes o�ine after outsourcing her dataset and delegates
some semi-trusted authority (analogous to METIS server
in our setting) for the enforcement of her policy. As dis-
cussed before, one-time policy commitments may not
be the most desirable solution for real world applica-
tions as they do not match the needs of the data owners.
In our setting data owners do not have to fully specify
their policy but are allowed to take decisions completely
freely when requests arise. This is important as the data
owner’s privacy preferences might change over time. In
contrast to CFE, METIS can hide the policy (and all
changes) even against the server. Hiding changes is es-
sential in cases where they might be caused by events
the data owner wishes to keep private. Additionally,
data owners do not have to rely on any semi-trusted
party to enforce their policy.

Karvelas et al. [44] proposed an ORAM based sys-
tem for computations on genomic data. However, this
system allows only basic access policies. The data owner
grants permission to a party to perform computations
on the requested data solely based on the access privi-
leges of the party’s identity. In contrast to our system,
the data owner has no control over which function is
computed as she does not learn the function and is not
involved in the function evaluation after granting the ac-
cess permission. Furthermore, the cloud service provider
of their system requires two non-colluding entities acting
together. In our setting there is only one entity perform-
ing the role of the service cloud provider.

Secure Data Exchange. Gilad-Bachrach et al. [30] in-
troduced a generic system to outsource computation to
a semi-trusted cloud provider that has similar character-
istics to our system. The crucial di�erence from our pro-
posal is that their work requires a number of oblivious
transfers (OT) which is linear in the size of the inputs,

My Genome Belongs to Me: Controlling Third Party Computation on Genomic Data 112

whereas in our system the number of OTs is linear in
the encoding of the function. Recall that OT protocols
are known only from public-key primitives and are typ-
ically computationally expensive. This feature becomes
critical when the size of the inputs is large (such as a
genomic sequence) and the functions that we consider
admit a succinct representation.

For this reason, the scheme of Gilad-Bachrach et
al. heavily relies on OT extensions [35] to build an e�-
cient system. However, e�cient OT extensions are only
known to exist in the random oracle model which is not
sound [18]. While this is an acceptable trade-o� to gain
e�ciency for generic outsourced computation – proto-
cols in the random oracle model are commonly used –
genetic data is especially critical information and an ef-
ficient solution that only relies on standard assumptions
is desirable.

Garbled Circuits. Garbled circuits were introduced in
the seminal work of Yao [68]. Lindell and Pinkas [55] pro-
vided the first proof for Yao’s protocol. Later Bellare et
al. [14] formalized the notion with appropriate security
definitions and security proofs. Applications and practi-
cal instantiations of Yao’s garbled circuits can be found
in [13, 29, 32, 56]. Much work has been going on recently
related to optimizations and better security for garbled
circuits that can be found in [22, 33, 34, 48, 49, 51–
53, 71].

2 System Overview

We envision the METIS system as a service provider
between genetic researchers and the data owners. The
server in METIS stores the genetic data for many data
owners and provides researchers with an opportunity to
evaluate diagnostic functions on a large set of genetic
samples. This can be used for example to select a set of
people carrying a specific genetic variant for a clinical
study on a new medication. The server therefore needs
to be able to evaluate the researchers’ queries on thou-
sands of stored genetic datasets. The challenge here is
to avoid any leakage of information beyond what the
data owner has authorized.

Settings. The METIS system consists of four types of
parties with designated roles. The parties are a sequenc-
ing center, a server, data owners and clients. We sim-
plify the following discussion by assuming the existence
of a secure and authenticated channel between all par-
ties. We also assume all parties are aware of the pub-

lic keys of the other parties involved and therefore we
implicitly assume them to be authenticated (e. g., via a
public-key infrastructure). The same security can be eas-
ily achieved by using the server as a relay and encrypting
the data with the public key of the recipient, under a
non-malleable encryption scheme [25]. The METIS pro-
tocol is structured in two phases: In the setup phase, the
sequencing center produces the DNA sequence and in-
teracts with the server and the data owner to store the
genetic information. In the evaluation phase, the client
interacts with the server and the data owner to evalu-
ate a function over the genetic information. We require
that the computation and the communication flow of
the data owner is succinct, in particular, it should be
independent of the size of the genome.

In the real world METIS could be an interface op-
erated by some national health institute to grant legit-
imate researchers access to a body of genetic informa-
tion. The clients are researchers (from academia, gov-
ernment and industry) registered with the institute and
data owners are volunteers. Example uses of the METIS

system would be sampling potential participants for a
follow-up clinical trial of new medication.

Challenges and Techniques. The first di�culty in
the design of our system stems from the fact that we
want to keep the data owner in control for the whole
time. To facilitate the participation, we envision that
the owners should be able to run the system on resource-
constrained devices, such as mobile phones. Although
high-end smartphones are equipped with multiple pow-
erful cores, performing intensive computation tasks on
the scale of genomic data would still drain the battery
significantly. This immediately rules out the scenario
where the data owner stores the genomic information
locally and privately computes the queries of the clients.
We also argue that this is undesirable for several reasons:
First, it burdens the owner with computation over the
genome each time some client issues a query. Addition-
ally, this assumes the capability of each user to setup a
reliable infrastructure to run multi-party computation
protocols, without any accidental disclosure of data. It
follows that existing multi-party computation solutions
cannot be used o�-the-shelf, as they normally share the
load of computation and communication equally among
all the parties.

Our construction achieves this goal by devising a
custom protocol for data encoding and leveraging the se-
curity and integrity properties of Yao’s garbled circuits
(GC) [68]. Garbled circuits constitute an invaluable tool
for secure multi-party computation: Given a suitable en-

My Genome Belongs to Me: Controlling Third Party Computation on Genomic Data 113

coding of the inputs, they allow to securely compute any
function, without revealing the inputs. Throughout the
past years, garbled circuits have gone through a path
of optimizations that made them e�cient enough for
practical applications.

Cryptographic System. In the following we provide
a high-level overview of the design choices of our system.
A pictorial description is given in Figure 2. In the setup
phase, the sequencing center draws a secret key for a
pseudorandom function and evaluates the function to
generate a series of pseudorandom labels. Then it sam-
ples a sequence of random labels of the same length.
The two sequences of labels constitute an encoding in-
formation: For every position i we store a pair of labels!
¸

0
i , ¸

1
i

"
. If the bit of the binary representation of the

genomic sequence at position i is 0, then ¸
0
i is set to be

a pseudorandom label whereas ¸
1
i is a truly random la-

bel, and vice versa if the bit is 1. The sequencing center
sends the secret key to the data owner. Such an encoding
bears a crucial property: Given the key, one can easily
re-evaluate the pseudorandom function and reconstruct
the labels corresponding to the genomic sequence. How-
ever, it does not, on its own, reveal any information
about the original input (the corresponding original bit-
string).

Each time a client wants to evaluate a function on
the owner’s DNA sequence, it signals the intent to the
server. The server then informs the data owner about
the request and generates a garbled circuit given the
encoding provided by the sequencing center. The server
forwards the decoding information for the circuit to the
data owner and the circuit to the client. Meanwhile the
owner sends the key to reconstruct the encoded input
to the client, who can now evaluate the circuit. If the
owner wishes to let the client evaluate the desired func-
tion (which can be parsed from the decoding table), then
it sends also the decoding information to the client. Note
that the output of a garbled circuit without the decod-
ing information, consists of a set of randomly chosen
bitstrings.

For e�ciency reasons we split the sequenced DNA
string into blocks based on biological units (like genes).
Computing on one block is clearly less expensive and
in most of the cases the function privacy provided by
this simplified scheme is su�cient. We note, however,
that this does not a�ect the generality of our approach,
since one can represent the entire DNA sequence as one
block.

Threat Model. Our corruption model follows (and
strengthens) the non-collusion paradigm of [62]. In our

Sequencing Center Client

Data Owner METIS

Setup Start Sequence GC Evaluation Request Start

Key Gen Encrypt Output Result

Key Store PRF Gen Label store

Policy validate Garble

Fig. 2. Structure of the METIS system

system, the client wishes to evaluate functions on the ge-
netic data and some input of its choice. As its input may
contain sensible business logic, it must be hidden from
the eyes of the METIS system. At the same time, the
data owner needs to learn those inputs to make an in-
formed decision on whether to engage in the evaluation.
Recall that data owners are ordinary people who do not
maintain a high-security computing device, so it is desir-
able that a compromise of their computer alone does not
reveal anything about the genetic data. We model the
client and the data owner as potentially malicious, but
not colluding. This captures the scenario where a client
may try to learn more information than he is supposed
to and the case where the owner’s machine is infected
by malware.

The server acts as a mediator between the par-
ties. It is involved in all the interactions and stores
the encrypted genetic data but should not learn any-
thing about the actual genome or the input of the client.
For e�ciency reasons, we model the server as a (non-
colluding) semi-honest party. This is justified by the
observation that the only harm that a fully corrupted
server may cause is the generation of a faulty circuit
which will output the wrong result to the client. We
stress that even a malicious server cannot learn any in-
formation about the genomic data. All of the parties of
our system are assumed to be authenticated, e. g., via a
public-key infrastructure.

Performance Evaluation. We show that an evalua-
tion of plausible diagnostic functions on the data set in
our setting is possible even for a large number of data
owners within a reasonable amount of time. For instance,
on a 48-core server it takes approximately 40 seconds to
check for a specific genomic variant at a fixed position
using a dataset of 10,000 participants.

My Genome Belongs to Me: Controlling Third Party Computation on Genomic Data 114

3 Preliminaries

We introduce the notation that is used throughout this
work. Let ⁄ denote the security parameter. A proba-
bilistic polynomial time (PPT) algorithm is defined as a
Turing machine that runs at most in polynomial many
steps in ⁄ for all inputs. We denote by negl(⁄) a negligi-
ble function in ⁄ if the function negl is smaller than the
inverse of any polynomial for su�ciently large ⁄. The
symbol ¥ stands for computational indistinguishability.
When obvious, we omit the randomness from the inputs
of the algorithms and therefore by y Ω A(x) we mean
that for random coins r and on input x, the output of
running a PPT algorithm A is bound to y. By x Ω$ S

we mean that x is chosen uniformly at random from a
finite set S. An algorithm having black-box access to a
subroutine R is represented as AR. We use sendP (x) to
denote the sending of a message x to some party P and
receiveP (x) to denote the receiving of a message x from
some party P . The special symbols € and ‹ are used
as distinguished symbols that are not strings, meaning
true and false, respectively. The set of integers from 1
to n is represented by [n]. Finally, for two strings a and
b we write a||b to denote their concatenation and a ü b

to denote their bit-wise XOR.

3.1 Biological Background

Genetic information is encoded by the sequence of four
di�erent nucleotides, called adenine, cytosine, guanine
and thymine, and represented by the letter A, C, G,
and T. The sequence of nucleotides is determined by
their binding to a sugar-phosphate backbone, yield-
ing a very long macromolecule, called deoxyribonucleic
acid (DNA). DNA molecules have a property called
complementarity: Due to the fact that adenine and
thymine can form hydrogen bonds with each other
(same holds for cytosine and guanine), each sequence
of nucleotides has a well-defined reverse-complementary
sequence (e.g., ATTCG is the reverse complement of
CGAAT). This means that two complementary single-
strand DNA molecules form a double-strand complex,
which is the well-known DNA double-helix. This fea-
ture is the basis for reproduction as it allows the cre-
ation of copies of existing single-stranded DNA as well
as for the high stability of genomic information, as it
enables several error-correction mechanisms (e.g., one
strand is damaged but the other can serve as template
for re-creating the damaged sequence). Genetic informa-

tion in humans is encoded in 23 separate molecules, the
chromosomes: 22 of them are present in two copies (i.e.,
the maternal and the paternal copy), whereas the 23rd
pair consists of the so-called sex chromosomes X and Y,
which determine a person’s biological gender (XX be-
ing the regular female complement and XY being the
regular male complement).

