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Monero is the largest cryptocurrency with built-in cryptographic privacy features. The
transactions are authenticated using zero-knowledge spend proofs, which provide a certain level
of anonymity by hiding the source accounts from which the funds are sent among a set of other
accounts. Due to its similarities to ring signatures, this core cryptographic component is called
Ring Confidential Transactions (RingCT). Because of its practical relevance, several works attempt
to analyze the security of RingCT. Since RingCT is rather complex, most of them are either
informal, miss fundamental functionalities, or introduce undesirable trusted setup assumptions.
Regarding efficiency, Monero currently deploys a scheme in which the size of the spend proof
is linear in the ring size. This limits the ring size to only a few accounts, which in turn limits
the acquired anonymity significantly and facilitates de-anonymization attacks.

As a solution to these problems, we present the first rigorous formalization of RingCT as
a cryptographic primitive. We then propose a generic construction of RingCT and prove it
secure in our formal security model. By instantiating our generic construction with new efficient
zero-knowledge proofs, we obtain Omniring, a fully-fledged RingCT scheme in the discrete
logarithm setting that provides the highest concrete and asymptotic efficiency as of today.
Omniring is the first RingCT scheme which 1) does not require a trusted setup or pairing-friendly
elliptic curves, 2) has a proof size logarithmic in the size of the ring, and 3) allows to share the same
ring between all source accounts in a transaction, thereby enabling significantly improved privacy
level without sacrificing performance. Our zero-knowledge proofs rely on novel enhancements
to the Bulletproofs framework (S&P 2018), which we believe are of independent interest.

1 Introduction

Modern cryptocurrencies such as Bitcoin and Monero eliminate the need for a trusted central party, giving
rise to fully decentralized and publicly verifiable currency systems. A cryptocurrency typically consists of
two components: (1) a public ledger, e.g., realized by a blockchain protocol, to publish transactions, and
(2) a transaction scheme which specifies the format and validity of transactions. For example, we can think
of the simplest transaction type in Bitcoin as simply requiring a signed statement of the form “Pseudonym
1 pays amount a to pseudonym j”. This allows for easy public verification of the ledger but on the flip
side, the inherently public nature of cryptocurrencies is a threat for the individual privacy of their users. At
first glance, the usage of pseudonyms may give the impression that users are anonymous, but a long list of



literature demonstrates that different pseudonyms belonging to the same user can be linked by simple as
well as sophisticated heuristics when observing transactions on the public blockchain [2, 4, 30, 40, 41, 50, 57].
As a consequence, transactions can be traced and users can be re-identified.

In order to improve this situation, many privacy-enhancing technologies have been proposed by the
academic and the cryptocurrency community [7, 9, 24, 25, 29, 37, 38, 42, 49, 51, 53, 59, 60, 65], and multiple
cryptocurrencies with a special focus on privacy have emerged [43, 63, 64]. Monero [43] with a market
capitalization of $1.6 billion at the time of writing [36] is the largest such privacy-focused cryptocurrency.
In contrast to other approaches, most notably Zerocash [7], which relies on a trusted cryptographic setup
to be able to scale to very large anonymity sets, one of the main design goals of Monero is to avoid any form
of trusted setup. This approach is arguably much closer to the original spirit of cryptocurrencies whose point
is to avoid centralization as much as possible.

For privacy, Monero uses Ring Confidential Transactions (RingCT) proposed by Noether et al. [45] as
its cryptographic core component. The idea behind their scheme is an ad-hoc approach to integrate three
privacy-enhancing technologies:

Its first component is similar in spirit to linkable ring signatures [34] which guarantee some form of anonymity
and enable to detect double-spends simultaneously. The second component of RingCT is Confidential
Transactions (CT) [38], which hides the monetary amounts of transactions in homomorphic commitments
while still being able to verify that every transaction is balanced, i.e., the sum of the amounts sent to target
accounts does not exceed the sum of amounts available in the source accounts. The third component is Stealth
Addresses (SA) [60], which provides a form of receier anonymity. Given just a single long-term public key
of a receiver (called stealth address), a spender can derive an arbitrary number of seemingly unrelated public
keys owned by this receiver, which avoids that two transactions paying the same receiver can be linked.

The original RingCT construction of Noether et al. [45], which is used in Monero, produces spend proofs of
size O(|S|-|R|+|T|+8), where |R|, |S|, and [T are the size of the ring, the set of source accounts, and the set of
target accounts in a transaction respectively, and 27 is the maximum currency amount that can be sent in a single
transaction. A core component in the construction is a zero-knowledge “range proof’ which allows a spender
to prove that an amount being transferred lies within the pre-defined range [0,...,2° —1]. This range proof is a
necessary building block to ensure the security of Confidential Transactions. Recently a new range proof system,
based on the Bulletproofs framework [12] for zero-knowledge proofs, has been deployed in Monero [56]. This
new range proof system reduces the linear dependency on S to a logarithmic one, and the linear dependency on
|S|-|R| (which includes the ring size) becomes the bottleneck of the current Monero system. This inefficiency
incentivizes the use of small ring sizes (currently 11 in Monero) and thus effectively reduces the anonymity set,
which facilitates de-anonymization of the spending accounts as shown by Méser et al. [44] and Kumar et al. [31].

1.1 Our Contributions

Despite its practical importance, there is a lack of theoretical foundations and satisfactory constructions for
RingCT. In this work, we overcome both of these shortcomings. First, we provide an extensive formalization
of RingCT. Our formalization guarantees security against several realistic attacks which are not covered by the
security models of prior work (e.g., due to an unrealistically strong assumption that keys are generated honestly
in certain cases), and our formalization covers Stealth Addresses unlike most previous formalizations. Second, we
put forward a new construction of RingCT which is significantly better than existing ones in terms of supported
features and practical efficiency. The efficiency improvements allow implementations to choose larger parameters
that strengthen privacy without sacrificing performance. Our main contributions are summarized as follows.

1.1.1 Rigorous Formalization of RingCT

The necessity of precise security models for cryptographic primitives cannot be overstated, as they concisely
point out security guarantees, allow comparison, and serve as a guideline for protocol design. An example which
highlights this necessity is the denial-of-spending weakness [52] in Zerocoin [24, 42], a different cryptographic
approach for privacy in cryptocurrencies. This threat was not captured by the insufficient security model of
Zerocoin and lead to vulnerabilities in multiple cryptocurrencies allowing an attacker to destroy funds of honest
users. Notably, denial-of-spending attacks are not considered in the RingCT proposal by Noether et al. [45]
either, even though they generally apply to the RingCT setting as well [52]. While the concrete RingCT



scheme by Noether et al. [45] seems not susceptible to such attacks, the fact that the threat has apparently
been overlooked in [45] underlines the importance of a rigorous and thorough security model.

Sun et al. [58] and Yuen et al. [62] propose formalizations of RingCT that improve on the rather informal
security notions by Noether et al. [45]. Unfortunately, the security models in both of these works are still
too weak because they fail to cover some realistic attacks, and in the case of [58] the model does not support
stealth addresses. In the following, we focus on highlighting the strengths of our model, and we defer the
comparison to the two aforementioned formalizations to Section 7.

Capturing Stealth Addresses Our model is the first one that captures stealth addresses. This is a critical
component of the overall security model because it relates directly to receiver anonymity. Moreover, it affects
the entire functionality of the primitive and all other security properties.

Non-reliance on External Communication Channels Our model only assumes a public ledger onto
which transactions can be published and does not rely on any external secure channels.

Stronger Security Guarantees We provide stronger security definitions for balance and spender
anonymity. In contrast to prior work, our definition requires balance even if all accounts in the transaction are
maliciously generated and in case of spender anonymity, we allow some of the source accounts to be corrupt
and still require the other non-corrupt accounts to be anonymous.

Unified Ring for All Source Accounts All previous RingCT schemes use separate rings for each
source accounts. This means that transactions that spend from multiple source accounts (as is common in
cryptocurrencies), each source account is anonymous in a separate anonymity set. In our model, all source
accounts of a single transaction share one ring, hence the name “Omniring”. This approach does not only
improve efficiency, but it also improves the level of anonymity: Let us consider the case of spending from
k source accounts. In the separated-rings approach, each source account is hidden within a different ring
of some size n, meaning that each of the k source accounts has at most 1-out-of-n anonymity. On the other
hand, in our unified ring approach, having a ring of size kn offers up to k-out-of-kn anonymity.

Now consider for instance the case that one of the real source accounts used for spending is de-anonymized.
In the unified ring approach, the other real source accounts now still have (k—1)-out-of-(kn—1) anonymity, i.e.,
all other accounts in the unified ring still count towards the crowd to hide in. However, in the separated-ring
approach, the entire ring containing the de-anonymized account would be useless for anonymity after
de-anonymization.

1.1.2 Efficient Construction

We propose a new construction of RingCT, Omniring, whose spend proof size is only O(log(|R||S|+3|T1)), where
[R|, |S|, and |T| are the size of the ring, the set of source accounts, and the set of target accounts, respectively,
and 27 is the maximum allowed currency amount to be transferred. Our scheme is the first scheme that does
not require a trusted setup or pairings, supports stealth addresses, and has a logarithmic spend proof size.

Our construction follows the high-level idea of combining a ring signature scheme with a range proof system.
We first propose a generic construction of RingCT from signatures of knowledge (SoK) of a certain language.
In the second step, we develop techniques to extend the Bulletproofs framework [12] into an argument system
for proving knowledge of a discrete logarithm representation, where the exponents in the representation satisfy
an arbitrary arithmetic circuit. The statements of the desired language can be expressed in a format which
is optimized for the extended Bulletproofs framework. This allows us to exploit the efficiency of Bulletproofs
not just for range proofs but also for the spender to prove his ownership of coins and their spendability, and
we can combine all proof statements into a single zero-knowledge proof. This leads to a very efficient RingCT
construction. Moreover, our extension to Bulletproofs has potentially far-reaching consequences: It leads to a
natural construction of logarithmic-size ring signatures, which is competitive with state-of-the-art schemes [11,
24]. The technique can also be generalized to proving general (bilinear) group arithmetic relations [32], which
makes it a topic of independent interest.