In general, the DNA of two individuals di�er in
0.1% of the positions [39] and the most common di�er-
ences are single nucleotide polymorphisms (SNPs) [24].
A SNP denotes the di�erence in one nucleotide at a
specific position in the genome. Besides SNPs there are
other variations such as small insertions or deletions of
nucleotide bases, and larger chromosomal events such as
inversions and translocations. Since there are only few
variations between two individuals’ genomes, it is com-
mon practice to denote only the di�erences of a newly se-
quenced genome compared to a reference genome. This
information is typically encoded in the Variant Call For-
mat (VCF) [26]. Note that the reference genome is based
on a single (haploid) chromosome set and does represent
only a commonly accepted reference. It does not repre-
sent “biological correctness”, a “healthy genome”, nor
does it completely represent all genomic sequences (due
to technical limitations and some large inter-individual
di�erences).

The genomic sequence is, to current knowledge,
made up of regions with di�erent functions. A relatively
small part (about 1% of the total sequence) consists
of so-called coding sequence, commonly referred to as
genes. Each gene is made up of one or more consecutive
subsequences of the genomic sequence that together de-
fine the template for the production of a particular pro-
tein. Variants that occur within a coding sequence most
likely have direct consequences on the shape and func-
tion of a cellular protein and defects in protein function
can manifest as diseases.

3.2 Cryptographic Building Blocks

We make use of several cryptographic tools in our con-
struction of the METIS system. Below, we provide an
informal description of those primitives and we intro-
duce their notation. For a formal definition we refer the
reader to Appendix A.

Pseudorandom Functions. Pseudorandom functions
(PRFs) were first introduced by Goldreich et al. [31]. A
PRF is defined as a keyed function for some key k, that
is computationally indistinguishable from a function f

My Genome Belongs to Me: Controlling Third Party Computation on Genomic Data 115

chosen uniformly at random out of the set of all func-
tions having the same domain and range. This captures
the fact that for all inputs x, the output PRF(k, x) looks
random to the eyes of a computationally bounded ad-
versary. Naor and Reingold [61] proposed an e�cient
instantiation of PRFs, and many more can be found in
the literature.

Strong One-Time MACs. Message Authentication
Codes (MACs) help preventing an adversary from mod-
ifying a message sent by one party to another, without
the parties detecting that a modification has been made.
A sender associates a message m with a MAC tag t that
was generated by computing MAC(k, m) with a key k.
The receiver, who also knows the key, verifies whether
the tag is correct on the associated message by check-
ing if MACVfy(k, m, t) = 1. A one-time MAC denoted by
OTMAC, is a restricted version of a MAC where each key
can be used at most once. The strong security of a MAC
scheme implies that no adversary can forge a new valid
message-tag pair. One-time MAC schemes can be instan-
tiated from pairwise independent hash functions [21].

Oblivious Transfer. Oblivious Transfer (OT) is a
cryptographic protocol (senderOT, receiverOT) where the
sender has two input messages m0 and m1 and the re-
ceiver has an input bit b. At the end of the protocol the
receiver learns mb and nothing else. The security require-
ment demands that the sender should not learn the bit b

and the receiver should not learn anything about m1≠b.
Several e�cient instantiations are known from standard
number-theoretic assumptions [7, 59, 64].

3.3 Garbled Circuits

Here we informally describe the garbling scheme of
Yao [68] and we defer a formal treatment of the primi-
tive and its security guarantees to Appendix A. Garbled
circuits allow two parties (the garbler and the evaluator)
holding inputs x and y, respectively, to evaluate an arbi-
trary Boolean circuit of a function f without revealing
any information about their inputs, beyond what is triv-
ially leaked by the output f(x, y). A garbling scheme G is
defined with respect to a function f and is composed of
an encoding (information) generation algorithm GenEn,
an encoding algorithm En, a complement encoding algo-
rithm ComEn, a circuit garbling algorithm Gb, a decod-
ing algorithm De, and an evaluation algorithm Ev.

Fixed Input. Note that we slightly deviate from the
standard notation of projective garbling schemes as in-
troduced in [15], since we require that part of the input

of the circuit is fixed throughout multiple executions of
Yao’s protocol. A similar setting has been considered
in the work of Naveed et al. [62]. A fixed input is one
that is used in multiple function evaluations. Moreover
in our case, the input encodings (i. e., the labels of the
garbled circuit) are also fixed and reused in the garbling
of di�erent circuits. To formalize this we introduce the
algorithms GenEn and ComEn.

Input Encoding. The encoding generation algorithm
GenEn for standard inputs of length n samples a vec-
tor e =

)!
¸

0
i , ¸

1
i

"*
iœ[n] of random labels. The encoding

algorithm En on input e and x = (x1, . . . , xn) returns
the encoded input X =

)
¸

xi
i

*
iœ[n]. Given a fixed input

y = (y1, . . . , yn) and its encoded version Y =
)

¸
yi
i

*
iœ[n],

the complement encoding algorithm ComEn samples a
vector

Ó
¸

1≠yi
i

Ô

iœ[n]
uniformly at random and returns

the encoding e =
)!

¸
0
i , ¸

1
i

"*
iœ[n].

Circuit Generation. The circuit garbling algorithm
Gb associates two random labels ¸

0
i , ¸

1
i with each wire i of

the circuit. For the input wires, it uses the encoding e as
defined above. For each binary gate g of the circuit with
input wires i and j and output wire w, the algorithm
computes

Enc

11
¸

bi
i Î¸

bj

j

2
, ¸

g(bi,bj)
w

2

for all (bi, bj) œ {0, 1}2, where Enc is the encryption
algorithm of some symmetric encryption scheme. The
resulting four ciphertexts (in random order), constitute
the garbled version of g. The collection of all garbled
gates forms the garbled circuit. It is computed by the
garbler and sent to the evaluator, along with the decod-
ing information d, a mapping table between the labels
associated with the output wires and the output bits.

Oblivious Transfer. The evaluator must receive the
labels corresponding to the input bits of each party’s in-
put. Fixed labels

)
¸

yi
i

*
iœ[n] can be sent once and for all,

but for the non-fixed input x, the circuit generator has
to engage the evaluator in an oblivious transfer protocol
to transmit the set of labels

)
¸

xi
i

*
iœ[n].

Circuit Evaluation. Given one label for each input
wire of the circuit, the evaluation algorithm Ev can com-
pute exactly one label for each output wire of the circuit.
With the set of output labels and the decoding informa-
tion the decoding algorithm De computes the output
f(x, y).

My Genome Belongs to Me: Controlling Third Party Computation on Genomic Data 116

4 METIS

In the following, we describe METIS, our protocol for se-
cure computation on genomic data. We first introduce
the formal security definitions we want to achieve fol-
lowed by our construction and an intuitive security anal-
ysis. The formal proofs are deferred to Appendix B.

4.1 Definitions

We specify the security of our system following the simu-
lation paradigm: The ideal functionality F is defined as
a trusted third party in the ideal world [54], that inter-
acts with the participating parties namely the server M,
the client C and the owner O. The parties communicate
via authenticated secure channels. Since the sequencing
center is considered to be trusted, we simply omit it
from our formalization and let F impersonate the role
of it. We assume that the data is split into blocks of a
certain length and let such a length be a system param-
eter.

Corruption Model. The adversary in this setting is
required to be admissible in the sense that it can corrupt
exactly one of the participating parties. If the party is
maliciously corrupted, the communication to and from
the party is routed through the adversary who can mod-
ify the messages arbitrarily. In contrast, if the party is
corrupted in the semi-honest sense then the adversary
receives the transcript of all the communication that
took place to and from the corrupted party and the
party’s random coins. The adversary chooses one of the
parties to corrupt ahead of the execution and signals its
choice to the environment. More precisely, the adversary
is allowed to maliciously corrupt either the client C or
owner O or he can corrupt the server M in a semi-honest
sense.

Execution in the Ideal Model. In the following we
describe the execution of the ideal functionality. For the
ease of the exposition we assume that the clients query
F on a single block of size B, although it is easy to
extend our model to the more general case where we
allow queries on multiple blocks.

1. F samples the data x according to some distribution
and fixes B (which is a system parameter) as input.

2. F notifies M, C and O about B.
3. Whenever C sends an evaluation request

(SID, z, f, j) to F where SID is the session
ID, z is the query of C, f is the function to be

computed and j is the index of the requested block,
the following steps are executed:
(a) F picks a random handler h and stores

(SID, z, f, h) in a table. Here the handler h acts
as an identifier for the query request.

(b) F notifies M about (h, |z|, f, j).
(c) F then sends (h, z, f, j) to O.
(d) O responds to F with either € or ‹ (allowing or

denying the evaluation request, respectively).
(e) F sends (SID, f(x, z)) or ‹ to C depending on

whether O answered with € or ‹, respectively.
(f) An honest C outputs whatever it received from

F in the above step.

Execution in the Real World. Next, we consider the
execution in the real world where the parties interact
with each other and there is no trusted party. An adver-
sary who corrupts a party (O or C) maliciously, sends
and receives messages on behalf of the party in any ar-
bitrary way of his choice. And a semi-honest adversarial
corruption of a party leads to the adversary obtaining
a transcript of communication during the execution of
the party. However, an honest party follows the protocol
specification of the system.

Definition 4.1. We denote the joint output of
the honest and corrupt parties in the ideal world
with the functionality F and the simulator S by
{IDEALF,S(x, z, ⁄)}x,z,⁄, and denote protocol fi’s joint
output of the honest and corrupt parties in the real world
as {REALfi,A(x, z, ⁄)}x,z,⁄. A METIS system is consid-
ered secure, if for all functions f and every non-uniform
PPT admissible adversary A in the real world, there ex-
ists a non-uniform PPT simulator S in the ideal world
who corrupts the same party, such that

{IDEALF,S(x, z, ⁄)}x,z,⁄ ¥ {REALfi,A(x, z, ⁄)}x,z,⁄.

4.2 METIS construction

The METIS protocol is parameterized by the blocksize B,
which we assume to be known by all participants. The
protocol is structured in two phases: During the setup
phase the sequencing center S interacts with the data
owner O and the server M. At the end of this phase, M

holds an encoding of the data and O the corresponding
decoding information. In the evaluation phase, the client
C interacts with M and O to compute a function of his

My Genome Belongs to Me: Controlling Third Party Computation on Genomic Data 117

interest over O’s DNA. Here the data owner’s sequenced
DNA is fixed across all computations.

In the following we provide the reader with an intu-
itive description of our system and we refer to Figure 3
for the formal specifications. Throughout the following
section we assume that the parties can securely com-
municate with each other, whereas in practice all the
communication is routed through server M. This can be
easily realized using authenticated encryption.

Setup Phase. At the beginning of the setup phase,
the sequencing center S samples a random key k to gen-
erate keys kj for all j blocks of the sequenced DNA
denoted by x, using a pseudorandom function. Then it
creates the encoding information ex as follows: For the
i-th bit of the j-th block of x, denoted by xj,i, it com-
putes two labels. One represents xj,i and is determined
by the pseudorandom function with input (kj , i). The
other label (representing the bit 1 ≠ xj,i) is a randomly
sampled string. As a result, the labels corresponding to
x are fixed and can be reconstructed using only the PRF

and the key k. The sequencing center S sends ex, the se-
quence of zero and one labels for x which are fixed, to
the server M and the key k to the data owner O. Finally,
S securely deletes all data.

Evaluation Phase. The evaluation is initiated by the
client C who receives f and z as inputs. The client sends
f to the server. Then M and C execute a modified version
of Yao’s protocol: M takes the role of the garbler and
C evaluates the circuit. M garbles the circuit Ò which
takes as input the data x and an input z and returns
z||f(x, z). Note that C does not know x and therefore it
cannot run a standard oblivious transfer for the labels
corresponding to x with M. Instead, it uses the PRF
key (sent by O) to directly reconstruct the correct la-
bels to evaluate the garbled circuit. Note also that M

has access to the encoding ex (the zero- and one-labels)
and therefore it can garble the circuit without learning
which labels correspond to the input x. Finally, instead
of sending the output table to the client alongside the
garbled circuit, M blinds the values corresponding to
the function output df(x,z) with a random string v and
sends this blinded decoding information including an
OTMAC to the client and the blinding factor v together
with the decoding information for the client’s input dz

to the owner. Intuitively, with the OTMAC we prevent
selective failure attacks from a corrupted data owner as
any modification to the string v is detected by the client
with overwhelming probability.

In parallel to the setup of Yao’s protocol, the client
C interacts with the owner O and retrieves the PRF key

corresponding to the block of interest j from O. As the
labels corresponding to the input x were originally cre-
ated using the PRF on the block key kj and the o�set
i, C can now reconstruct the correct input labels. Note
that since kj is a random string, it does not leak any
additional information to C.

Finally, after the client C and the server M success-
fully evaluated the modified version of Yao’s protocol, C

holds the output labels corresponding to z||f(x, z). The
client passes the values corresponding to the request z

to the owner O, who can decode and validate it accord-
ing to her policy „. If she agrees with the function f and
the request z, she sends the blinding factor to the client
who can now verify the OTMAC and decode f(x, z).

At the end of the execution the client learns the
output of the function and nothing else (if allowed by the
data owner), whereas O learns the request that the client
computed while not learning the result of the evaluation.
This is desirable to protect against potential security
breaches at the data owner’s end.

Note that the encoding ex is the fixed input encod-
ing corresponding to O’s sequenced DNA. For multiple
queries from clients regarding the same data owner O

the server M computes di�erent garbled circuits with
the same ex. However, M samples fresh encoding infor-
mation ez for every query z from the client C even for
the same data owner O.

4.3 Security Analysis

In the following we state the main theorem of this work.

Theorem 4.2. Let PRF(·, ·) be a secure PRF, let
OTMAC = (MACGen, MAC, MACVfy) be a strongly un-
forgeable one-time MAC, let G = (GenEn, Gb, En, ComEn,

De, Ev, ev) be a projective garbling scheme and let
(senderOT, receiverOT) be a secure 1-out-of-2 oblivious
transfer protocol. Then the construction in Figure 3 se-
curely realises the ideal functionality F (Definition 4.1).

Proof Sketch. In order to prove that the METIS system
is secure, we need to describe a simulator for every cor-
rupted party simulating its view. Here we provide the
proof sketches, and the detailed proofs can be found in
Appendix B.

Corrupted Data Owner. The simulator SO receives
(h, z, f, j) as input, it samples a random key k and sends
it to A. It then samples |z| pairs of random labels ez,

My Genome Belongs to Me: Controlling Third Party Computation on Genomic Data 118

Sequencing Center S(x, B)

k Ω$ {0, 1}⁄

for j = 1, . . . ,
Ï |x|

B

Ì
do

kj Ω PRF(k, j)

for i = 1, . . . , B do
¸

xj,i
j,i Ω PRF(kj , i)

¸
1≠xj,i
j,i Ω$ {0, 1}⁄

ex :=

)!
¸0

j,i, ¸1
j,i

"*
jœ

#'
|x|
B

($
,iœ[B]

return ex, k

Data Owner O(k, „)

receive M(j, f, dz , v)

kj := PRF(k, j)

send C(kj)

receive C(Yz)

z Ω De(dz , Yz)

if z ”= ‹ and „(f, z) = 1

send C(v)

else send C(‹)

Server M(ex, |z|)

receive C(j, f)

for i = 1, . . . , |z| do
¸0

i Ω$ {0, 1}⁄

¸1
i Ω$ {0, 1}⁄

senderOT
!!

¸0
i , ¸1

i

""

ez :=

)!
¸0

i , ¸1
i

"*
iœ[|z|]

e := ez ||ex

Ò(x, z) := z||f(x, z)

(F, d) Ω Gb
!

1
⁄, Ò(·, ·), e

"

dz ||df(x,z) := d

sk Ω MACGen(1
⁄

)

t Ω MAC(sk, df(x,z))

v Ω$ {0, 1}|t|+|df(x,z)|

w := v ü (t||df(x,z))

send O(j, f, dz , v)

send C(F, sk, w)

Client C(j, z, f, B)

send M(j, f)

for i = 1, . . . , |z| do
¸zi

i Ω receiverOT(zi)

Lz :=

)
¸zi

i

*
iœ[|z|]

receive O(kj)

for i = 1, . . . , B do
¸

xj,i
j,i = PRF(kj , i)

Lx :=

)
¸

xj,i
j,i

*
iœ[B]

receive M(F, sk, w)

Y Ω Ev (F, Lx||Lz)

Yz ||Yf(x,z) := Y

send O(Yz)

receive O(v)

t||df(x,z) = w ü v

if MACVfy(sk, df(x,z), t) = 1

f(x, z) Ω De(df(x,z), Yf(x,z))

return f(x, z)

else return ‹

Fig. 3. METIS construction

a decoding information dz and a random v. It returns
(j, f, dz, v) to A. The adversary outputs some k

Õ
j .

1. If for some i, PRF(k
Õ
j , i) ”= PRF(PRF(k, j), i), then

SO aborts by returning ‹ to A.
2. Else, the adversary is provided with Yz =)

¸
zi
i

*
iœ[|z|].

If A replies with ‹ then SO sends ‹ to F . If it replies
with v

Õ, then SO sends v
Õ to F if v

Õ
= v and aborts

the simulation by outputting ‹ if v
Õ ”= v. The inputs

that SO provides to A are correctly distributed as in
the real protocol. What is left to be shown is that the
simulator aborts with the same probability as the real-
world protocol. First we note that, SO checks whether
the key k

Õ
j produces the correct labels. Since the cir-

cuit is generated honestly, if there exists an i such that
PRF(k

Õ
j , i) ”= PRF(PRF(k, j), i), then the circuit cannot

be evaluated. It follows that the real-world protocol also
aborts. Due to the strong unforgeability of the one-time
MAC scheme OTMAC the simulation aborts with the
same probability (up to a negligible factor) when v ”= v

Õ

in the real-world execution.

Corrupted Client. The simulator SC is described be-
low. It makes use of the simulators SOT, Sob and Sprv
that are guaranteed to exist for the security of oblivi-
ous transfer, obliviousness and privacy of the garbling
scheme G, respectively. On input (j, f) from the adver-
sary A, SC computes the keys k and kj as specified in the
protocol and generates Lx := {PRF(kj , i)}iœ[B]. It also
sets Lz :=

)
¸

zi
i

*
iœ[|z|] for random labels ¸

zi
i Ω$ {0, 1}⁄.

It can now simulate the |z| parallel oblivious transfer
protocols for C using the simulator SOT and extract C’s
input z from SOT. That is, in each iteration SOT outputs
zi and the simulator replies with ¸

zi
i . Then SC can re-

construct z as z1Î . . . Îz|z|. SC sends kj to the adversary
A, then it sends (SID, z, f, j) to the ideal functionality
where SID is an arbitrarily chosen session identifier. De-
pending on its reply we define two possible behaviours
of the simulation:

1. If the response from F was ‹, then the simulator
executes F Ω Sob(1

⁄
, |z|, Lx||Lz). It generates a ran-

dom w, a key sk Ω MACGen(1
⁄

) and sends (F, sk, w)

to A. When it receives Y
Õ

z from A it returns ‹ to
A.

2. If the response from F was some y ”= ‹, then the
simulator obtains (F, d) using Sprv(1

⁄
, |z|, y, Lx||Lz).

My Genome Belongs to Me: Controlling Third Party Computation on Genomic Data 119

It generates w and sk as the previous case and sends
(F, w, sk) to A. When it receives Y

Õ
z from A, it checks

if z = De(dz, Y
Õ

z), then returns w ü MAC(sk, y)||y to
A. Else, the simulator aborts the execution.

The proof now follows a sequence of experiments. We de-
fine S0 as the real-world protocol, then we define the ex-
periments S1, . . . , S|z| where we replace the first i obliv-
ious transfers with the simulated protocol (denoted as
SOT). The indistinguishability S0 ¥ S1 . . . ¥ S|z| fol-
lows from the simulation based security of the oblivious
transfer protocol.

In S|z|+1 we extract z from the outputs of SOT and
abort the execution if this z is not obtained through
decoding later. The simulations S|z| and S|z|+1 di�er
only in the case that De(dz, YzÕ) = z

Õ ”= ‹ and z ”= z
Õ.

Therefore we have that S|z| ¥ S|z|+1, by the authenticity
of the garbling scheme.

In S|z|+2 the garbled circuit is generated by Sob,
the simulator derived from the obliviousness of the gar-
bling scheme, if z and f are not allowed by the policy
of the owner. The indistinguishability follows from the
the obliviousness of the garbling scheme.

In S|z|+3 the pair (F, d) is generated by Sprv, the sim-
ulator derived from the privacy of the garbling scheme,
if z and f are allowed by the policy of the owner. It can
be shown that S|z|+2 ¥ S|z|+3 holds by the privacy of
the garbling scheme.

Finally, for S|z|+3 ¥ SC observe that the two exe-
cutions are identical except that the decision whether
to allow the computation of f on z is outsourced to
F . Therefore the two experiments are trivially indistin-
guishable to the eyes of the adversary.

Corrupted Server M. As before, the proof follows a
sequence of experiments. We modify the real-world pro-
tocol through a series of experiments until we construct
the simulator and we argue about the indistinguishabil-
ity of the neighbouring simulations. Note that for the
case of the corrupted server, we consider only a semi-
honest adversary. We define S0 as the real-world proto-
col, then we substitute the i-th oblivious transfer with
the simulated protocol in the experiments S1, . . . , S|z|.
In S|z|+1 we generate the block keys as random strings.
For 1 Æ j Æ

Ï
|x|
B

Ì
we modify S|z|+1+j such that the

labels for the first j blocks are randomly generated. Fi-
nally SM is the simulator where the block index and
function size are received from F as inputs.

The indistinguishability S0 ¥ S1 ¥ . . . ¥ S|z| fol-
lows from the security of the oblivious transfer protocol.

Given the pseudorandomness of the underlying PRF we
can show that S|z| ¥ S|z|+1 holds as the only di�erence
between the simulations is that the PRFs are replaced
with random strings. Similar to the case above, we can
show S|z|+1 ¥ S|z|+2 ¥ . . . ¥ S|z|+1+

'
|x|
B

(by reducing
it to the security of the underlying PRF. The indistin-
guishability between S|z|+1+

'
|x|
B

(and SM is trivial as
there is no functional change between the games.

4.4 Limitations

Our privacy model assumes that the information stored
at the sequencing center is not leaked, i.e., we assume
that the genomic information is securely erased after it
is encoded and sent to the server M. We also assume, as
discussed in Section 4.1, that the server is semi-honest
and does not collude with the client. Actively corrupting
both parties corresponds to having free access to the
data owner’s data regardless of his consent.

On a system level, our architecture does not directly
defend against inference attacks by the clients. Although
the data owner has full control over the functions that
can be computed on the dataset, it is not always clear
what an adversary can learn from the output of cer-
tain functions. Standard countermeasures against infer-
ence attacks, such as adding noise to achieve di�eren-
tial privacy [27], are compatible with our architecture
but would penalize the performance of our system. In-
tegrating di�erential privacy with our system without
a�ecting e�ciency is an interesting direction for future
works.

5 Implementation

We now describe our prototype implementation of
METIS. It is based on a modified version of Obliv-C [70],
where the modifications are described in Appendix C.
This allows us to use a well tested implementation for
the most resource consuming part of the METIS proto-
col and only change Yao’s protocol where our construc-
tion requires it: M plays the role of the garbler, using
the precomputed labels, and client C acts as the eval-
uator of the garbled circuits. Our implementation of
the sequencing center S is based on the programming
language Python and we use the Python Cryptography
Toolkit (pycrypto) [2] as this part is less relevant for the
overall performance of the system.

My Genome Belongs to Me: Controlling Third Party Computation on Genomic Data 120

5.1 Data Representation

For the evaluation of functions on the data owner’s ge-
nomic data, the client needs to know the positions of
specific genes in the encrypted data. This information
is usually easily accessible through VCF files (as intro-
duced in subsection 3.1). However, if one directly en-
crypts the VCF file, the encoding would leak the quan-
titative di�erence between the reference genome and the
data owner’s genome for individual genes as this di�er-
ence is exactly what the VCF file encodes. A large dif-
ference in some gene strongly indicates a di�erent gene
product, which is a very sensitive information. Thus, we
need to use an uncompressed representation and not just
encrypt the VCF file. Developing such a representation
is not trivial, because we have to use a fixed length en-
coding for every position of the reference genome while
maintaining as much as possible of the expressiveness
of the VCF file. For example, the VCF allows to encode
insertions of arbitrary length. In order to obtain a fixed-
length encoding, we need to set a suitable limit on this
length.