1.1.3 Adaption to Monero

Our main instantiation presented in Section 4.4 is designed to simplify the language that it induces, and
cannot directly be integrated into Monero due to the difference in the format of the linkability tags (or “key
images”). To tackle this issue, we formally detail in Appendix F how our Omniring construction can be
adapted and made readily deployable in Monero. The adaption retains essentially the same efficiency as our
main instantiation except for a slightly higher computational effort.

1.2 On Ring Selection

Our formalization follows the spirit of ring signatures and does not cover how rings are sampled. We believe
that this question of formalizing what a “good” ring sampler is, is orthogonal to formalizing the properties
of a RingCT and constructing an efficient scheme. The question of finding good ring sampling strategies
also does not seem to be of cryptographic nature, as the ring sampler does not involve any cryptographic keys.
We believe that understanding the strategies of ring selection, and hence maximizing the non-deanonymized
subsets of sampled rings, are important questions that deserve an in-depth investigation in an independent
paper. Our view is motivated by recent attacks against the anonymity provided by cryptocurrency based
on RingCT as discussed by Méser et al. [44] and Kumar et al. [31]. This line of work shows that the ring
sampling strategies of the spenders are critical.

What we do formalize is the intuition that, given a ring of accounts selected by some external mechanisms,
the source accounts of a transaction are hidden within the non-deanonymized subset of the ring.

1.3 Technical Overview

Recall that the statements to be proven in our RingCT construction use signatures of knowledge and consist of
two parts. The first part corresponds to knowing the secret key of one of the ring accounts, and the second part
guarantees that the amount being transferred lies within a certain range. The first natural idea to construct
a RingCT scheme is to combine a state-of-the-art ring signature scheme (e.g., by Groth and Kohlweiss [24] or
Bootle and Groth [10]) with the most efficient range proof scheme to date (in the Bulletproofs framework [12]),
which has a logarithmic size in the bitlength of the upper limit of the range. However, since both proof systems
rely on significantly different techniques, combining them naively yields a RingCT scheme with signature
size asymptotically equal to that of ours but with worse concrete efficiency.

We then explore the possibility of building a ring signature scheme using the techniques of [12], so that it can
be combined natively with all Bulletproofs range proofs into one single zero-knowledge proof of a single combined
statement, leveraging the logarithmic size of Bulletproofs as much as possible. In order to understand the chal-
lenge that we tackle while exploring this path, recall that Bulletproofs is a framework for proving “inner product
relations” between the exponents in a discrete logarithm representation. Although the Bulletproofs framework is
expressive enough for capturing arithmetic circuits satisfiability, it is particularly optimized for range proofs. For
instance, proving that a committed integer a lies within a range [0,2° —1] yields a proof whose size is only O(logf3).

In a Bulletproofs range proof, the prover encodes the binary representation of a in the vector a and sets
b=a—1hl It commits to @ and bas A= e GAHP with randomness o and public (vector of) group elements
F, G, and H. It then proves that a and b satisfy the Hadamard product relation aob=008 a—b=104
and the inner product relation (a,2 ‘a|> =a. These relations guarantee that a is a valid binary representation of
a. Moreover, the length |a| guarantees that a must be between 0 and 218l _1. The extractability of the proof
crucially depends on the assumption that non-trivial discrete logarithm representations of the identity element
with respect to base (F||G|/H) are unknown to the prover. Under such an assumption, one can extract the
exponents (a,a,b) in the discrete logarithm representation of A.

With the basics above, we can highlight the technical difficulties one encounters when attempting to
construct ring membership proofs using techniques of the Bulletproofs framework.

Let the vector of group elements R=(R;||...|R,) consist of the public keys of the ring members. In a ring
membership proof, one would like to prove the knowledge of a tuple (¢,2;) such that R; = H" for a public
generator H. Equivalently, the prover would prove its knowledge of a unit vector €; (whose i-th entry is 1
and zero everywhere else) and an integer —x; such that I = H ~=iR® where [ is the identity element; we
call this relation the main equality.



A natural idea of using the technique from Bulletproofs for a ring membership proof is to embed the term
H~'R® into a part of the commitment A, show that ©; is indeed a unit vector by defining certain inner product
relations, and at the same time show that the main equality holds. Implementing this idea comes with two main
challenges: First, we need a way to actually embed the aforementioned term in A. Second, regardless of how the
term is embedded, we need to overcome the issue that the prover might know the discrete logarithms between
elements in R, which forbids to argue soundness in the same way as in Bulletproofs. As a solution to these chal-
lenges, we propose a general technique to embed the main equality (or in general any representation of the identity
element) into the commitment A, while at the same time avoiding the above problem regarding soundness.

First, we observe that if P is a vector of group elements chosen randomly and independently of R then
for any w € Zy, the discrete logarithm representation problem base G, = (H HR) oP is equivalent to the
standard discrete logarithm problem.

Second, let &= (—x]€;). Note that G& = G2, for any w,w’ € Z, due to the main equality (introduced
above). Therefore, if A:Fo‘éiﬁb for some w€Z, and some vector of group elements b, then for any other
w' €Zg it also holds that A:Fo‘éi,ﬁb.

With the above observations, we let the prover run a Bulletproofs-style protocol twice on A with respect
to two different bases, i.e., (F||Gy|H) and (F||Gy |H). If the prover is able to convince the verifier
in both executions, then we can construct an extractor which extracts the exponents (a,ﬁ,B) such that
A=F ‘Xéf‘uﬁb =F éi,ﬁb. Dividing the two representations of A yields the main equality.

At this point, we have already obtained a “Bulletproofs-friendly” protocol for ring membership proofs,
which can be combined with the range proofs of [12] to construct a very efficient spend algorithm in RingCT.
However, this approach requires to execute the Bulletproof protocol twice, which blows up the proof size by
a factor of 2. Our third observation allows to compress the two prover executions into a single one. Recall
that in the second observation we have A=F*% éf‘uﬁb for all we€Z,. Therefore the prover can first compute
A=F “ég‘ﬁb (i.e., w=0) without knowing w, and then obtain a random w as a challenge by hashing A.
If the prover is able to convince the verifier with a randomly chosen w, then in the proof of extractability
we can run the prover twice on w and w’ respectively, and then apply the analysis mentioned above.

2 Formalizing RingCT

We present an extensive formalization of Ring Confidential Transactions (RingCT), which in particular
incorporates the stealth address feature. We first describe the intended use of each algorithm along with
some conventions that we adopt (Section 2.1), then provide a formalization of the core syntax (Section 2.2).
In Appendix B, we further extend the syntax to provide tracking and viewing features, which enable a user
to delegate detection and decoding of incoming transactions.

2.1 Overview

We overview the core functionality of RingCT.

Setup and Joining A RingCT scheme is initialized by running the Setup algorithm. Anyone can join the
system by generating a key-tuple (mpk,msk) using SAKGen, where mpk is the master public key, msk is the
master secret key. The master public key is also called a stealth address as it allows the derivation of one-time
target accounts for receiving funds.

Transaction A tranbacuon tx consists of a set of ring accounts {accR}Z 1, tags {tagi}l 1, target

accounts {acc] }Z 1, and some optional arbitrary message p. The “(linkability) tag” is known in the context
of cryptocurrencies as “serial number” (Zcash) or “key image” (Monero), but we follow the terminology of
linkable ring signatures [34]. The public key is bound to a secret key sk, while the coin is bound to a secret
coin key ck and a secret amount a.

Spending Let
RAIRI S|
R= {acci }i:1 and S= {(gz,ckz Nex ,sk”tagl)} ,

=1



where R is a set of ring accounts sampled by some external mechanism, such that a user knows a set of indices,

. . s
secret keys, coin keys, amounts and tags S corresponding to the source accounts {accgj }L:‘l. The user can
transfer a batch of amounts {af}lzll to the owners of the stealth addresses {mpkz}lﬂj1 as follows. It first executes
OTAccGen on each (mpki,aiT) tuple to generate a one-time target account acc;r, and a coin key ck;. This process

is sometimes known as minting. The account acc] will be made publicly available, while the coin key ck; is kept

71

secret by the spender. Let T= {(ck?,af,accf) specifying the target accounts and other relevant informa-
=

tion, and p be some additional message that the user wishes to include as part of the transaction. The user runs

Spend on (R,S,T,u) to create a proof o that the transaction tx (defined by (R,S,T,u)) is valid. The transaction

tx and the proof o are then published (e.g., in a public ledger) for verification. In practice, there may be parts of

the source and target accounts, e.g. trapdoor information intended to be used by the receiver, that are not nec-

essary for public verification. They can instead be sent to the receiver off-chain; we do not model this explicitly.

Verification Once a tuple (tx,o) is published, all parties can run the Vf algorithm to verify its validity.
Roughly speaking, a spend proof o is considered valid for a transaction tx if it demonstrates that the total
amounts in the source accounts are equal to that in the target accounts. The infeasibility of forging a proof
on an invalid transaction will be formally modeled as the balance property defined in Section 3.1.

In a cryptocurrency system, the verifiers need to perform two additional checks other than the validity
of the proof to verify the validity of the transaction in the context of the ledger. First, they need to check that
none of the tags in {tag; }Lill appeared in a previous transaction (double-spending). The balance property
will guarantee that this check is sufficient to detect double-spending. Second, they need to check that each

of the ring accounts {acczz }‘2‘1 in the transaction tx has been a target account in some previous transaction
or is a “coinbase” account, i.e., an account with which newly mined coins are generated. In the latter case, the
miner runs OTAccGen to generate a new account with her stealth address and publishes the created account
together with the amount and coin key to claim newly mined coins in a coinbase account; then verifiers can
verify the correctness of the claimed amount by CheckAmount.

Receiving A user can receive funds from a target account acc that it owns by running Receive on acc which
was published (e.g., via a public ledger) as part of a transaction. Using the output of Receive, which includes
a secret key of the target account, the amount in the account and its tag, the receiver can later spend the
received coin in another transaction.

In a cryptocurrency system, the receiver will need to check additionally that he has not already received
a different transaction to the same account (with the same tag), because then only one set of received funds
will be spendable and the other will be considered a double-spend. This malicious reuse of the account by
the spender is known as the faerie gold attack [61] or burning bug [17]. To ensure that this check is sufficient,
the balance property will guarantee that the tag output by Receive is indeed the correct tag for the given
target account (such that duplicate accounts can be detected by duplicate tags), as well as that the amount
output by Receive is the amount which is stored in the account.

2.2 Formal Syntax

Let A €N denote the security parameter. We denote by poly (A) the set of polynomials in A and we write
negl (A) for a function negligible in A. PPT means probabilistic polynomial time. Given a set S, x +—sS means
sampling an element x from .S uniformly at random. For an algorithm A with input « and output z, we write
z4A(z). For ne€N the set [n] is defined as [n]:={1,...,n}. Unless specified otherwise, all sets are implicitly
ordered. All algorithms may output | upon failure.

Definition 2.1. A Ring Confidential Transactions (RingCT) scheme consists of a tuple of main PPT algorithms
(Setup,SAKGen,0TAccGen,Receive,Spend,Vf), and a tuple of auziliary PPT algorithms (CheckAmount,CheckTag)
defined as follows.

pp<—Setup(1*,1%,18): The setup algorithm takes as inputs the security parameter 1* and integers 1%,15 where

1 represents an upper bound 2% on the number of outputs in a single transaction and 17 an upper bound 2°
of amounts to be transferred in a transaction. It outputs the public parameter pp to be given to all algorithms
mmplicitly.



(mpk,msk) <~ SAKGen(pp): The master key generation algorithm takes as inputs the public parameter pp, and
outputs a master public key mpk and a master secret key msk. The master public key mpk is also known as
a stealth address.

(ck,acc) +— OTAccGen(mpk,a): The one-time account generation algorithm takes as inputs a master public key

mpk and an amount a€{0,....2° —1}. It outputs a coin key ck and an account acc.

(ck,a,sk,tag) < Receive(msk,acc): The receive algorithm takes as inputs a master secret key msk and an account
acc. It outputs a coin key ck, an amount a, a secret key sk, and a tag.

o< Spend(R,S,T,u): The spend algorithm takes the following inputs:

R

%

_ RUIRI . :
e R= {acci }i=1' a set of ring accounts acc

S|

e S= {(ji,ckf,ai‘s,ski,tagi)}_ : a set of tuples consisting of an index j; €[[R]], a coin key kS, a secret
key sk;, an amount a$, and a tag tag,; (of acc}? )
7 7. 7! i : T T
o T = {(cki ,a! acc, )} : a set of tuples consisting of a coin key ck; , an amount a; , and o target
i=1

account accz—
e 1: an optional message to be signed

It outputs a proof o.

b<—Vi(tx,0): The verify algorithm takes as inputs a transaction tx and a signature o. It outputs a bit b
indicating the validity of o. A transaction tx defined as follows:

(RS, T ) == ( {acc? YR frag 1S, {accT }T! ,u)

b+« CheckAmount(acc,ck,a): The amount checking algorithm takes as inputs an account acc, a coin key ck,
and an amount a. It outputs a bit b indicating the consistency of the inputs.

b+« CheckTag(acc,sk,tag): The tag checking algorithm takes as inputs an account acc, a secret key sk, and
a tag tag. It outputs a bit b indicating the consistency of the inputs.

Definition 2.2 (Correctness). A RingCT scheme is correct if the following holds for all \,oa,6E€N, and all
pp € Setup(1*,1%,15).

e Honestly generated payments should be received correctly. Concretely, for any (mpk,msk) € SAKGen(pp),
any amount a €{0,....2° —1}, any (ck,acc) € OTAccGen(mpk,a), and any (ck’,a’ sk,tag) € Receive(msk,acc),
it holds that (ck,a)=(ck’,a’).

e Correctly received payments should have well-defined amounts and tags. Concretely, for any (ck,a,sk,tag) €
Receive(msk,acc) (# L), it holds that CheckAmount(acc,ck,a)=1 and CheckTag(acc,sk,tag)=1.

e Honestly generated transactions should be recognized as valid. Concretely, for any tuple (R,S,T ,u) with
syntaz as defined in Definition 2.1 that satisfies

- [T]<2,

— for all i€||T]], a] € {0,...2° -1},

— for all i€[|S]], CheckTag(acc? sk;,tag;) =1,

— for all i€[|S]], CheckAmount(acc}f,ckf,ai‘s):1,

— for all i€[|T]], CheckAmount(acc/ ,ck! a7 )=1, and

~ Dietsn® =Ziermyal.
and for any proof o € Spend(R,S,T 1), it holds that Vf(tx,o) =1, where tx=tx(R,S,T ).



3 Security of RingCT

We formalize the security properties of RingCT, namely balance, privacy, and non-slanderability. The oracles
used in the security games are shown in Figure 1. Unlike prior work, our definitions take into account stealth
addresses. In Appendix B we extend the definitions further to account for the tracking and viewing features.

InitOracles() SAKGenO() TryReceive(acc)
/ Initialize lists / Generate keys for a new honest user / Called by Spend O
MPK:=MSK:=0 (msk,mpk) <— SAKGen(pp) for i € [|[MSK]|]
/ Initialize sets MPK :=MPK||mpk (ck,a,sk,tag) <— Receive(MSK][:],acc)
Spent:=%:=0 MSK :=MSK||msk if (ck,a,sk,tag)# L
return mpk return (ck,a,sk,tag)
endif

endfor

return L
SpendO(I,R,S,T 1)

/ Instruct honest spender(s) to generate a proof
/ R and S are (incomplete) lists containing malicious information.
/ I contains instructions for populating R and S with information of honest spenders.

/ For each (s;,j;,acc;) in I, fill in S[s;] and R[j;] using data provided by TryReceive

parse I as {(s;,ji,acc;) }le‘l

for i€[|I]] do
(cki,aq,sk;,tag;) := TryReceive(acc;)
Rlji] :=acc;
S[si]:=(ji,cki,aq,5k; tag;)

endfor

tx:=tx(R,S,T,1)

o+ Spend(R,S,T,u)

2:=3U {(tx,0) }

if Vf(tx;,00)=0 then return 0

17]
i=1

Spent:=SpentU {tag; }

return o

Figure 1: Oracles for security experiments.

3.1 Balance

Balance roughly means that a spender cannot double-spend, or spend more than what it possesses. The
formal definition (Definition 3.1) is more complicated than one would initially expect because the amounts
being transferred in a transaction are confidential. In more detail, we say that a RingCT scheme is balanced
if the following two properties are satisfied.

First, the predicates CheckTag and CheckAmount are required to be “binding” in a sense similar to a
commitment scheme. The binding property of CheckTag ensures that a tag is computationally bound to a
source account, which in turn ensures that checking for duplicate tags is sufficient to prevent double-spending.
Similarly, the binding property of CheckAmount ensures that an amount is computationally bound to an account,
which ensures that money cannot be “created out of thin air” by changing the amount of coins in a given account.
This formalization does not contradict the mining of new coins, because this is modeled by explicitly creating a
new account (see Section 2.1). These binding properties make the balance experiment, defined below, meaningful.

The second property requires that, for any efficient adversary A which produces a transaction with a proof,
there exists an extractor £4 such that, if the proof is valid (Event by), then the extractor can extract the
witness (e.g., secret keys, amounts, efc.) leading to the transaction with high probability. More concretely,
the latter means that all of the following events (Events by to bs) must occur with high probability.



Balanceq, 4., (1*,1%,17)

pp « Setup(1*,1%,1%)
(tx,0) +A(pp)
(RS, T 1)« Ea(ppitx,0)

IR|
parse R as {acc?}
i=1
. .8 s IS]
parse S as {(J117Cki A 7Ski7tagi)}. 1
i=
|71
parse 7 as {(ckZ—,aZ—,ach—)}
i=1

bo :=Vf(tx,0)
by = (b= tx(R.S, T )

bo = (Vi SIEIB CheckTag(accE,sk,i Jtag;)= 1)
b3 := (Vie s, CheckAmount(accz,ckf,af) = 1>
by:i= (Vie [ 7], CheckAmount(acc, ,ck! ,a] )= 1)

b5:—< Z afz Z a?)

i€(|S]] i€(|T]
return bo A—(by Aba Abs AbaAbs)

Figure 2: Balance experiment.

Let tx be the transaction output by A, and (R,S,T,u) be the tuple extracted by £4, with the format
S| IT]
R= {acR 1), 8= { (e af sk tag,) | and T= {(ok ol accT)} .

i=1

e Event b;: The extracted tuple leads to the adversarial transaction, i.e., tx=tx(R,S, 7T ,u).

o Event by: sk; is consistent with the j;-th ring account acc}f and the ¢-th tag tag;, i.e., CheckTag(acc}f,ski,tagi) =
1.

e Event b3: The source coin key and amount (ckf,a;s) are consistent with the j;-th ring account acc}f, i.€.,
CheckAmount(accR ck? af) =1.

e Event by: The target coin key and amount (ck;r,azT) are consistent with the i-th target account acc;r, i.€e.,
CheckAmount(acc? ,ck! a7 )=1.

e Event b5: The sum of the source amount is at least the sum of the target amount, i.e., >, el S\]af >, e[|T|]aiT'

The two properties can be interpreted in the following way. If a spender (e.g., the adversary) can produce
a transaction with a valid proof, then it must possess knowledge of balanced input and output amounts,
as they can be extracted by 4. If the actual amounts of the source and target accounts are different from
those extracted by the extractor, e.g., the spender attempts to create money out of thin air, then one can
break the binding property of CheckAmount. Therefore the amounts that the spender has in mind cannot
be different from those extracted by £4. Similarly, if the spender attempts to spend from the same account
twice by producing different tags for the account, then with the spender and the extractor £, one can break
the binding property of CheckTag. Therefore double-spending is infeasible.