In our implementation of METIS, the sequencing
center S is encoding the following information: For every
position i in the reference genome1, we encrypt two bits
(variant bits) that represent the genetic variant (None,
SNP, Insertion, Deletion), b bits (length bits) that en-
code the length of an insertion/deletion and 2 · (2

b ≠ 1)

bits (sequence bits) for the sequence of the insertion,
where for the 2

b ≠ 1 possible positions we need two bits
to encode the nucleotide base. Note that we have to do
the encoding for both copies of the DNA (the maternal
and the paternal copy) and always need all bits. Espe-
cially when there is no variant, we encrypt the variant,
length and sequence bits which are all set to zero. This
encoding clearly is constant-size for a fully sequenced
genome.

5.2 Evaluation Functions

While METIS allows to compute every function on the
DNA sequence, we restrict ourselves to evaluate the fol-
lowing functions, which are medically relevant.

SNP. Is there an SNP at a specific position?
AGL (4-Alpha-Glucanotransferas) is a gene in the glu-
cose metabolism. Assuming a patient shows an unknown
SNP at a specific position that has not been reported

1 human genome assembly hg38 [5]

in any database, it is not clear whether the patient’s
disease is associated with this variant or not. Therefore
it is relevant to find other people carrying this variant.

Heterozygous insertion. Is there a heterozygous in-
sertion at a specific position?
Analogously, the patient’s DNA sequence might show a
heterozygous insertion (i.e. an insertion occurring only
on the maternal or paternal copy) at a specific posi-
tion of AGL. It is more di�cult to determine whether
there is a heterozygous insertion at a specific position
than checking for an SNP because we have to also check
whether the length and the sequence match. Further-
more, we have to ensure that the insertion only occurs
on one copy.

Number of variants. How many variants are there in
a specific region?
Besides looking for a specific variant, it is especially use-
ful to check how many variants occur in a specific region.
Assuming that diseases of the glucose metabolism are re-
lated to variants in specific regions of AGL, it is useful
to detect patients who show a high number of variants
in that region.

Frameshift. Is there frameshift mutation in a specific
region?
The gene HCN2 (Hyperpolarization Activated Cyclic
Nucleotide Gated Potassium And Sodium Channel 2)
encodes an ion channel of the heart. Frameshift muta-
tions are insertions and deletions of lengths that are not
a multiple of three. In HCN2, a frameshift mutation
cause the amino acid sequence of the ion channel to dif-
fer starting from the beginning of the frameshift. Thus,
the channel might not function properly and cause heart
diseases.

5.3 Optimizations

The implementation of free XOR [50] requires full con-
trol over the input labels. However, in the METIS sys-
tem, the garbler only receives the fixed set of zero- and
one-labels from the sequencing center S. Fortunately,
for free XOR it is only required to fix an R consistent
over all inputs such that ¸

0
j,i = ¸

1
j,i ü R for all j and i.

Therefore, in our implementation the sequencing center
S samples a fresh R for each data owner and computes
¸

xj,i

j,i = PRF(kj , i) and ¸
1≠xj,i

j,i = ¸
xj,i

j,i ü R, where we use
HMAC with SHA256 as the PRF. As server M does not
have access to kj at any point in time, it can not dis-
tinguish whether the zero- or the one-label was derived
from the PRF even when learning R. Given R, the server

My Genome Belongs to Me: Controlling Third Party Computation on Genomic Data 121

can now apply the free XOR optimization. Additionally,
it is easy to see that M now only needs to store ¸

0
j,i for all

bits of the input as ¸
1
j,i can be easily recomputed. The

validity of this change follows naturally from the proof
in [50]. We shall note that the free-XOR optimization
assumes the existence of a random oracle.

Besides the free XOR optimization, Obliv-C pro-
vides the following optimizations: Half gates [71],
point and permute [12], and garbled row reduction
(GRR3) [60]. These optimizations directly apply to
METIS since our modifications a�ect only the input la-
bels.

6 Experimental Evaluation

While the METIS system has three parties interacting
in the evaluation of a query, we focus on the interac-
tion between the server and the client here as the data
owner only sends small messages which are important
for the security of the protocol but do not contribute
to the computational feasibility of our construction. We
ran both, the client and the server code, on the same
machine for simplicity reasons. However, all communi-
cation between the client and the server still utilizes
TCP network sockets in the same way as in a real-world
implementation.

For the evaluation we used o�-the-shelf hardware
(Xeon Gold 6132, 2.60 GHz). Each party was assigned
a single core. This is a reasonable assumption to make:
For a real-world deployment we expect the query to be
executed on many data owners’ genetic information and
therefore multiple independent instances of the protocol
are executed in parallel.

Block Size. Both our construction and implementation
are parameterized by the block size. The labels for one
block are selected by a PRF using the same key derived
from the master secret key. Selecting a “good” block
size has several implications when applying the METIS

system to real world problems:

– The communication cost of the data owner is
roughly linear in the number of blocks processed.
Thus, to keep the communication complexity as low
as possible, one should try to keep the number of
blocks low.

– The size of the garbled circuit executed between the
client and the server is proportional to the sum of
the size of all the touched blocks. When blocks are

b = 2 b = 3 b = 4 b = 5
Block

exon 0.074 0.141 0.259 0.497
gene 4.438 8.335 17.475 29.545
chromosome 124.357 215.987 389.657 751.498
Table 1. Time of label generation (in seconds)

too large, a lot of unneeded information is processed
by the protocol.

– If the client colludes with the server, they can ob-
viously learn the data owner’s data within the re-
quested block(s). Data that was not part of any
block where some colluding client was authorized
to compute on, however, remains secure.

We suggest to choose blocks that correspond to biolog-
ical units. Besides the trivial case of just having one
block, we can choose each chromosome/gene/exon to
be a block. The choice has performance and privacy im-
plications. While having each exon to be a block is the
best choice in case of performance, it is the worst in
case of query privacy. On the other hand having only
one block is the best choice for query privacy but the
worst in terms of performance.

Setup Phase. In our genetic application, the setup
phase is executed alongside the actual sequencing of a
single data owner’s genome at the sequencing center.
Our naïve implementation took approximately 13 min-
utes to generate the labels of chromosome 1, which is the
largest chromosome, for the garbled circuit using 5 bits
for the length and thus 62 bits for the sequence (as dis-
cussed in subsection 5.1). The current implementation
is saturating eight cores on our machine. The results for
2 to 5 bits are summarized in Table 1. Today’s variant
calling pipelines usually call short insertions or deletions
with lengths up to 30. Thus b = 5 seems to be a practical
choice. Note that the system can be easily adapted to
changes of the pipelines by increasing b. As sequencing
a full human genome still takes 26 hours [57], adding
between half an hour (b = 2) and three hours (b = 5)
for securing the data of the whole genome seems to be
a modest overhead.

Evaluation Phase. Performance of METIS in the eval-
uation phase is more critical for the practicality of the
scheme. We expect clients to process many queries on
the data owner’s DNA over time and each such query
will likely process the genetic information of thousands
of data owners – for example to find individuals suit-

My Genome Belongs to Me: Controlling Third Party Computation on Genomic Data 122

SNP heterozygous insertion number of variants frameshift

Block METIS client METIS client METIS client METIS client

exon 0.183 0.183 0.215 0.218 0.461 0.494
gene 0.278 0.290 1.523 1.569 1.358 1.403 0.370 0.394
chromosome 107.842 107.925 1,507.182 1,507.232 1,346.115 1,346.464 264.999 265.189
Table 2. Time of function evaluation (in seconds for b = 2)

SNP heterozygous insertion number of variants frameshift

Block METIS client METIS client METIS client METIS client

exon 0.183 0.183 0.226 0.232 0.566 0.612
gene 0.281 0.294 2.099 2.145 1.369 1.415 0.409 0.445
chromosome 114.638 115.323 2,197.448 2,197.915 1,350.272 1,349.801 342.398 343.005
Table 3. Time of function evaluation (in seconds for b = 3)

SNP heterozygous insertion number of variants frameshift

Block METIS client METIS client METIS client METIS client

exon 0.182 0.182 0.241 0.249 0.568 0.612
gene 0.287 0.302 2.818 2.866 1.380 1.425 0.470 0.510
chromosome 125.764 126.716 2,962.965 2,962.378 1,361.069 1,361.620 426.638 428.050
Table 4. Time of function evaluation (in seconds for b = 4)

SNP heterozygous insertion number of variants frameshift

Block METIS client METIS client METIS client METIS client

exon 0.183 0.184 0.259 0.270 0.570 0.616
gene 0.326 0.345 3.749 3.795 1.393 1.441 0.539 0.588
chromosome 156.817 154.028 4,062.581 4,060.937 1,420.999 1,418.646 524.054 522.936
Table 5. Time of function evaluation (in seconds for b = 5)

SNP heterozygous insertion number of variants frameshift

unit exon gene chr. exon gene chr. exon gene chr. gene chr.

gates 3.4 · 103 2.7 · 105 3.1 · 108 2.1 · 105 9.6 · 106 2.2 · 109 1.1 · 106 3.3 · 106 3.7 · 109 9.2 · 105 1.3 · 109

bytes 2.3 · 105 1.7 · 107 2 · 1010 1.4 · 107 6.2 · 108 6.9 · 1011 7.1 · 107 2.1 · 108 2.4 · 1011 5.9 · 107 8.1 · 1010

Table 6. Circuit size (in number of gates) and network tra�c (in bytes) for b = 5

able for clinical trials. We evaluated the server with the
functions introduced in subsection 5.2 using the exon,
gene (sum of all exons) or the chromosome (sum of all
genes on that chromosome) as a block according to the
above considerations about block sizes. The results of
our experiments are summarized in Table 2 to Table 5
for b = 2 to b = 5 respectively. The number of gates of
the circuits as well as the corresponding network tra�c
for the largest considered encoding (b = 5) are shown
in Table 6. The circuit sizes increase when using larger
blocks, as expected. In the computation of SNPs less
bits are inspected compared to heterozygous insertions
and the number of variants, which is also reflected in
the circuit sizes. Using more bits of the encoding in the
computation results in larger circuits. For the network
tra�c evaluation, we ran the experiment between two
machines and used iptables accounting to extract the
numbers. As one would expect, the tra�c is dominated

by the cost of transferring the circuit (as inputs are
mostly calculated locally on the client side). We mea-
sured approximately 65 bytes per gate – close to what
one would expect for a security level of 128 bits and four
ciphertexts per gate.

In terms of computation cost, detecting whether
there is a SNP on exon 14 of AGL when using the
exon itself as a block can be processed (single-threaded)
by the server in less than 200 ms. Assuming a powerful
server with 48 Cores and 10,000 data owners, the pro-
tocol will be finished in slightly more than 40 seconds.
If the client wants to hide the gene he is interested in,
the entire chromosome 1 should be chosen as the block.
Here, the detection still finishes in under two minutes
and thus for 10,000 data owners in less than four hours.
Note that the frameshift detection is over the entire gene
HCN2 and thus there are no results for choosing a sin-
gle exon as the block. Furthermore it seems that the

My Genome Belongs to Me: Controlling Third Party Computation on Genomic Data 123

frameshift detection is more e�cient to perform than
the SNP detection. However, this is because HCN2 is lo-
cated on chromosome 19, which is considerably smaller
than chromosome 1. In our encoding we encode an in-
sertion with the bits 10 and a deletion with 11. Thus,
in the first step of detecting a frameshift mutation, we
only have to look at one of the variants bits to determine
whether there is an insertion or deletion. The expensive
step is testing whether the length of the insertion or
deletion is a multiple of three. However, this step could
be moved to the setup phase by spending one more bit
in the encoding and then just checking this bit in the
oblivious computation.

The detection of heterozygous insertions takes a lot
longer than the other functions. The reason for this is
that for every position of the block all bits of the encod-
ing have to be processed. If the client is not interested in
the sequence of the insertion but just in the position and
the length, the evaluation time decreases significantly.

We did not evaluate our implementation against
other systems suggested in subsection 1.3. This is due
to the fast progress in development of MPC frameworks.
Comparisons would not say anything about the actual
systems but only about which system is built on top of
the fastest framework.