Definition 3.1 (Balance). A RingCT scheme ) is balanced if:

1. CheckTag and CheckAmount are binding. That is, for any PPT adversary A, for all positive integers
a,fepoly (A), for Chk e {CheckTag,CheckAmount}, we have

Chk(acc,k,m)=1
Pr | Chk(acc,k’,m’)=1
(km)# (K';m')

pp < Setup(1*,1%,17)

(ace,k.m k)« App) | <8 V)



Privacy?LA(l)‘,lo‘,lﬁ)
pp<—Setup(1>‘,1o‘,15)7 InitOracles()
0:= {SAKGenO,SpendO }
(I,JR.S,T ) +~A° (pp)
So:=81:=8, To:=T1:=T

/ Preparing honest spenders as instructed by adversary.

. 1]
parse [ as {(Siy{‘]t,iaacct,i}i:())}

for i€[|I]] do
for t€{0,1} do

i=1

S S S . S
(th,i’Skt,i ,atvi,tagm) = TryRecelve(acct’i)
. s
Rjt,i] i=accy ;
. s .8 S
Sy [91] = (]t,i 7th,i vSkt,i A i 7t3gt,i)
endfor
if tag, ; #tag; ; A{tago ;,tagy ; }NSpent#( then return 0
endfor

// Preparing honest receivers as instructed by adversary.
T T 17]
parse J as {(djv{kt,j!at,j}i:(])}
for j€[|J|] do
for t€{0,1} do
(cky ;,ace] ;) :=OTAccGen(MPKIk, 1.0/ )

j=1

T T T
Teld;] = (ck; j.a, ;,acc; ;)
endfor
endfor

for t€{0,1} do
txy i =tx(R,S¢, Tt pt)
ot < Spend(R,S¢,Ti 1)
if Vf(tx¢,04)=0 then return 0

endfor

v’ HA@(txb,O'b)

U
return b

Figure 3: Privacy experiment.

2. For all PPT adversaries A, and all positive integers a3 €poly (X), there exists a PPT extractor €4 such that
Pr[Balanceq 4, (1*191°) = 1] <negl (A),

where Balanceq ¢, (1*,1%,1%) is defined in Figure 2.

3.2 Privacy

Privacy captures anonymity for both the spenders and the receivers, and the confidentiality of the amounts
being transferred. The formalization of privacy is inspired by that of anonymity in ring signatures, key-privacy
of encryption, and hiding in commitments. While closely related to the anonymity of ring signatures, the
spender anonymity aspect of RingCT is significantly more difficult to capture as it must still hold in the
presence of stealth addresses, a concept that does not exist for ring signatures.

Roughly speaking, privacy means that an adversary should not be able to distinguish two transactions
with the same ring and their proofs, even if the majority of the ring is corrupt and the adversary has prior
knowledge about the identities of the spenders and receivers and the amounts being transferred. In more
detail, the adversary is allowed to specify a ring with arbitrarily many corrupt accounts, and two honest
subsets of the ring which are the potential spenders. The adversary also specify two sets of receivers and the
amounts that they are supposed to receive. A transaction is then created using one of the two specifications
of the adversary, who should not be able to tell which specification is used to create the transaction.

10



NSlandg, 4(1*,1%,17)
pp < Setup(1*,1%,1%), InitOracles()

(" 0™ ) e _ASAKGenO Spend© (pp)

. R IR S| 771
parse tx' as ( {acci }1:1, {tag; },2}, {acci }i:1,;4
bo :=VFf(tx",0™)
by :=((tx",0") &%)
b= ( {tag; }}Z! NSpent (Z))

return bgAbj Abs

Figure 4: Non-slanderability experiment.

More concretely, we model privacy in the security experiments Privacyb for b€ {0,1}. Let Abe a PPT adversary
who, after several queries to the oracles, produces an incomplete input (R,S,7T,u) to the Spend algorithm,
along with two instructions I and J. The incomplete input (R,S, 7 ,u) corresponds to all malicious information
that will be used to generate a transaction and its proof, while the instructions I and J specify how the sets R,
S, and T should be populated by information held by the honest users. Following the adversary’s instructions,
the experiment duplicates (S,T) into (Sp,7o) and (S1,71), and populates (R,S;,T;) for t€{0,1} as follows.

The instruction I corresponds to the source accounts and is of the form {(si,{jt,i,accf’i}) }LI:I ;- The

experiment retrieves the information required to spend from account acc‘gi by calling TryReceive if possible.
It sets R[j.;] to this account, and Sy[s;] to the retrieved spender information.

Similarly, the instruction J corresponds to the target accounts is of the form {(dj,{kzj,azj Hoo) |]J:| .- The
experiment creates a one-time account using the master public key of user ktT] and the amount aZj? and set
T¢[d;] to the appropriate receiver information.

The experiment then proceeds to create the proofs oy and oy for both transactions tx(R,Sp, 7o, ) and
tx(R,81, 71, 1) respectively. If both proofs are valid, meaning in particular that both transactions created
as instructed by the adversary are well-formed, the experiment sends o, to the adversary, where b is the

parameter of the experiment Privacyb.

Definition 3.2 (Privacy). A RingCT scheme Q is private if for all PPT adversaries A and all positive
integers a,B € poly (),

‘Pr [Privacy%yA(IA,la,lﬁ) =1]—Pr [PrivacysllA(l)‘,la,lB) =1] ’ <negl (A)
where Privacy?)’ 4 s defined in Figure 3.

Remark One may think of a seemingly stronger privacy game in which the adversary gets an additional
corruption oracle CorruptO that is used to obtain the master secret keys of honest parties before and after
being given the challenge. To show that this game is not stronger than the current version, we give an informal
argument. We show that one can construct an adversary A against Privacy that uses an adversary B against
Privacy with CorruptO. A guesses two users that will be honest and own two source accounts acc ;, and
accy ;, respectively provided by B. With inverse-polynomial probability, A guesses correctly. To generate
a well-formed challenge for B, the algorithm 4 guesses the hidden bit b of its challenger and provides the
corresponding secret keys for other “honest” users, except for the account accy;,. With probability 1/2, A
guesses correctly and the challenge proof returned from its challenger is a valid challenge for B. Overall, the
advantage of A is only a polynomial factor lower than that of 5.

3.3 Non-Slanderability (and Unforgeability)

In the context of RingCT, slandering is an act of producing a valid proof on behalf of another user. Note that
a proof authenticates a transaction which specifies a set of tags bound to a set of source accounts. If the owner
of one of the source accounts later attempts to spend from the account, the proof will not be accepted because
the tag corresponding to the account has already been published in the slandering transaction. Slandering
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thus effectively causes the owners of these source accounts to lose money. Non-slanderability is a property
that prevents the above attack, which is known as denial-of-spending attack in the literature [52].

Formally, we model non-slanderability by defining a security experiment in which the adversary produces
a transaction-proof tuple, after several queries to the oracles (Figure 1). The adversary is successful if the tuple
is valid and not produced by the spend oracle, and some of the tags specified in the slandering transaction
collide with those that are signed by the spend oracle.

Definition 3.3 (Non-slanderability). A RingCT scheme Q2 is non-slanderable if for all PPT adversaries A
and all o, BE€poly (N),
Pr[NSIandQ,A(l)‘,la,lﬁ) =1] <negl ())

where the experiment NSlandq, 4 is defined in Figure 4.

Since a tag is computationally bound to a unique account (as required by the balance property),
non-slanderability (which states that no adversary can forge under a tag of a honest user account), naturally
captures that no adversary can forge spend proofs for honest accounts. As a consequence, we do not need
to define an unforgeability property explicitly.

4 RingCT Construction

We present a generic construction of RingCT schemes and an efficient instantiation.

4.1 Tagging Scheme

Our generic construction depends on a new primitive called tagging schemes. Roughly speaking, a tagging
scheme is a one-way permutation over group elements.

Formally, a tagging scheme Tag= (TagSetup, TagKGen,TagEval) consists of a PPT setup algorithm TagSetup,
an efficient bijection TagKGen, and an efficient deterministic algorithm TagEval. TagSetup inputs the security
parameter 1* and outputs public parameters pp, which defines a secret key space (x,+), which is a group
equipped with the operation +, a key space (X,-), which is a group equipped with the operation -, and a
tag space . TagKGen inputs x € y and outputs a public key X € X. Furthermore, Tag is homomorphic, i.e.,
for any x,2’ € x, TagKGen(z)-TagKGen(z') =TagKGen(z+x"). TagEval inputs x € y and outputs a tag tage€p.

We require a tagging scheme which satisfies (related-input) one-wayness and pseudorandomness, defined
as follows.

Definition 4.1 (Security of Tagging Schemes). A tagging scheme Tag is said to be related-input one-way
if for any PPT adversary A,
Pr [OneWayTag)A(l)‘) =1] <negl ()).

1t is related-input pseudorandom if for any PPT adversary A,
[Pr[PRY,g 4 (1%) =1] —Pr[PRY, 4 (1) =1]| <negl (3),

where PR?ra& A and OneWayr,, 4 are defined in Figure 5.

4.2 Scheme Description

Let 8 € N. Let PKE = (PKESetup, KGen, Enc, Dec) be a (labeled) public-key encryption scheme,
HC = (HCSetup, Com) be a homomorphic commitment scheme with message space (M, +) where
{0,1,...,29# —1} C M and randomness space (p,+), Tag=(TagSetup,TagEval) be a tagging scheme with secret
key space space (x,+), public key space (X,+), and tag space 1, and SoK = (SoKSetup,SoKSig,SoKVf) be
a signature of knowledge scheme for the language L[ppyc;Ppr.g] (Parameterized by the public parameters of
HC and Tag) to be defined below; we recall the definitions of these well-known primitives in Appendix A. Let
H:{0,1}* — x be a hash function modeled as a random oracle. We give a generic construction 2 of RingCT
in Figure 6. An overview of the construction is as follows.

12



OneWay,, 4(1%)

TagO, ()

pp<—TagSetup(1A) S X
x,8" < x, X + TagKGen(z)

tag” + TagEval(z+s™)

return (s,TagEval(z+s))

<X, X < TagKGen(z) endif

(s™,tag") +Chy 2 ()
b’ ATEOT (pp, X 5" tag”)

U
return b

a’' — A% (pp s* tag*) Chz,b()
return (TagEval(z) =tag™) tag" <
8"« x
PR}, 4 (1Y) if b=0 then
op < TagSetup(1>) tag” «+ TagEval(z+s™)

return (s*,tag™)

Figure 5: One-wayness and pseudorandomness experiments for tagging schemes.

Setup(1*,1%,19)

OTAccGen(mpk,a)

PPpkE < PKESetup(lA)

PPHC < HCSetup(lA)

PP, < TagSetup(1’)

crssok < SoKSetup(1™, (PPHc,PPTag))
PP := (,PPpKE PPHC s PPTag CrSSok )

return pp

SAKGen(pp)

(tpk,tsk) <— KGen(pppke)

(vpk,vsk) < KGen(pppke)

sk:=x <, pk:=X < TagKGen(x)
mpk := (tpk,vpk,pk)

msk := (tsk,vsk,sk)

return (mpk,msk)

parse mpk as (tpk,vpk,pk)

ek —3{0,1}*, cki=r+p
s:=H(mpk,ek)

pk:=pk-TagKGen(s), co:=Com(a;r)
ek +— Enc(tpk, (pk,co) k)

ck 4 Enc(vpk, (pk,co),(a,r))

acc:= (pk,co,eNk,Ek)

return (ck,acc)

Vf(tx,0)

R T
parse tx as ( {acc;{z }L:‘l, {tag; }l'ilu {(accj) }i:‘l,p>

if |7|>2% then return 0
return b:=SoKVf(stmt(tx),o,tx)

Spend(R,S,T 1)

tx:=tx(R,S,T,1)
return o < SoKSig(stmt(tx),wit(S,7),tx)

Receive(msk,acc)

parse msk as (tsk,vsk,sk)

parse acc as (pk,co,e~k,c~k)

ek < Dec(tsk, (pk,co),ek)

(a,r) + Dec(vsk, (pk,co),ck)

s:=H(mpk,ek), sk:=sk+s

if (pk,co)# (TagKGen(sk),Com(a;r)) then return L
tag := TagEval(sk)

return (r,a,sk,tag)

Figure 6: RingCT construction {2 (core components).

CheckAmount(acc,ck,a)

CheckTag(acc,sk,tag)

parse acc as (pk,co,eNk,CNk)

return (co=Com(a;ck))

parse acc as (pk,co,e~k,c~k)
return (tag= TagEval(sk)
Apk=TagKGen(sk))

Figure 7: RingCT construction (auxiliary algorithms).

Recall that given the sets R, S, and T, and a message p, where

R= {acczZ }El = {(pkf,cof,ék?,gk?)}
S|

S= {(ji,ckf,af,ski,tagi) }
[T

T={(clal accT } = {7 al (k] co] k! k[ )} .

=1

13

IR|

i=1

)

. S|
= {(]hrfvafvxi’tagi) }izl’

I71

=1




we defined the corresponding transaction to be

tx(R.S,T ) ({accR} R (g} {(aecT) )] lﬂ)

Given tx=tx(R,S,T,u), we further define the statement

sumt(v) = ( {poft } . rae 15 {eol 1T )
The witness to the above statement is defined as
wit(S,7):= ( {(ji,x“as ) }Lill, {(a] +]) }g)
Setup The setup algorithm generates and outputs the public parameters for all the underlying primitives.

Stealth Address Generation The master public key mpk consists of the two PKE public keys tpk and
vpk, and a commitment X =TagKGen(z) to 0 with randomness 2. The master secret key msk consists of the
two PKE secret keys tsk and vsk, and the value x. The key tsk also serves as the tracking secret key.

One-Time Account Generation The algorithm commits to the amount a as co:=Com(a;r) with some
randomness r. It then generates a random bit-string as an ephemeral key ek and hashes it with mpk to get a
random exponent s€ x. A one-time public key pk is then derived as pk=X - TagKGen(s). Next it encrypts ek and
ck using the appropriate instances of PKE and obtains ek and ck respectively as ciphertexts. These four elements
are assembled to the account acc= (pk,co,ek,ck) and output together with the coin key, i.e., the randomness 7.

Receiving The algorithm decrypts both ciphertexts ek and ck in acc = (pk,co,ek,ck) to obtain ek and
(a,r), checks if co=Com(a;r), derives the (one-time) secret key of the account as #’ =z +s, and checks if
pk=TagKGen(z’). It also generates the tag of the account as tag:= TagEval(z').

Spending The algorithm derives the transaction tx, the statement stmt and the witness wit, and creates
a signature of knowledge of the statement stmt € L[ppyc,Ppr,) With message tx, where

LIPPrc,PPTag]
IR|
stmt= ( {pk?,coﬁ}l , {tag;} IZS\17 {co IZT\1

Hwit:({ Jirtinas |ZS|1’{ ai Ty } )
ka :TagKGen(xZ)

=0 Vie[lS].{ coR =Com(af;rs)

tag; fTagEvaI(xl)

Vz'e[IT]’{C?FiTzcom(a; o)

al € {0,..,2°-1}

oS T
Diesn% = 2ie( )%

Verify Given a transaction tx and a proof o, the verifier derives the statement stmt from tx and verifies
if o is a valid signature of knowledge of stmt with message tx.

4.3 Analysis

The correctness of the construction is obvious. Below we state the security results.

Theorem 4.2 (Balance). If HC is computationally binding, and SoK is extractable, then the construction
Q is balanced.
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Theorem 4.3 (Privacy). If HC is perfectly hiding and computationally binding, PKE is IND-CCA-secure
and key-private (IK-CCA [6]), H is modeled as a random oracle, SoK is simulatable, and Tag is related-input
pseudorandom, then the construction € is private.

Theorem 4.4 (Non-slanderability). If SoK is extractable and simulatable, Tag is related-input one-way, and
H is modeled as a random oracle, then the construction € is non-slanderable.

In Appendix B, we further extend the construction to provide tracking and viewing features, and provide
proofs of the above theorems with respect to the extended definition.

4.4 Concrete Instantiation: Omniring (U)

We propose Omniring, the concrete instantiation U of our generic construction 2. We instantiate PKE with
a (labeled variant of) ECIES [54], HC with the Pedersen commitment [47], and Tag with the pseudorandom
function of Dodis and Yampolsky [19] in a non-black-box manner, which we denote by Tags.

Concretely, let G=(G,q,G) be the description of a cyclic group G of prime order ¢>2%+# with generator
G, where certain Diffie-Hellman-types assumptions hold (see Appendix A.l for details). Let H € G be
another random generator of G. We set ppyc :=(G,q,G,H) which defines M:=Z, and p:=Z,. We also set
PPTag i= (G,q,G,H) so that the secret key, public key, and tag spaces of the tagging scheme Tag is x:= Ly,
X:=G\ {GO} and 1) := G respectively. For a,r € Z,, we define Com(a;r) :=G*H". For x € Zy, we define
TagKGen(z)=H?" and TagEval(z):=G . More details of these constructions can be found in Appendix E.

With the above choices of HC and Tag fixed, we introduce the following notation for describing the language
L[ppc;PPTag] more conveniently. Given the statement and witness

IR|
stmt:< {pk?,co?}' K {tagi}yjl, {coT}m )
i
. . S| |71
wnt:( {(]i@ua‘s TS) }i=1’ {(a;r’riT) }i=1>’

we define the following notation:

R:=(pk 7Pkm|) Cr:=(col%,.. 7coﬁa)

T: :(tagl, tags)) @T::(cof7...7cor}‘)
X:=(T1,0,7)s]) ad.= (af,...,a‘%l)
g0 hi= (2t ,xw) ﬁT::(aT,...,a‘?l)
=0 ng‘) =0T ,. r|7:r|).

Furthermore, let €; be the |R|-dimensional unit vector with 1 at the j;-th position and 0 everywhere else, and
let b; be the binary representation of aT We define their concatenations as the matrices E and B respectively.
That is, the i-th row of E and B are €; and b; respectively. We write the (row) vectorizations of E and B as

VEC(E) = (61,...,§|3|) vec(B) = (bl,...,b‘fﬂ).
The language becomes:

LU [G7anaH]

EIWlt— (E %,as A37B,§T,?T) s.t.
€; is a unit vector of length |R|

R =H"
) vie (S1, R
tagi:G’”i '

b, is the binary rep. of a] of length 3
coz—:G“iTHTiT
Cicls)% = e

vie[[Tl],

[N
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Finally, we instantiate SoK for the language L|G,q,G,H] by applying the Fiat-Shamir transform [21] to
the argument of knowledge scheme for £[G,q,G,H] to be constructed in Section 5.

We remark that with the above instantiations, all public parameters can be generated using public coins,
i.e., without trusted setup.

5 Argument of Knowledge

Below we construct a logarithmic-round argument of knowledge scheme for the language £L45(G,q,G,H]. In the
basic protocol described below, the total size of the messages sent by the prover is bounded by O(|R||S|+3|T]).
We can then replace part of the protocol with the argument of knowledge for inner product relations Ljp
(defined below) of [12] as a black-box, in the same fashion of their range proof construction. This squashes
the communication to O(log(|R||S|+5|T1)).

In the following, vectors (of integers and group elements) are always written as row vectors unless specified.
The actual orientation of a vector in a matrix-vector product is implicit and is not specified unless there
is an ambiguity. We use “||” as an operator for concatenating vectors. Inner products are denoted by
(U,v)=>""" uv;. Let G €G™ be a vector of group clements, and z €N. We define the following operations
between vectors of group elements and (vectors of) integers:

e Hadamard Powers: G°%:=(g¥.....g%)
e Hadamard Products: GY:=(g'",...,g"")

We also define the operations between (vectors of) integers:
e Hadamard Products: Gov:=(ujvy,...,unvy)

Li=(v1,...,0,) Where vi:uf if u;#0, and v; =1 otherwise.

e Hadamard Inverse: u°~
e Kronecker Products: u®v:=(u1Vv,...,u, V)
e Consecutive Powers: 7" =(1,,...,x
Given a matrix '€ Zy"™", its (row) vectorization is defined as vec(E):=(€y,...,€,,), where €; is the i-th row

of E. Conversely, we write E=vec™!(@1,...,€,,).

5.1 Our Basic Protocol

Below we describe our basic protocol I = (Setup,(P,V)) and state its security properties. The notation used
within is defined in Section 4.4, Figures 8 to 10 and Table 1.