7 Conclusions

We presented METIS, a service provider that supports
evaluating functions over genetic data. In particular,
METIS gives the data owner full control over the disclo-
sure of information while splitting the computational
burden between the server and the client. We showed
that our construction is generically applicable to genetic
studies and we demonstrated its practical feasibility by
evaluating it on four medically relevant functions.

Acknowledgments

This work is a result of the collaborative research
project PROMISE (16KIS0763 for FAU, 16KIS0364 for
CeGaT) by the German Federal Ministry of Educa-
tion and Research (BMBF). FAU authors were also
supported by the German research foundation (DFG)
through the collaborative research center 1223, and by
the state of Bavaria at the Nuremberg Campus of Tech-
nology (NCT). NCT is a research cooperation between
the Friedrich-Alexander-Universität Erlangen-Nürnberg

(FAU) and the Technische Hochschule Nürnberg Georg
Simon Ohm (THN).

References

[1] Breast cancer risk factors - genetics. http://www.
breastcancer.org/risk/factors/genetics.

[2] Python cryptography toolkit (pycrypto). https://pypi.python.
org/pypi/pycrypto. Accessed: 2017-05-18.

[3] Research – 23andme. https://www.23andme.com/en-
int/research/. [Online; accessed 28-May-2018].

[4] Researchkit. http://researchkit.org/. [Online; accessed
28-May-2018].

[5] Initial sequencing and analysis of the human genome. Nature,
409(6822):860–921, 02 2001.

[6] Gail-Joon Ahn, Moti Yung, and Ninghui Li, editors. ACM
CCS 14, Scottsdale, AZ, USA, November 3–7, 2014. ACM
Press.

[7] Gilad Asharov, Yehuda Lindell, Thomas Schneider, and
Michael Zohner. More e�cient oblivious transfer and ex-
tensions for faster secure computation. In Ahmad-Reza
Sadeghi, Virgil D. Gligor, and Moti Yung, editors, ACM CCS
13, pages 535–548, Berlin, Germany, November 4–8, 2013.
ACM Press.

[8] Erman Ayday, Emiliano De Cristofaro, Jean-Pierre Hubaux,
and Gene Tsudik. Whole genome sequencing: Revolutionary
medicine or privacy nightmare? Computer, 48(2):58–66,
2015.

[9] Erman Ayday, Jean Louis Raisaro, and Jean-Pierre Hubaux.
Privacy-enhancing technologies for medical tests using ge-
nomic data. Technical report, 2012.

[10] Erman Ayday, Jean Louis Raisaro, Paul J McLaren, Jacques
Fellay, and Jean-Pierre Hubaux. Privacy-preserving compu-
tation of disease risk by using genomic, clinical, and environ-
mental data. In HealthTech, 2013.

[11] Pierre Baldi, Roberta Baronio, Emiliano De Cristofaro, Paolo
Gasti, and Gene Tsudik. Countering gattaca: e�cient and
secure testing of fully-sequenced human genomes. In Pro-
ceedings of the 18th ACM conference on Computer and
communications security, pages 691–702. ACM, 2011.

[12] Donald Beaver, Silvio Micali, and Phillip Rogaway. The round
complexity of secure protocols. In Proceedings of the twenty-
second annual ACM symposium on Theory of computing,
pages 503–513. ACM, 1990.

[13] Mihir Bellare, Viet Tung Hoang, and Phillip Rogaway. Adap-
tively secure garbling with applications to one-time programs
and secure outsourcing. Cryptology ePrint Archive, Report
2012/564, 2012. http://eprint.iacr.org/2012/564.

[14] Mihir Bellare, Viet Tung Hoang, and Phillip Rogaway. Foun-
dations of garbled circuits. Cryptology ePrint Archive, Report
2012/265, 2012. http://eprint.iacr.org/2012/265.

[15] Mihir Bellare, Viet Tung Hoang, and Phillip Rogaway. Foun-
dations of garbled circuits. In Yu et al. [69], pages 784–796.

[16] Mihir Bellare and Phillip Rogaway. Random oracles are practi-
cal: A paradigm for designing e�cient protocols. In V. Ashby,
editor, ACM CCS 93, pages 62–73, Fairfax, Virginia, USA,
November 3–5, 1993. ACM Press.

http://www.breastcancer.org/risk/factors/genetics
http://www.breastcancer.org/risk/factors/genetics
https://pypi.python.org/pypi/pycrypto
https://pypi.python.org/pypi/pycrypto
https://www.23andme.com/en-int/research/
https://www.23andme.com/en-int/research/
http://researchkit.org/
http://eprint.iacr.org/2012/564
http://eprint.iacr.org/2012/265

My Genome Belongs to Me: Controlling Third Party Computation on Genomic Data 124

[17] Ran Canetti and Juan A. Garay, editors. CRYPTO 2013,
Part II, volume 8043 of LNCS, Santa Barbara, CA, USA,
August 18–22, 2013. Springer, Heidelberg, Germany.

[18] Ran Canetti, Oded Goldreich, and Shai Halevi. The random
oracle methodology, revisited (preliminary version). In 30th
ACM STOC, pages 209–218, Dallas, TX, USA, May 23–26,
1998. ACM Press.

[19] Henry Carter, Charles Lever, and Patrick Traynor. Whitewash:
Outsourcing garbled circuit generation for mobile devices. In
Proceedings of the 30th Annual Computer Security Applica-
tions Conference, pages 266–275. ACM, 2014.

[20] Henry Carter, Benjamin Mood, Patrick Traynor, and Kevin
Butler. Secure outsourced garbled circuit evaluation for
mobile devices. In Presented as part of the 22nd USENIX
Security Symposium (USENIX Security 13), pages 289–304,
Washington, D.C., 2013. USENIX.

[21] J.Lawrence Carter and Mark N. Wegman. Universal classes
of hash functions. Journal of Computer and System Sciences,
18(2):143 – 154, 1979.

[22] Seung Geol Choi, Jonathan Katz, Ranjit Kumaresan, and
Hong-Sheng Zhou. On the security of the Free-XOR tech-
nique. Cryptology ePrint Archive, Report 2011/510, 2011.
http://eprint.iacr.org/2011/510.

[23] Peter JA Cock, Christopher J Fields, Naohisa Goto,
Michael L Heuer, and Peter M Rice. The sanger fastq
file format for sequences with quality scores, and the
solexa/illumina fastq variants. Nucleic acids research,
38(6):1767–1771, 2010.

[24] Francis S Collins, Lisa D Brooks, and Aravinda Chakravarti.
A dna polymorphism discovery resource for research on
human genetic variation. Genome research, 8(12):1229–1231,
1998.

[25] Ronald Cramer and Victor Shoup. Universal hash proofs and
a paradigm for adaptive chosen ciphertext secure public-key
encryption. In Lars R. Knudsen, editor, EUROCRYPT 2002,
volume 2332 of LNCS, pages 45–64, Amsterdam, The
Netherlands, April 28 – May 2, 2002. Springer, Heidelberg,
Germany.

[26] Petr Danecek, Adam Auton, Goncalo Abecasis, Cornelis A
Albers, Eric Banks, Mark A DePristo, Robert E Handsaker,
Gerton Lunter, Gabor T Marth, Stephen T Sherry, et al. The
variant call format and vcftools. Bioinformatics, 27(15):2156–
2158, 2011.

[27] Cynthia Dwork. Di�erential privacy: A survey of results.
In International Conference on Theory and Applications of
Models of Computation, pages 1–19. Springer, 2008.

[28] Keith B Frikken. Practical private dna string searching and
matching through e�cient oblivious automata evaluation. In
IFIP Annual Conference on Data and Applications Security
and Privacy, pages 81–94. Springer, 2009.

[29] Craig Gentry, Shai Halevi, and Vinod Vaikuntanathan. i-Hop
homomorphic encryption and rerandomizable Yao circuits.
In Tal Rabin, editor, CRYPTO 2010, volume 6223 of LNCS,
pages 155–172, Santa Barbara, CA, USA, August 15–19,
2010. Springer, Heidelberg, Germany.

[30] Ran Gilad-Bachrach, Kim Laine, Kristin Lauter, Peter
Rindal, and Mike Rosulek. Secure data exchange: A mar-
ketplace in the cloud. Cryptology ePrint Archive, Report
2016/620, 2016. http://eprint.iacr.org/2016/620.

[31] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to
construct random functions. Journal of the ACM, 33(4):792–
807, October 1986.

[32] Yan Huang, David Evans, Jonathan Katz, and Lior Malka.
Faster secure two-party computation using garbled circuits. In
USENIX Security Symposium, volume 201, 2011.

[33] Yan Huang, Jonathan Katz, and David Evans. Quid-pro-
quo-tocols: Strengthening semi-honest protocols with dual
execution. In Security and Privacy (SP), 2012 IEEE Sympo-
sium on, pages 272–284. IEEE, 2012.

[34] Yan Huang, Jonathan Katz, and David Evans. E�cient
secure two-party computation using symmetric cut-and-
choose. In Canetti and Garay [17], pages 18–35.

[35] Yuval Ishai, Joe Kilian, Kobbi Nissim, and Erez Petrank.
Extending oblivious transfers e�ciently. In Dan Boneh, editor,
CRYPTO 2003, volume 2729 of LNCS, pages 145–161,
Santa Barbara, CA, USA, August 17–21, 2003. Springer,
Heidelberg, Germany.

[36] Thomas P Jakobsen, Jesper Buus Nielsen, and Claudio
Orlandi. A framework for outsourcing of secure computation.
In Proceedings of the 6th edition of the ACM Workshop on
Cloud Computing Security, pages 81–92. ACM, 2014.

[37] Mark A Jensen, Vincent Ferretti, Robert L Grossman, and
Louis M Staudt. The nci genomic data commons as an
engine for precision medicine. Blood, 130(4):453–459, 2017.

[38] Somesh Jha, Louis Kruger, and Vitaly Shmatikov. Towards
practical privacy for genomic computation. In Security
and Privacy, 2008. SP 2008. IEEE Symposium on, pages
216–230. IEEE, 2008.

[39] Lynn B Jorde and Stephen P Wooding. Genetic variation,
classification and’race’. Nature genetics, 36:S28–S33, 2004.

[40] Madhu Kalia. Personalized oncology: recent advances and
future challenges. Metabolism, 62:S11–S14, 2013.

[41] Seny Kamara, Payman Mohassel, and Mariana Raykova.
Outsourcing multi-party computation. IACR Cryptology
ePrint Archive, 2011:272, 2011.

[42] Seny Kamara, Payman Mohassel, and Ben Riva. Salus: a
system for server-aided secure function evaluation. In Yu et al.
[69], pages 797–808.

[43] Murat Kantarcioglu, Wei Jiang, Ying Liu, and Bradley Ma-
lin. A cryptographic approach to securely share and query
genomic sequences. IEEE Transactions on information
technology in biomedicine, 12(5):606–617, 2008.

[44] Nikolaos Karvelas, Andreas Peter, Stefan Katzenbeisser,
Erik Tews, and Kay Hamacher. Privacy-preserving whole
genome sequence processing through proxy-aided oram.
In Proceedings of the 13th Workshop on Privacy in the
Electronic Society, WPES ’14, pages 1–10, New York, NY,
USA, 2014. ACM.

[45] David J Kaufman, Juli Murphy-Bollinger, Joan Scott, and
Kathy L Hudson. Public opinion about the importance of
privacy in biobank research. The American Journal of Human
Genetics, 85(5):643–654, 2009.

[46] Jane Kaye, Liam Curren, Nick Anderson, Kelly Edwards,
Stephanie M Fullerton, Nadja Kanellopoulou, David Lund,
Daniel G MacArthur, Deborah Mascalzoni, James Shepherd,
et al. From patients to partners: participant-centric initiatives
in biomedical research. Nature Reviews Genetics, 13(5):371,
2012.

http://eprint.iacr.org/2011/510
http://eprint.iacr.org/2016/620

My Genome Belongs to Me: Controlling Third Party Computation on Genomic Data 125

[47] Miran Kim and Kristin Lauter. Private genome analysis
through homomorphic encryption. Cryptology ePrint Archive,
Report 2015/965, 2015. http://eprint.iacr.org/2015/965.

[48] Vladimir Kolesnikov, Payman Mohassel, and Mike Rosulek.
FleXOR: Flexible garbling for XOR gates that beats free-
XOR. In Juan A. Garay and Rosario Gennaro, editors,
CRYPTO 2014, Part II, volume 8617 of LNCS, pages
440–457, Santa Barbara, CA, USA, August 17–21, 2014.
Springer, Heidelberg, Germany.

[49] Vladimir Kolesnikov and Thomas Schneider. Improved garbled
circuit: Free xor gates and applications. Automata, Languages
and Programming, pages 486–498, 2008.

[50] Vladimir Kolesnikov and Thomas Schneider. Improved
garbled circuit: Free XOR gates and applications. In Luca
Aceto, Ivan Damgård, Leslie Ann Goldberg, Magnús M.
Halldórsson, Anna Ingólfsdóttir, and Igor Walukiewicz, ed-
itors, ICALP 2008, Part II, volume 5126 of LNCS, pages
486–498, Reykjavik, Iceland, July 7–11, 2008. Springer,
Heidelberg, Germany.

[51] Benjamin Kreuter, Abhi Shelat, Benjamin Mood, and
Kevin RB Butler. Pcf: A portable circuit format for scal-
able two-party secure computation. In Usenix Security,
volume 13, pages 321–336, 2013.

[52] Benjamin Kreuter, Abhi Shelat, and Chih-Hao Shen. Billion-
gate secure computation with malicious adversaries. In
USENIX Security Symposium, volume 12, pages 285–300,
2012.

[53] Yehuda Lindell. Fast cut-and-choose based protocols for
malicious and covert adversaries. In Canetti and Garay [17],
pages 1–17.

[54] Yehuda Lindell and Benny Pinkas. Privacy preserving data
mining. In Mihir Bellare, editor, CRYPTO 2000, volume
1880 of LNCS, pages 36–54, Santa Barbara, CA, USA,
August 20–24, 2000. Springer, Heidelberg, Germany.

[55] Yehuda Lindell and Benny Pinkas. A proof of security
of yao’s protocol for two-party computation. Journal of
cryptology, 22(2):161–188, 2009.

[56] Dahlia Malkhi, Noam Nisan, Benny Pinkas, Yaron Sella,
et al. Fairplay-secure two-party computation system. In
USENIX Security Symposium, volume 4. San Diego, CA,
USA, 2004.

[57] Neil A. Miller, Emily G. Farrow, Margaret Gibson, Laurel K.
Willig, Greyson Twist, Byunggil Yoo, Tyler Marrs, Shane
Corder, Lisa Krivohlavek, Adam Walter, Josh E. Petrikin,
Carol J. Saunders, Isabelle Thi�ault, Sarah E. Soden, Lau-
rie D. Smith, Darrell L. Dinwiddie, Suzanne Herd, Julie A.
Cakici, Severine Catreux, Mike Ruehle, and Stephen F.
Kingsmore. A 26-hour system of highly sensitive whole
genome sequencing for emergency management of genetic
diseases. Genome Medicine, 7(1):100, 2015.

[58] Benjamin Mood, Debayan Gupta, Kevin R. B. Butler, and
Joan Feigenbaum. Reuse it or lose it: More e�cient secure
computation through reuse of encrypted values. In Ahn et al.
[6], pages 582–596.

[59] Moni Naor and Benny Pinkas. Oblivious transfer and polyno-
mial evaluation. In 31st ACM STOC, pages 245–254, Atlanta,
GA, USA, May 1–4, 1999. ACM Press.

[60] Moni Naor, Benny Pinkas, and Reuban Sumner. Privacy
preserving auctions and mechanism design. In EC, pages
129–139, 1999.

[61] Moni Naor and Omer Reingold. Number-theoretic construc-
tions of e�cient pseudo-random functions. In 38th FOCS,
pages 458–467, Miami Beach, Florida, October 19–22, 1997.
IEEE Computer Society Press.

[62] Muhammad Naveed, Shashank Agrawal, Manoj Prab-
hakaran, XiaoFeng Wang, Erman Ayday, Jean-Pierre
Hubaux, and Carl A. Gunter. Controlled functional encryption.
In Ahn et al. [6], pages 1280–1291.

[63] Boris Pasche and Devin Absher. Whole-genome sequencing: a
step closer to personalized medicine. JAMA, 305(15):1596–
1597, 2011.

[64] Chris Peikert, Vinod Vaikuntanathan, and Brent Waters. A
framework for e�cient and composable oblivious transfer.
In David Wagner, editor, CRYPTO 2008, volume 5157 of
LNCS, pages 554–571, Santa Barbara, CA, USA, August 17–
21, 2008. Springer, Heidelberg, Germany.

[65] Juan Ramón Troncoso-Pastoriza, Stefan Katzenbeisser, and
Mehmet Celik. Privacy preserving error resilient dna searching
through oblivious automata. In Proceedings of the 14th
ACM conference on Computer and communications security,
pages 519–528. ACM, 2007.

[66] Xiao Shaun Wang, Yan Huang, Yongan Zhao, Haixu Tang,
XiaoFeng Wang, and Diyue Bu. E�cient genome-wide,
privacy-preserving similar patient query based on private
edit distance. In Indrajit Ray, Ninghui Li, and Christopher
Kruegel:, editors, ACM CCS 15, pages 492–503, Denver,
CO, USA, October 12–16, 2015. ACM Press.

[67] Mick Watson. Illuminating the future of dna sequencing.
Genome biology, 15(2):108, 2014.

[68] Andrew Chi-Chih Yao. How to generate and exchange secrets
(extended abstract). In 27th FOCS, pages 162–167, Toronto,
Ontario, Canada, October 27–29, 1986. IEEE Computer
Society Press.

[69] Ting Yu, George Danezis, and Virgil D. Gligor, editors. ACM
CCS 12, Raleigh, NC, USA, October 16–18, 2012. ACM
Press.

[70] Samee Zahur and David Evans. Obliv-c: A language for
extensible data-oblivious computation. IACR Cryptology
ePrint Archive, 2015:1153, 2015.

[71] Samee Zahur, Mike Rosulek, and David Evans. Two halves
make a whole - reducing data transfer in garbled circuits
using half gates. In Elisabeth Oswald and Marc Fischlin,
editors, EUROCRYPT 2015, Part II, volume 9057 of LNCS,
pages 220–250, Sofia, Bulgaria, April 26–30, 2015. Springer,
Heidelberg, Germany.

A Cryptographic Building Blocks

We already described the cryptographic primitives we
used to realize the METIS system and provide now their
formal definition.

Definition A.1 (Pseudorandom function). Let PRF :

{0, 1}⁄ ◊ {0, 1}g(⁄) æ {0, 1}h(⁄) be an e�cient, keyed
function. We say that PRF is a pseudorandom function

http://eprint.iacr.org/2015/965

My Genome Belongs to Me: Controlling Third Party Computation on Genomic Data 126

if for all probabilistic polynomial-time distinguishers D,
there exists a negligible function negl such that:
---Pr

Ë
D

PRFk(·) !
1

⁄
"

= 1

È
≠ Pr

Ë
D

f(·) !
1

⁄
"

= 1

È--- Æ negl(⁄) ,

where k Ω {0, 1}⁄ is chosen uniformly at random and f

is chosen uniformly at random from the set of functions
mapping g(⁄)-bit strings to h(⁄)-bit strings.

Definition A.2 (Message authentication code).
A message authentication code (MAC) is a tu-
ple of probabilistic polynomial-time algorithms
(MACGen, MAC, MACVfy) such that:
1. The key generation algorithm MACGen takes as in-

put the security parameter 1
⁄ and outputs a key sk

with |sk| Ø ⁄.
2. The tag generation algorithm MAC takes as input a

key sk and a message m œ {0, 1}ú, and outputs a tag
t.

3. The verification algorithm MACVfy takes as input a
key sk, a message m, and a tag t. It outputs a bit b,
with b = 1 meaning valid and b = 0 meaning invalid.

For every ⁄, every key sk output by MACGen(1
⁄
),

and every m œ {0, 1}ú, it holds that
MACVfy(sk, m, MAC(sk, m)) = 1.

Definition A.3 (Strongly secure one-time MAC). We
define strong security for a one-time message authenti-
cation code OTMAC = (MACGen, MAC, MACVfy) by the
experiment MACA,OTMAC(⁄) shown in Figure 4.

MACA,OTMAC(⁄)

sk Ω MACGen(1
⁄

)

(m, t) Ω AMACÕ(sk,·)
(1

⁄
)

if MACVfy(sk, m, t) = 1 and (m, t) /œ Q

return 1

Oracle MAC
Õ
(sk, m)

if Q ”= ÿ abort
t Ω MAC(sk, m)

Q Ω Q fi (m, t)

return t

Fig. 4. Message authentication experiment.

OTMAC is strongly secure, if for all PPTadversaries
A, there is a negligible function negl such that

Pr
#
MACA,OTMAC(⁄) = 1

$
Æ negl(⁄) .

Definition A.4 (Oblivious transfer [64]). An oblivi-
ous transfer (OT) is a two-party functionality FOT, in-
volving a sender S with input x0, x1 and a receiver R
with input b œ {0, 1} as follows:
1. Upon receiving a message (SID, senderOT, x0, x1)

from S, where each xi œ {0, 1}¸, store (x0, x1) (The
lengths of the strings ¸ is fixed and known to all par-
ties).

2. Upon receiving a message (SID, receiverOT, b) from
R, check if a (SID, senderOT, . . .) message was pre-
viously sent. If yes, send (SID, xb) to R and (SID)

to the adversary S and halt. If not, send nothing to
R (but continue running).

For a garbling scheme we use the notation and defini-
tions of [15] with minor modifications. Specifically, we
allow one to fix the encoding X for a certain input x

and to sample a fresh encoding e under the constraint
that X Ω En(e, x). This can be easily done for Yao’s [68]
scheme by fixing the labels {¸

xi}iœ⁄ and randomly sam-
pling the remaining ones.

Definition A.5 (Garbling scheme). A garbling
scheme G = (GenEn, Gb, En, ComEn, De, Ev, ev) is a tuple
of algorithms, where the string f , the original function,
describes the function ev(f, ·) : {0, 1}¸(x) æ {0, 1}¸(y)

that we want to garble. The remaining algorithms are
defined as:
1. The probabilistic encoding generation algorithm

GenEn takes as input the security parameter 1
⁄ and

outputs the encoding information e.
2. The probabilistic garbling algorithm Gb takes as in-

put the security parameter 1
⁄, a function f and an

encoding information e. It outputs a garbled function
F and the decoding information d.

3. The deterministic encoding algorithm En takes as
input the encoding information e and an initial input
x œ {0, 1}¸(x). It outputs a garbled input L.

4. The probabilistic complement encoding algorithm
ComEn takes as input the initial input x and the
garbled input L. It outputs an encoding information
e, such that L = En(x, e).

5. The deterministic evaluation algorithm Ev takes as
input a garbled function F and a garbled input L to
produce a garbled output Y .

6. The deterministic decoding algorithm De takes as
input the decoding information d and a garbled out-
put Y . It outputs a final output y œ {0, 1}¸(y).

We assume our encoding algorithm to be projective.

My Genome Belongs to Me: Controlling Third Party Computation on Genomic Data 127

Definition A.6 (Projective garbling scheme). A gar-
bling scheme G = (GenEn, Gb, En, ComEn, De, Ev, ev) is
projective, if for all f, x, x

Õ œ {0, 1}¸(x), ⁄ œ N, (F, d) Ω
Gb(1

⁄
, f, e), L = En(e, x) and LÕ

= En(e, x
Õ
), it holds

that L = (L1, . . . , L¸(x)) and LÕ
= (X

Õ
1, . . . LÕ

¸(x)) with
|Li| = |LÕ

i|, and Li = LÕ
i whenever xi = x

Õ
i.

In the following we recall the security properties of a
garbling scheme. Our notions follow as an adaptation of
the properties defined by Bellare et al. [15] with the only
di�erence being that the adversary can fix the encoding
of its input. The standard scheme from Yao [68] is shown
to satisfy the standard notions of privacy, authenticity,
and obliviousness [15] and can be proven secure against
the properties defined below with a similar argument.