Setup(1*,L5):
Recall that L is specified by a tuple (G,q,G,H). Output crs=(G,q,G,H).

(P(crs,stmt,wit),V(crs,stmt)):
V:

1. uw =32,
2. F +sG, 13 <—$G3+|R|, é/ <_$(Gm—|73\—37 ﬁ +—sG™

P+ V:iun,FP,G H

PV:
1. Y:=RoC%'
2. T:=Tw7"
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3. For weZy, denote
G :=((GIIH|TIIY)* oP|G) 1)

P:
1. ra <52,
2. A:=Fr2Gg-Hr
Note that GE= =G for all w,uw’ € Z, since [ =GEHTY®. Thus A= Fr2GELHC for all w € Z,.

P—-V:A
Viw <—sZ,
P+—V:w
P:

L. 1rg ¢sZq, S <Ly, SR < s{8=(51,..,5m) €Z;": Vi€ [m], Cgli] =0 = 5;=0}.

2. §:=FrsGS:Hsr

P—=V:S

V:iy,z «sZq

P—V:yz

P:

1. Define the following polynomials (in X):

I(X):=¢p+a+s.-X
r(X): 250(6 Sp-X)+i
8(X):=(UX),r (X)) =t X + 1 X +1o

for some ty,t1,t2 €Z4. In particular

2. T1,T2 (*$Zq
Tl :thFTl, TQZ:Gt2F7—2

P‘)V:Tl,TQ
V:x <—$Zq
P—V:x

P:

1 7:=22(¢7 § T+ 2+ ma
2. ri=rap+rsc
3. (1,71):=(I(z),r(x)t(x))

PoVirr | it
V: Check if the following relations hold:

=(1,7) (2)
F'GLHY " = AS*GSHP (3)
GtH=GoCE Y Ty (4)
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Theorem 5.1. The verifier V is public-coin. 15 is constant-round, perfectly complete, and perfect special
honest-verifier zero-knowledge.

Theorem 5.2. Assuming the discrete logarithm assumption holds over G, Il has computational
witness-extended emulation.

The proofs of the above theorems can be found in Appendix D.

5.2 Inner Product Argument

We next recall the argument of knowledge for inner product relations in [12]. ~Formally, given a group
description G = (G,q,G), an integer m € N, and two vectors of group elements G,H € G™, we define the
following inner product relation:

—— (Pt)eGxZy:
’C'P[G’H]'{affezgn s.t. P=GIH" A (1,7)=t

We denote the argument of knowledge protocol of [12] by TIjp.

It is shown that if finding a non-trivial discrete logarithm representation of the identity element in G with
base G|H is hard, then IIp has computational witness-extended emulation [12]. In their security proof, it
is implicitly assumed that G and H are uniformly sampled from G™. For our purpose, we require a slightly
stronger theorem which states that the argument of knowledge has computational witness-extended emulation
even if the adversary has certain control over the values of G and H.

Theorem 5.3 (Modified from [12]). Let G and H be sampled as in Corollary 1 such that it is hard to find
a, b with I=G*HP. Then p has computational witness-extended emulation.

The proof of the above theorem is almost identical to that given in [12] and is therefore omitted.

5.3 Squashing Prover Communication

To squash the prover communication in our basic protocol from linear to logarithmic, we modify the protocol
as follows. In the last message that P sends to V, instead of sending 7 and 7 in plain, P commits to them
as P= (A}fuﬁwﬂ"?, where G, is defined in Equation (1), and sends P to V. Then P and V engage in the
argument of knowledge Iljp for the inner product relation, which convinces V that P is computed correctly and
indeed t=(1,7). Finally, V proceeds to check if F* P=AS*GEH’ and G'H” zGééfﬁﬂmT{”Tf. As shown
in [12], the following holds: Vip is public-coin; ITjp has [logym] rounds; and Ijp is perfectly complete, perfect
special honest-verifier zero-knowledge. As stated in Theorem 5.3, IIjp has computational witness-extended
emulation if finding non-trivial discrete logarithm relations among G, and H is hard. Consequently, after
the aforementioned changes, Theorem 5.1 and Theorem 5.2 still hold for the resulting protocol, except that
the latter now consists of [logym]+O(1) number of rounds.

cr=(elnliL]el  vec(®) | vec(B) [aS[rS| x )
eri=( 0%R | vec(®)— TIRIS! ||vec(B) -~ T 0251 || xo~1)

Figure 8: Honest encoding of witness.

6 Optimizations and Performance

We discuss several optimization techniques and compare the efficiency of Omniring with that of Monero.

18



Notation

Description

Y=Y (u):=RoC%

Vector of compressed public keys and coins with randomness
UELy.

Vector of compressed unit vectors with randomness v €Zj,.

T=T U,v) =Tu o Compressed tag with randomness u,v € Z.
E=E(uw):=—(v1°u-as +u2-x°° 1) Compressed secrets with randomness u,v € Z,.
n=n(uw):=—(T1% X 4+u-r°) Note that (£,7,8) satisfies I=GEH"TY®.

CL,CR Encoding of witness by honest prover dependent on u and wv,

see Figure 8.

m=3~+|R|+|R||S|+8|T|+3|S|

Length of ¢, and Cg.

(VOWWVSaﬁ‘l) = (VO,...,Vg,ﬁz})(UW,y)

Constraint vectors parameterized by the randomness u,v,y € Z,,
see Figure 9.

(@,5, 9,6,¢ ,E,ﬁ,fu) Compressed constraint vectors parameterized by the randomness
=(a,8,0,0,(,11,7,0)(u,0,y,2) uW,Y,2 € Lq, see Figure 9 and Figure 10.
EQ=EQ[a’ ,u,v,y] System of equations parameterized by the amounts a’ and

randomness u,v,y € Z,, see Figure 11.

Table 1: Notation for signatures of knowledge construction.

X r g RISIHAITI . . . 7
V1 . y|5\

Vo . . 7728

Vs y!S| . 7Sl 1IRI .

Vil |1 - . . . w-gls! .

vs| 1 . . w1 sl

Ve —glRl plSlgylRI .

vy . . . 1Tl 28 TSI

Vs . . . g RISIHAITI . .

| Uy | L - - . . . . . . u2-plsl |

Figure 9: Definitions of constraint vectors. (Dots mean zeros.)

6.1 Efficient Verification

An Omniring transaction is computationally efficient to verify, as it can be reduced to a single multi-
exponentiation of size 2m-+log(m)+O(1) using the technique of [12], where m=3+|R|+|R||S|+8|T|+3|S|.
Since multi-exponentiations can be computed more efficiently than performing an equivalent number of
individual exponentiations, they enable large savings. As the required techniques are exactly the same as
in [12], we refer the reader to Biinz et al. [12].

6.2 Log-size Transactions

While Omniring produces spend proofs of logarithmic size, the spender needs to communicate the set of
destination accounts {accf,infoi }Z‘l, the set of tags {tagi}ﬁ‘l, and a set of ring accounts {acczz IZ‘ within
the transaction to allow the cryptocurrency network to verify the transaction. Since || and |S| are typically
small (we typically have |T] =2 and |S| < 5), they can be safely neglected. However, the ring size |R] is
a problem if a high level of privacy is desired. The obvious solution to include |R| ring members in the
transaction needs O(|R|) space which quickly becomes impractical. However, using the recovery sampling
technique by Chator and Green [15], which is built for this exact purpose, the description of the set of ring
members can be as short as O(log|R|), yielding a overall transaction size (not only proof size) logarithmic in m.
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EQ(?La?R) =0+

e . (YL, VROVo0) =0 (5)

0= 2'vi (=) e =) 2 (51,7 R0V1) _ (7S] ISl (6)
o = = (71:v2) =@y (7)

D vy B, (jmis) - = (TISI+1 5ISI+1) (8)

(Y, Va)+ (VR Us) =0 9)

. o (71.,Vs) =0 (10)
a:=0""o(@-7)  B=0"""of (T1.Ve) =0 (11)
(Yr,v7) =0 (12)

§:=z- (1181 glSly 423 (TISHL GISHL) L 7Y +(T™ 7) (Fr-Ar—1m3s) =0 (13)

Figure 10: Definitions of constraint vectors (cont.). Figure 11: System of equations guaranteeing the
integrity of the encoding of witness.

6.3 Performance Comparison

We compare the performance of Omniring with the RingCT scheme currently employed in Monero, i.e., the
scheme by Noether et al. [45] with a minor modification [27], together with Bulletproofs [12] range proofs
(all of the range proofs in a transaction aggregated into a single Bulletproof). For conciseness we simply use
Monero to refer to this scheme. We consider the typical case of |T|=2,! and the amount range =64 used
in Monero. For a fair comparison we also consider only transactions with one source account (|S|=1), to
exclude the advantages that our model of RingCT provides for |S|>1 (see Section 1.1.1).

Proof Size In Figure 13 we compare the proof size of known RingCT schemes. We assume (non-pairing)
elliptic curves as in Monero and therefore do not differentiate between group elements and scalars because
they have roughly the same size. The proof size of Omniring is

2[logy 3+ [R|+[RIIS|+B[T|+3|S])|+9,
while that of Monero is
(IR[+2)(|S|+1) +log,(|T18)+9.
RingCT 3.0 proposed in a concurrent work [62] can be instantiated in the same setting, and has proof size
|S1(2[log, |R[]+17) +2[log, (B[ T) | +2.

The proof size of RingCT 2.0 [58] is O(|S|+1og(B|T1)) elements where the hidden constant is in the hundreds.
The concrete count is incomparable to other schemes and is omitted, as the scheme is based on pairing groups
and has a trusted setup.

Figure 12a shows the number of elements in the proof against the size of the ring. Note that even when
|R| is as small as 11, which is the ring size currently enforced in Monero, the proof size of Omniring is already
significantly smaller than that of Monero, and for larger |R|, the difference in proof size grows further. Finally,
we remark that although our comparison only considers |S|=1 and |T|=2, for general |S| and |T|, the gap
in proof size would only be larger as the proof size of Monero scales linearly with |S| and | 7| while Omniring’s
only scales logarithmically.