Definition A.7 (Simulation privacy of a garbling scheme).
Let G = (GenEn, Gb, En, ComEn, De, Ev, ev) be a garbling
scheme and �() a side information function. We define
privacy in the game PrvSimG,�(),Sim shown in Figure 5.

PrvSimG,�(),Sim

(f, x1, L1, x2) Ω A(1
⁄

)

if x1||x2 /œ {0, 1}¸(x)return ‹

e1 Ω ComEn(x1, L1)

e2 Ω$ {0, 1}|x2|·2⁄

L2 Ω En(e2, x2)

b Ω$ {0, 1}

if b = 0 then
(F, d) Ω Gb(1

⁄, f, e1||e2)

if b = 1 then
(F, d) Ω Sim(1

⁄, �(f), f(x), L1||L2)

bÕ Ω A(F, L, d)

return b = bÕ

Fig. 5. Simulation privacy game.

The advantage of adversary A in game
PrvSimG,�(),Sim is defined as:

Adv
prv
G,�(),Sim,A(⁄) = 2 Pr[PrvSimG,�(),Sim(A, ⁄)] ≠ 1.

G is prv.sim secure over �() if for all PPT adver-
saries A, there exists a PPT simulator Sim, such that
Adv

prv
G,�(),Sim,A(⁄) = negl(⁄).

Definition A.8 (Authenticity of a garbling scheme).
Let G = (GenEn, Gb, En, ComEn, De, Ev, ev) be a garbling
scheme. We define authenticity in the game Aut

A
G

shown in Figure 6.

Aut
A
G

(f, x1, L1, x2) Ω A(1
⁄

)

if x1||x2 /œ {0, 1}¸(x)return ‹

e1 Ω ComEn(x1, L1)

e2 Ω$ {0, 1}|x2|·2⁄

L2 Ω En(e2, x2)

(F, d) Ω Gb(1
⁄, f, e1||e2)

Y Ω A(F, L2)

return (Y ”= Ev(F, L1||L2) and De(d, Y) ”= ‹)

Fig. 6. Authenticity game.

The advantage of an adversary A in game Aut
A
G is

defined as:
Adv

aut
G (⁄) = Pr[Aut

A
G (⁄)].

A garbling scheme G provides authenticity if the advan-
tage Adv

aut
G (⁄) is negl(⁄) for all PPT adversaries A.

Definition A.9 (Obliviousness of a garbling scheme).
Let G = (GenEn, Gb, En, ComEn, De, Ev, ev) be a gar-
bling scheme. We define obliviousness in the game
ObvSimG,Sim shown in Figure 7.

ObvSimG,Sim

(f, x1, L1, x2) Ω A(1
⁄

)

if x1||x2 /œ {0, 1}¸(x)return ‹

e1 Ω ComEn(x1, L1)

e2 Ω$ {0, 1}|x2|·2⁄

L2 Ω En(e2, x2)

b Ω$ {0, 1}

if b = 0 then
(F, d) Ω Gb(1

⁄, f, e1||e2)

if b = 1 then
F Ω Sim(�(f), L1||L2)

bÕ Ω A(F, L)

return b = bÕ

Fig. 7. Simulation obliviousness game.

The advantage of an adversary A in game
ObvSimG,Sim is defined as:

Adv
aut
G (⁄) = Pr[ObvSimG,Sim(⁄)].

A garbling scheme G provides obliviousness if the advan-
tage Adv

aut
G (⁄) is negl(⁄) for all PPT adversaries A.

My Genome Belongs to Me: Controlling Third Party Computation on Genomic Data 128

B Security Analysis

Proof of Theorem 4.2. We show that construction 3 is
secure by considering separately each party involved in
the protocol. For each case we build a simulator that
interacts with the ideal functionality while simulating
the complete view of an execution for an adversary that
has corrupted the party in the real world. For each of the
corrupted parties, we first provide the reader with the
description of the simulator and then we argue why the
simulation is consistent with the view of the adversary
in the real world protocol. The formal argument follows.

Corrupted Data Owner. Consider the first case
where the data owner O is corrupted by an adversary A.
The corresponding simulator is described in the follow-
ing.

Description of SO:

1. Simulator SO receives a handler, a query and an
index of the requested block denoted by (h, z, f, j)

from F as input.
2. S samples a random k Ω$ {0, 1}⁄ and sends it to the

adversary A.
3. The simulator samples |z|-many pairs of random

labels
)

(¸
0
i , ¸

1
i)

*
iœ[|z|]. Let dz be the decoding in-

formation of those labels. SO then samples a ran-
dom v Ω$ {0, 1}|t|+|df(x,z)|, where |t| denotes the size
of a one-time MAC t. The simulator finally sends
(j, f, dz, v) to A.

4. The adversary outputs some k
Õ
j and SO checks

whether there is an i œ [B] such that PRF(k
Õ
j , i) ”=

PRF(PRF(k, j), i). If the condition holds then SO
aborts the simulation by returning ‹ to A. Other-
wise the adversary is provided with Yz =

)
¸

zi
i

*
iœ[|z|].

5. If A replies with ‹ then SO sends ‹ to F . If it replies
with v

Õ, then SO sends v
Õ to F if v

Õ
= v and aborts

the simulation by outputting ‹ if v
Õ ”= v.

Analysis: The simulator clearly runs in polynomial time.
Also it is easy to see that the inputs that SO provides
to A are correctly distributed, since dz is the decoding
information of random output labels, as in the real
protocol. What we need to show is that any attempt to
deviate from the honest execution of the protocol by A
is reflected by the simulator with an abort in the ideal
world. First we note that in the third step of the simula-
tion, SO checks whether the key k

Õ
j produces the correct

labels. Since the circuit is generated honestly, if there
exists an i such that PRF(k

Õ
j , i) ”= PRF(PRF(k, j), i),

then the circuit cannot be evaluated. It follows that
the abort of the simulator corresponds to the abort
in the real protocol. We now have to show that the
same holds for the abort in the fifth step. Obviously, if
A outputs ‹, both the simulation and the real world
protocol abort with probability 1. On the other hand,
the simulation aborts with the same probability when
v ”= v

Õ, while it is in principle not clear whether the
same happens in the real-world execution. Therefore
we have to prove that Pr[‹real|v ”= v

Õ
] Ø 1 ≠ negl(⁄),

for some negligible function negl(⁄). Assume towards
contradiction that Pr[‹real|v ”= v

Õ
] Æ 1 ≠ ‘(⁄), for some

non-negligible function ‘(⁄). Then we can construct the
following reduction against the strong unforgeability of
the one-time MAC scheme OTMAC.

R(1⁄): R chooses an arbitrary z and samples the
decoding tables dz and df(x,z), as specified by the
original protocol. It queries its OTMAC oracle for a
MAC on df(x,z) and obtains t. It then behaves ex-
actly like the above simulator S in generating mes-
sages and sending messages except that it now had
set v Ω$ {0, 1}|t|+|df(x,z)| and w = v ü (t||df(x,z)). Ad-
versary A now replies with some v

Õ. R computes
wüv

Õ to obtain t
Õ||dÕ

f(x,z). Reduction R simply returns
(t

Õ
, d

Õ
f(x,z)) to the challenger.

The reduction is clearly e�cient and the inputs provided
to the adversary are correctly distributed (since it fol-
lows in verbatim the real world execution). By initial
assumption we have that Pr[‹real|v ”= v

Õ
] Æ (1 ≠ ‘(⁄)),

which implies that with non-negligible probability ‘(⁄)

the real world protocol does not abort and that v
Õ ”= v.

It follows that MACVfy(sk, d
Õ
f(x,z), t

Õ
) = 1 and that

(t
Õ||dÕ

f(x,z)) = w ü v
Õ ”= w ü v = (t||df(x,z)). We can

conclude that either t ”= t
Õ or df(x,z) ”= d

Õ
f(x,z) with

probability ‘(⁄), which is a contradiction to the strong
unforgeability of the one-time MAC scheme OTMAC and
concludes our proof.

Semi-honest Server M. We now consider the case of
the server M being passively corrupted by an adversary
A. Let SOT be the simulator that is guaranteed to exist
for M in the oblivious transfer protocol. The proof
outline is as follows:

S0 resembles exactly the real world protocol.
Si for 1 Æ i Æ |z| is defined as S0 except the first i

oblivious transfers are simulated by SOT.

My Genome Belongs to Me: Controlling Third Party Computation on Genomic Data 129

S|z|+1 is defined as S|z| except that the keys for each
block (kj ’s) of x are generated randomly instead of the
PRF(k, ·).
S|z|+1+j for 1 Æ j Æ

Ï
|x|
B

Ì
is defined as S|z|+1 except

that both labels for bits in the first j blocks are gen-
erated randomly (a truly random string replaces the
PRF(kj , ·) which was used for one of the two labels for
each bit).
SIDEAL is defined as S|z|+1+

'
|x|
B

(except that it receives
block indices, the query size and the function as input
from the ideal functionality F .

S0 ¥ S1 ¥ . . . ¥ S|z|: Simulators are defined as
the real world protocol except that in the simulator Si

the first i oblivious transfers is simulated through SOT.
Assuming towards contradiction that there exists an ad-
versary A that can distinguish any two consecutive sim-
ulations with some non-negligible probability ‘(⁄). Since
the only di�erence between the two simulations is one
of the oblivious transfer simulation, by the security of
the simulator SOT, such an A cannot exist.

S|z| ¥ S|z|+1: In the simulator S|z|+1 the keys kj ’s
for 1 Æ j Æ

Ï
|x|
B

Ì
are generated randomly instead of

using kj Ω PRF(k, j) in the simulator S|z|. This is
the only di�erence between the simulators. Assuming
towards contradiction that there exists an adversary
A that can distinguish the simulations output by
these simulators with a non-negligible probability ‘(⁄),
we build a reduction R against the security of the
underlying PRF.

R(1⁄): R has access to its oracle that is either a
PRF(k, ·) (b = 0) or a truly random function (b = 1).
The reduction R starts by picking a random j and |z|
and queries its own oracle for j = 1, . . . ,

Ï
|x|
B

Ì
(which

are the block indices) to obtain k1, ..., k'
|x|
B

(. It then
generates the labels for each bit position of x using the
keys obtained just as in the real protocol. From now
on, it constructs the simulation transcript just as the
simulators (note that from now both S|z| and S|z|+1
behave the same way), and returns the transcript to
A. Adversary A now replies with a bit b

Õ which the
reduction replies as its own.

We observe that the reduction is e�cient. Note that if
b = 0 then the reduction perfectly simulates the exper-
iment S|z|, while if b = 1 then the transcript of the
reduction is the same as S|z|+1. Therefore we can say
that Pr[A wins] = Pr[R wins] Ø ‘(⁄). This is a contra-
diction to the security of the PRF.

S|z|+1 ¥ S|z|+2 ¥ . . . ¥ S|z|+1+
'

|x|
B

(: For 1 Æ

j Æ
Ï

|x|
B

Ì
, in simulator S|z|+1+j , both labels for bits

in the first j blocks are generated randomly. There-
fore each of the simulators di�er from each other only
in replacing PRF(kj , i) for i = 1, . . . |B| by truly ran-
dom strings (computes ex by generating random labels
¸

xj,i

j,i , ¸
1≠xj,i

j,i Ω$ {0, 1}⁄ for i = 1, . . . , |B| where |B| is the
block size). Given that PRF(·, ·) is a secure PRF, we
can show (with an argument similar as above) that the
simulations are indistinguishable from each other.

S|z|+1+
'

|x|
B

(¥ SIDEAL: The simulator SIDEAL

computes ex by generating random labels
¸

xj,i

j,i , ¸
1≠xj,i

j,i Ω$ {0, 1}⁄ for i = 1, . . . , |B| where |B|
is the block size. Upon receiving j from the ideal
functionality it executes the protocol as specified in the
scheme and provides A with the transcript of the run.
Since the change from S|z|+1+

'
|x|
B

(is only conceptual,
the equality trivially holds.

Note that SIDEAL interacts only with F , the ideal
functionality. From the above equalities we see that,
through transitivity, S0 ¥ S1 ¥ . . . ¥ S|z| ¥ SIDEAL.
This proves the view of the adversary corrupting M semi-
honestly in the real world execution is computationally
indistinguishable to its view in the simulated execution.