LA typical transaction uses one destination account to pay to the receiver and one change account to pay the remaining funds from
the source accounts back to a new account of the sender. This model, introduced by Bitcoin, is common in cryptocurrencies and
it is actually fundamental to RingCT because the spend proof only reveals that the sum of the source amounts equals the sum
of the output amounts. Partial spends of a source account would require accounting for the exact amount that has been spent.
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a) Proof size [elements], log-log scale

b) Spending time [ms], lin-log scale

¢) Verification time [ms], lin-log scale
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Figure 12: Performance comparison.
Scheme Spend proof size (in elements) Pairing Trusted setup
Monero [27, 45] with Bulletproofs range proofs O(|R||S|+1og(BIT1)) No No
RingCT 2.0 [58] with Bulletproofs range proofs O(|S|+1og(B]T1)) Yes Yes
RingCT 3.0 [62] with Bulletproofs range proofs O(|S|log|R|+1og(8|T1)) No No
Omniring O(log(|R||S|+5|T1)) No No

Figure 13: Comparison of RingCT schemes.

Running Time To compare the running time, we make use of the fact that our spend algorithm is very similar
in structure to a Bulletproofs range proof, which has been implemented in Monero; the only difference significant
for performance is the size of the vectors in the inner product proof. By modifying the Monero benchmark suite
to run Bulletproofs with larger vectors, we can obtain estimates for the running time of Omniring, and compare
them with running times for the RingCT scheme used in Monero. Our estimates are suitable for a comparison
with Monero because they rely on the same C++ implementation of Bulletproofs, i.e., on the same elliptic curve
using the same optimizations. Our modified code is available online [16]. All experiments were run on a single
core of an Intel Core i7-7600U (Kaby Lake) CPU with TurboBoost disabled to get more consistent results.

Figure 12b and Figure 12c show the estimated time needed for generating and verifying a proof, respectively,
against the size of the ring. The verification time is particularly important as each proof on the blockchain
needs to be verified by virtually all nodes in the cryptocurrency network. The time needed for generating
proofs in Omniring is about twice of that in Monero. Omniring, however, has considerably faster verification
than Monero does for higher |R|. For instance, at |R| =128, verifying an Omniring transaction is 4 times
faster than verifying a Monero transaction.

Potential Issues of Leaking One-Time Secret Keys For completeness, we point out a potential issue
which seems costly to avoid. We observe that in Noether et al. [45], leaking a one-time secret key x=x5+s5 is
almost as bad as leaking the master secret key as s is known to the spender who generates the corresponding
one-time public key. With the knowledge of x5 = x — s, the spender can get a “refund” for any future
transaction bounded to the same receiver: Suppose in a future transaction the spender creates a new one-time
account of the receiver with one-time secret key ' = x5+ s’ for some s’ known by the spender. Since the
spender knows xs, it can compute ' and spend from this account “on behalf of the receiver”.

We do not see any simple solution to this potential issue, since the only one-time public keys a spender can
publicly derive are affine functions of the master public key, assuming that the spender only performs generic
group operations and does not use pairing. That is to say, our construction also does not protect against this
potential attack. If one is willing to use computationally more expensive tools, an option is to use (techniques
related to) identity-based encryption which can be constructed with pairing (e.g., [8]) or garbled circuits [20].
Fortunately, although devastating in theory, the attack seems impractical as the victim can easily discover it.

7 Related Work

We start our discussion of related work by a brief historical overview.
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7.1 Brief History of RingCT and Monero

To ensure anonymity in cryptocurrencies while still preventing double-spending, van Saberhagen mentioned the
use of linkable ring signatures in a cryptocurrency called CryptoNote v2.0 [60], which ensures that messages
signed by the same sender are linkable, independently of the rings or messages. The construction is a slight
modification of the scheme by Liu, Wei, and Wong [34], however the security analysis is not detailed and
is carried out with respect to informal definitions.

Back [3] observed how to improve CryptoNote v2.0 relying on ideas from [1]. Noether et al. [45] generalized
Back’s scheme using the name Ring Confidential Transactions (RingCT) to allow for batch spending with
improved confidentiality (by using Confidential Transactions (CT)) and anonymity guarantees (Stealth
Addresses). While the original proposal by Maxwell [38] leaves out many cryptographic details, which could
just be found in the source code, the concept of CT for confidentiality of amounts is explained in detail by
Gibson [23]. CT further has been partially formalized by Poelstra et al. [49], and fully formalized in the
context of the Mimblewimble cryptocurrency design [26, 48] by Fuchsbauer et al. [22].

A variant [27] of the scheme by Noether et al. is used in Monero since its inception. In 2018 Monero
switched to Bulletproofs range proofs to reduce the size of the spend proofs [56].

To our best knowledge, the concept of “stealth addresses” first appeared in CryptoNote v2.0 [60] in the
name “public user keys” without formalization. Meiklejohn and Mercer [39] formalize stealth addresses by
requiring that the one-time public keys are identically distributed as randomly chosen ones, in the view of
external parties. This requirement is necessary but not sufficient in our application because the spender
who derives the one-time public key may know extra information about the key which can be used to link
signatures (hence breaking spender anonymity).

7.2 Comparison with RingCT 2.0

We compare our formalization and construction with “RingCT 2.0” by Sun et al. [58].

Formalizing RingCT The formal model in RingCT 2.0 does not formalize the central property of stealth
addresses nor receiver anonymity. While both our model and that of RingCT 2.0 define balance and spender
anonymity, our definitions assume stronger adversaries. In the case of balance, we require the property to
hold even if all accounts in the transaction are maliciously generated. In contrast, RingCT 2.0 considers only
honestly generated accounts. While RingCT 2.0 only considers spender anonymity in the case where all source
accounts are not corrupt, we allow some of the source accounts to be corrupt and still require the non-corrupt
accounts to be anonymous. Moreover, related to the support of stealth addresses, we allow the source accounts
to be the target accounts in previous transactions created by the adversary. This naturally makes it non-trivial
to define spender anonymity in contrast to previous works that only relied on a ring signature style anonymity
definition. Therefore our model offers stronger security guarantees.

Non-slanderability - Linkability Sun et al. [58] claim that non-slanderability implies linkability. Since
their claim is informal, it is unclear whether the implication is claimed just for RingCT systems or also for
linkable signatures. We show that either case is not true by giving an intuition for constructing counter examples.
Consider a RingCT or a linkable ring signature scheme where the tag is a commitment of the signer secret key.
A signature consists of a proof where, among other relations, the tag is a commitment of a secret key, and the
public key corresponding to the secret key is a member of the ring. It is clear that such a construction can be
made unforgeable and anonymous (and balanced in the case of RingCT) when instantiated with appropriate
proof system and commitment scheme. In particular, suppose the proof system is perfectly zero-knowledge and
is a PoK, and the commitment scheme is perfectly hiding. In this case, we observe that the scheme can be made
non-slanderable yet non linkable, falsifying the claim in RingCT 2.0 that non-slanderability implies linkability.
Obviously, the scheme is not linkable since the tag is completely independent of the secret key. Intuitively,
the scheme is non-slanderable, since given a tag (a commitment of some secret key sk) along with a proof about
it, sk is information-theoretically hidden from the adversary due to the perfectly zero-knowledge and perfectly
hiding property. If the adversary manages to produce a proof that the tag is a commitment of a secret key
sk’, with overwhelming probability we would have sk#sk’. Since the proof system is a proof of knowledge, we
can extract sk’ and thus break the binding property of the commitment scheme. We remark that the RingCT
2.0 construction of Sun et al. [58] is nevertheless linkable since a tag is uniquely determined by an account.
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Constructing RingCT The RingCT 2.0 scheme is an accumulator-based construction which features a
signature size independent of |7] and [R|. However, this scheme relies on a trusted setup and a pairing-friendly
elliptic curve over which operations are computationally more expensive than non-pairing-friendly ones.
While setup-free accumulators are known based on unknown order groups, they require considerably larger
parameters to be secure. Moreover, the RingCT 2.0 construction does not support stealth addresses.

7.3 Comparison with RingCT 3.0

A very recent concurrent work by Yuen et al. [62] proposes “RingCT 3.0”, which uses a syntax similar to ours
and improves upon RingCT 2.0 mainly by supporting stealth addresses and getting rid of the trusted setup.

Formalizing RingCT Regarding their security model, RingCT 3.0 suggests a more restricted definition of
balance that forces the adversary to generate its transactions using oracles provided by the experiment. This is
necessary to learn the amounts corresponding to the adversarial transaction by witnessing the oracle queries. We
believe that this notion is too restrictive because it does not cover adversaries that simply forge proofs of false state-
ments and do not use the oracle at all. Our approach is different and more general, allowing arbitrary adversaries
and requiring only the existence of an extractor which extracts the amounts by running code of the adversary.

The second weakness in their formal security model is their definition of anonymity, which is split into
anonymity against receivers and anonymity against ring insiders. First, the two properties together do not
seem to imply the combined property, i.e., anonymity against a coalition of receivers and ring members.
Second, their definition assumes honestly generated source accounts. We believe that this notion is too weak
because it rules out natural real-world attacks where a curious user, who has transferred some money to a
one-time account of the victim, tries to determine if the victim’s account is used in a given transaction. Third,
their definition only covers spender but not receiver anonymity.

Constructing RingCT Aside from the definitional issues, the construction seems also less efficient
compared to our “unified ring” construction because RingCT 3.0 requires separate rings for separate source
accounts like all other previous RingCT schemes. Moreover, range proofs are not directly integrated in their
construction. Instead, for real-world applications, one would need to compose their construction with a
separate range proof system. While this is acceptable from a theoretical point of view, it incurs unnecessary
computational and communication overheads which impact concrete efficiency.