Corrupted Client. Consider the case where the
client C is corrupted by an adversary A. Let SOT be
the simulator that is guaranteed to exist for C in the
oblivious transfer protocol. Let Sprv and Sob be the
simulators that are guaranteed to exist by the privacy
and obliviousness of the garbling scheme G. The proof
outline is as follows:

S0 resembles exactly the real world protocol.
For 1 Æ i Æ |z|, Si is defined as S0 except the first i

oblivious transfers are simulated by SOT.
S|z|+1 is defined to be the same as S|z| except that z

is extracted from simulators of the oblivious transfer.
Then the simulator returns the correct decoding infor-
mation df(x,z) to the adversary if z and f satisfy the
policy specified by the owner. At some point of the ex-
ecution the adversary returns some YzÕ , the simulator
checks whether z ”= De(dz, YzÕ) and De(dz, YzÕ) ”= ‹ and
it aborts the execution if this is the case.
S|z|+2 is defined as S|z|+1 except that simulator Sob is
used to generate F , if z and f are not allowed by the
policy of the owner. On input YzÕ by A the simulator
simply replies with ‹.
S|z|+3 is defined as S|z|+2 except that simulator Sprv is
used to generate (F, d) if z and f are allowed by the

My Genome Belongs to Me: Controlling Third Party Computation on Genomic Data 130

policy of the owner.
SC is defined as S|z|+3 except that it executes the proto-
col in the ideal world: The extracted function z is sent
to the ideal functionality along with SID, f, j and the
next message of the simulation depends on whether F
returns ‹ or some f(x, z).

The full description of the simulator is presented in
the following. Description of SC:

1. SC receives a block index j and function f from the
adversary A.

2. SC computes the key k as specified in the original
protocol then it sets kj Ω PRF(k, j) and Lx :=

{PRF(kj , i)}iœ[B].
3. SC computes for all i œ {1, . . . , |z|} a random label

¸i Ω {0, 1}⁄ and sets Lz :=
)

¸
zi
i

*
iœ[|z|].

4. SC simulates the |z|-many parallel oblivious transfer
protocols for C using the simulator SOT. In each iter-
ation SOT outputs zi and the simulator replies with
¸i. The simulator can reconstruct z as z1Î . . . Îz|z|.

5. SC sends kj to the adversary A on behalf of the
data owner O, then it sends (SID, z, f, j) to the ideal
functionality, which replies with either ‹ or some y.
Here SID is an arbitrarily chosen session identifier.
We distinguish the two cases defining two possible
behaviours of the simulation.

6. If the response from F was ‹, then the simulator
does the following:
(a) It executes F Ω Sob(1

⁄
, |Z|, Lx||Lz).

(b) It generates a random w of the appropriate
length.

(c) It generates, a key sk Ω MACGen(1
⁄
).

(d) It sends (F, sk, w) to A.
(e) It then receives Y

Õ
z from A. It returns ‹ to A.

7. If the response from F was some y ”= ‹, then the
simulator behaves as follows:
(a) It executes (d, F) Ω Sprv(1

⁄
, |z|, y, Lx||Lz) and

parses d = dz||dy.
(b) It generates a random w of the appropriate

length.
(c) It generates, a key sk Ω MACGen(1

⁄
).

(d) It sends (F, sk, w) to A.
(e) It then receives Y

Õ
z from A. It computes z

Õ
=

De(dz, Y
Õ

z) and checks whether z = z
Õ. If the

check holds then it replies with wüMAC(sk, y)||y
to A. If z

Õ ”= z then the simulator aborts the
execution.

S0 ¥ S1 . . . ¥ S|z|: The simulators are defined to behave
as in the real world protocol specification except that in

the simulator Si the first i oblivious transfers are sim-
ulated through SOT. Since the di�erence between each
neighbouring pair of simulations is in the usage of SOT,
we can prove indistinguishability by a standard hybrid
argument.

S|z| ¥ S|z|+1: We note that the two simulations are
identical except that in S|z| the decision of whether
sending dy or not is taken basing on the value of
De(dz, YzÕ), while in S|z|+1 the decision is taken basing
on the extracted z. Clearly the two simulations di�er
only in the case that De(dz, YzÕ) = z

Õ ”= ‹ and z ”= z
Õ.

Therefore to prove that the two simulations are indis-
tinguishable it is enough to show that the probability
of the simulation to abort is bounded from above by
a negligible function. Assume towards contradiction
that the simulation aborts with probability ‘(⁄), for
some non-negligible function ‘. Then we can construct
the following reduction against the authenticity of the
garbling scheme.

R(1⁄): R simulates the experiment as specified in
S|z| until the simulation of the parallel OTs where
it extracts the function z, then it sends to its chal-
lenger the tuple (Ò, x, Lx, z). As a response it receives
some garbled circuit GC and the encoded input Lz. R
feeds the each i-th simulator Si

OT with Li
z and pro-

vides A with GC along with a random w and a key
sk Ω MACGen(1

⁄
). The adversary replies with a YzÕ

that the reductions forwards to the challenger.

It is easy to see that the reduction is e�cient and that
the inputs that R sends to A are correctly distributed.
By assumption we have that De(dz, YzÕ) = z

Õ ”= ‹ and
z

Õ ”= z with probability ‘(⁄). This implies that the re-
duction succeeds in the authenticity game with the same
probability. This is a contradiction and proves that the
two experiments are indinstinguishable.

S|z|+1 ¥ S|z|+2: Assume towards contradiction
that there exists an adversary A that can distinguish
between two simulations with probability ‘(⁄), for some
non-negligible function ‘. Then we can construct the
following reduction against the simulation obliviousness
of the garbling scheme.

My Genome Belongs to Me: Controlling Third Party Computation on Genomic Data 131

R(1⁄): R simulates the experiment as specified in
S|z|+1 until the simulation of the parallel OTs where
it uses the extractor to learn the z, then it sends to
its challenger the tuple (Ò, x, Lx, z). As a response it
receives some garbled circuit GC and the encoded in-
put Lz. R feeds the i-th simulator Si

OT with Li
z and

provides A with GC along with a random w and a
key sk Ω MACGen(1

⁄
). The rest of the execution is

unchanged.

It is easy to see that the simulation is e�cient and
that in case of b = 0, the garbled circuit GC is sam-
pled as Gb(1

⁄
, |z|, e) and therefore the simulation is

identical to S|z|+1. On the other hand if b = 1 then
GC Ω Sob(1

⁄
, |z|, Lx||Lz), which means that the sim-

ulation perfectly reproduces the inputs of A in S|z|+2.
It follows that the reduction correctly guesses the coin
b with probability greater than 1/2 + ‘(⁄), which is a
contradiction.

S|z|+2 ¥ S|z|+3: Assume towards contradiction
that there exists an adversary A that can distinguish
between S|z|+2 and S|z|+3 with probability ‘(⁄), for
some non-negligible function ‘. Then we can construct
the following reduction against the simulation privacy
of the garbling scheme.

R(1⁄): R simulates the experiment as specified in
S|z|+2 until the simulation of the parallel OTs where
it uses the extractor to learn the z, then it sends to
its challenger the tuple (Ò, x, Lx, z). As a response it
receives some garbled circuit GC the encoded input Lz

and the decoding table d. R feeds the i-th simulator
Si

OT with Li
z and provides A with GC along with a

random w and a key sk Ω MACGen(1
⁄
). The rest of

the execution is unchanged.

It is easy to see that the simulation is e�cient and
that in case of b = 0, the garbled circuit GC is sam-
pled as Gb(1

⁄
, Ò, e) and therefore the simulation is

identical to S|z|+2. On the other hand if b = 1 then
GC Ω Sprv(1

⁄
, |z|, f(x, z), Lx||Lz), which means that the

simulation perfectly reproduces the inputs of A in S|z|+3.
It follows that the reduction correctly guesses the coin
b with probability greater than 1/2 + ‘(⁄), which is a
contradiction.

S|z|+3 ¥ SC: We observe that the two executions are
identical except that the decision whether to allow the
computation of f on z is outsourced to F . Therefore
the two experiments are trivially indistinguishable to
the eyes of the adversary.

C Modifications on Obliv-C

Let us first recall how Obliv-C works and give a high-
level overview of the implementation of METIS as a basis
for our modifications presented afterwards. Obliv-C con-
sumes C-like source code specifying the function f which
should be evaluated securely. This function is then com-
piled into a circuit representation and used for execu-
tions of Yao’s protocol. The specification of the function
f is enabled by two special constructs: obliv-qualified
types – variables of these types are encrypted and can
only be revealed if both parties agree – and oblivious
conditional. With these two primitives we can specify
the evaluation functions employing the obliv-qualified
types and oblivious conditionals. For instance, the num-
ber of variants can be computed by looping over the
variant bits of the encoding. Each bit is represented by
an obliv-qualified bool. Using the oblivious conditional
it is checked whether one of the variant bits is set to
true (because 00 means there is no variant). If this is
the case, an obliv-qualified counter is incremented.

Furthermore, Obliv-C provides methods allowing
the parties to pass their inputs to the oblivious compu-
tation and receive the output. This methods behave dif-
ferently depending on which party executes them. The
method obliv bool feedOblivBool(bool input, int party)

takes as first argument the input to feed in and the
party which is required to distinguish whether the
input comes from the garbler or the evaluator as the
second input. The return type is an obliv-qualified bool.

In a nutshell, feedOblivBool converts the input into
its obliv-qualified counterpart which is then used in the
computations of the function. In METIS these booleans
tell whether the corresponding bits of the encoding are
set. The (unmodified) method’s behavior depends on
which party executes it and from which party the in-
put originates. We have to distinguish the following four
cases:

– Execution by the garbler & input comes from the
garbler: The garbler chooses the labels and sends the
label corresponding to its input to the evaluator.

– Execution by the garbler & input comes from the
evaluator: The garbler chooses the labels and exe-
cutes oblivious transfer such that the evaluator only
receives the label corresponding to its input.

– Execution by the evaluator & input comes from the
garbler: The evaluator receives the label correspond-
ing to the garbler’s input.

My Genome Belongs to Me: Controlling Third Party Computation on Genomic Data 132

– Execution by the evaluator & input comes from the
evaluator: The evaluator executes oblivious transfer
to receive the label corresponding to its input.

Let us highlight the di�erence between the METIS and
the unmodified version of Yao’s protocol: In the stan-
dard version of Yao’s protocol, the garbler is generating
all labels. However in our setting, the server M in METIS

is provided with the labels corresponding to the data
owner’s genetic information from the sequencing center
S. Additionally these labels are independently computed
by the client C.

To account for the di�erent flow
of these labels, we added a function
obliv bool feedOblivBoolByLabel(char

ú
label): the func-

tion has only one input, a bitstring instead of a boolean.
We do not include the party, as in METIS only the input
from the data owner is using this special construction.
The garbler is inputting the label corresponding to zero
(see the discussion in subsection 5.3 for why this is
su�cient) and the evaluator feeds the label it obtained
from evaluating the PRF. For the additional inputs (for
example, when computing the number of variants in a
region, the region boundaries are the additional inputs)
we keep the methods provided by Obliv-C.

We implemented METIS instantiated with the four
functions (SNP, insertion, number of variants and
frameshift) by implementing them in Obliv-C and ex-
ecuting Yao’s protocol, while our modification of the
feedOblivBool method allowed to directly feed the in-
put labels.

	My Genome Belongs to Me: Controlling Third Party Computation on Genomic Data
	1 Introduction
	1.1 METIS in the real world
	1.2 Our Contribution
	1.3 Related Work

	2 System Overview
	3 Preliminaries
	3.1 Biological Background
	3.2 Cryptographic Building Blocks
	3.3 Garbled Circuits

	4 METIS
	4.1 Definitions
	4.2 METIS construction
	4.3 Security Analysis
	4.4 Limitations

	5 Implementation
	5.1 Data Representation
	5.2 Evaluation Functions
	5.3 Optimizations

	6 Experimental Evaluation
	7 Conclusions
	A Cryptographic Building Blocks
	B Security Analysis
	C Modifications on Obliv-C