7.4 Comparison with Zerocoin and Zerocash

Zerocoin [42] and Zerocash [7] are designs for cryptocurrencies aiming to provide anonymity and the privacy
of amounts based on zero-knowledge proofs. Ring signatures in CryptoNote v2.0 [60] (the underlying scheme
of Monero) serve the same purpose as the non-interactive zero-knowledge proofs in Zerocoin. In fact, the
zero-knowledge proofs can be seen as a form of ring signatures. Zerocoin was developed as an extension to
Bitcoin, and Zerocash is designed as an independent currency and has been implemented in Zcash [63]. Both
Zerocoin and Zerocash use a trusted setup, and Zerocash uses zero-knowledge succinct non-interactive arguments
of knowledge (ZK-SNARKS) to prove the integrity of computations. Due to the trusted setup, the system per se
cannot be considered as completely decentralized. By using cryptographic accumulators which give constant-size
membership proofs, Zerocoin and Zerocash can handle very large anonymity sets; the anonymity set is the set
of all coins ever created. In contrast, Monero scales only to medium-size anonymity sets but does not require
a trusted setup; the same is true for another instantiation of Zerocoin proposed by Groth and Kohlweiss [24].
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A Preliminaries

A.1 Computational Hardness Assumptions

Let G=(G,q,G) be the description of a cyclic group G of prime order ¢ with generator G. In the following,
we recall the (general) discrete logarithm assumption, the strong decisional Diffie-Hellman inversion (SDDHI)
assumption, and the Gap Diffie-Hellman assumption.

Definition A.1 (General Discrete Logarithm Assumption (GDL)). We say that the general logarithm
assumption holds over G if for all £€poly (), every PPT adversary A

Pr [£-DL4(G)] <negl (A),

where the game £-DL 4(G) is defined in Figure 14. For {=1, this is the (standard) discrete logarithm assumption.

-DL4(G)

T 4—s2q

& AGq,GGT G G
bi=(G*=G")

return b

Figure 14: Security game for GDL.
Definition A.2 (Gap Diffie-Hellman Assumption (GapDH) [46]). We say that the GapDH assumption holds
over G if for all £€poly (X), every PPT adversary A
Pr [GapDH () =1] <negl (1),

where the game GapDH 4(G) is defined in Figure 15.

GapDHA(Q) ODDH (A,B,C)

T < 3sLyy <L, a:=log.(A);b:=log(B)
H+ A (Gq,G,G",GY)  ci=logg(C)

return (H=G"Y) return (Gab:GC)

Figure 15: Security game for GapDH.

Definition A.3 (Strong Decisional Diffie-Hellman Inversion Assumption (SDDHI) [13]). We say that the
SDDHI assumption holds over G if for all £€poly (X\), every PPT adversary A

’Pr [SDDHI% (G)=1] —Pr [SDDHIY(G) =1] ’ <negl (\),

where the game SDDHI4(G) is defined in Figure 16.
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SDDHI%(G) 0,.(2)

7 =0 Z:=ZJU{z}
x sy

s+ A5 (G,q,G,G")
b<+s{0,1}

yO:Gm+s

y1 < sG

b AT* ()

if s€e Z then return 0

1
return G=+=

return b’

Figure 16: Security game for SDDHI.

DDHY(G)

Ty, < sl

b«+s{0,1}

Zo=G"™

Z1=G*

¥ AG.q,G.G".G" . Zy)
boi= (b=F)

return by

Figure 17: Security Game for DDH.

Definition A.4 (Decisional Diffie-Hellman (DDH)). We say that the DDH assumption according to holds
over G if for all £€poly (X), every PPT adversary A

Pr [DDHY(G)=1] —Pr [DDHY(G)=1] ‘ <negl (\),

where the game DDH 4(G) is defined in Figure 17.

We now define an interactive variant of the discrete logarithm (representation) assumption, and show that
it is equivalent to the standard discrete logarithm assumption.

Definition A.5 (Interactive Discrete Logarithm (iDL) Assumption). We say that the interactive discrete
logarithm assumption holds over G if for all £€poly (M), every PPT adversary A

Pr (DL 4(G)] < negl (V).

where the game (-IDL4(G) is defined in Figure 18.

Theorem A.6. The interactive discrete logarithm assumption holds over G if and only if the discrete logarithm
assumption (1-DL) holds over G.

Proof. The forward direction is trivial. For the backward direction, suppose there exists a PPT adversary
A which solves the interactive discrete logarithm problem for some ¢ € N. We construct a PPT algorithm
B for the discrete logarithm problem as follows.

BB receives the discrete logarithm instance G* for some unknown z. It runs A up to the point where A
outputs a vector of group elements G. Let m= |@| €poly (A) be the length of G. B forks the execution of
A into m+1 parallel instances. Let i* <—s[¢] and j* <—s[m+1]. For the j-th instance, B does the following:
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¢-iDLA(G)

(G st) —A(G,q,G)
H G’

(a,b) < A(st,H)
bo:=(I=G*HP)
b:i=(b#£0")

return bgAb;

Figure 18: Security Game for iDL

If j # j*, B samples X; <—$Zg. If j = j*, B chooses a random indexj* +s[f] and writes symbolically
ie jo = Forie [E]\{Zf}’ it samples x; j- +—sZq. In either case, it sends H;:=G*/ to A, who responds with
(a;,b;) with I=G% ﬁ?-j and b;#0¢. We can write

G—(Pi %) _ G8y

Note that |a;|=m for all j € [m+1] and therefore the set {ay,...,am11} must be linearly dependent, i.e.,
there exists cy,...,cm+1 not all zero such that

(&) '51 +-~-+C'm+1 '§m+1 Zﬁm
Since j* is chosen randomly, with probability at least 1/(m+1), we have ¢;- #0. We can therefore write
ﬁj* = Z C;v 'ﬁj
Jem+IN{*}
for some ¢}« _1,C}u g 150sCrp 1. This implies
Gar — H (éaj)%,
JEM+IN{G*}
GB %) — H (G<Bj »§j>)cj7
JEM+IN{G*}

GYi* T = G etm+n*y G (B %) = Die o (i) Dig* Tig |

Since ¢* is chosen randomly, with probability at least 1/¢, we have b;+ ;0. Hence we have

z= (b )" Yoo b= Y bigeaise |,

Jem+1\{5*} il \{=}

which is a solution to the discrete logarithm problem instance.

A.2 Arguments of Knowledge

Definition A.7 (Arguments of Knowledge). A triple (Setup,P,V) is called an argument of knowledge for a
NP relation R for a language Lr={stmt|3wit: R(crs,stmtwit)=1} if it satisfies the following two definitions.

On input 1* the setup algorithm Setup produces a common reference string crs. When interacting the prover
P and verifier V produce a transcript tr=(P(-),V(-)) where (-) denotes the actual protocol between P and V.

Definition A.8 (Perfect Completeness). (Setup,P,V) has perfect completeness if for all non-uniform
polynomial time adversaries A,

(crs,stmt,wit) R V crs<Setup(1*)

Pr (P(crs,stmt,wit),V(crs,stmt) = 1) | (stmt,wit) < .A(crs) =1
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Definition A.9 (Computational Witness-Extended Emulation [33]). (Setup,P,V) has witness-extended
emulation if for all deterministic polynomial time P* there exists an expected polynomial time emulator £
such that for all pairs of interactive adversaries Ay, Ag there exists a negligible function negl (\) such that

A
(sti:i;if)ezﬁl(z;s) Ai(tr)=1A crs <« Setup(1?),
PriAi(tr)=1 | 250l —Pr| (b is accepting | (stmt,wit) < Ag(crs), | |<negl (\).
tr<— <P (CrS,Stmt,Wlt)v = (CI’S stmt Wlt) c R) (t?" Wlt) %EO(CFS stmt)
V(crs,stmt)) »>HHE ) )

where the oracle is given by O=(P*(crs,stmt,wit),V(crs,stmt)), and permits rewinding to a specific point and
resuming with fresh randomness for the verifier from this point onwards. If the adversaries Ay and As are
restricted to run in polynomial time, then we say (Setup,P,V) has computational witness-extended emulation.

Definition A.10 (Public Coin). An argument of knowledge (Setup,P,V) is called public coin if all messages
sent from the verifier to the prover are chosen uniformly at random and independently of the prover’s messages,
i.e., the challenges correspond to the verifier’s randomness p.

Definition A.11 (Perfect Special Honest-Verifier Zero-Knowledge). A public coin argument of knowledge
(Setup, P, V) is a perfect special-verifier zero knowledge argument of knowledge for R if there exists a
probabilistic polynomial time simulator S such that for all pairs of interactive adversaries Ay, As

A
(crs,stmt,wit) € RA crs<—.Setup(1 ),
i .A (tr) =1 (Stmt7W|tap) <_.A2 (CI’S)7
! tr < (P(crs,stmt,wit),V(crs,stmt;p))
A
(crs,stmt,wit) € RA CrSﬁSetup(l ),
=Pr Ay (tr)=1 (stmt,wit,p) < Az (crs), | .
! tr < S(stmt,p)

A.3 Signatures of Knowledge

The term signatures of knowledge was widely used in the literature before it was formalized by [14]. We
present a simplified definition which captures schemes in the random oracle model.

Definition A.12 (Signatures of Knowledge). Let R be an NP relation for the language L = {stmt|Iwit :
R(crs,stmt,wit) =1} for a statement x and witness w. Let H be a random oracle. A signature of knowledge
for L and the message m in presence of H is a tuple of algorithms Ez(Setup,SoKSignH,SoKVerifyH ,S) defined
below. Note that SoKSign and SoKVerify have oracle access to the random oracle H.

crs<Setup(1*,£): The setup algorithm takes as inputs the security parameter 1* and the description of the
language L, and outputs the the common reference string crs.

U<—SoKSignH(crs,stmt,witm): The signing algorithm takes as inputs the common reference string crs, a
statement stmt€ L, the corresponding witness wit, and a message me M, and outputs a signature .

b+« SoKVerify" (crs,stmt,o,m): The verification algorithm takes as inpuls the common reference string crs, a
statement stmt€ L, a signature o, and a message me M, and outputs a bit b deciding whether o is a valid
signature on m.

o« S(crs,stmt,m): The simulator takes as inputs the common reference string crs, a statement stmte L, and
a message me M, and outputs a signature o.

Definition A.13 (Perfect Completeness). For all A\€N, crs€ Setup(1*,£), (x,w) such that R(stmt,wit) =1,
meM, aESoKSignH(crs,stmt,wit,m), we have SoKVerify! (crs,stmt,o,m) =1.

Definition A.14 (Perfect Simulatability). It holds that

crs Setup(11.£) )} _ {(crs,o)

o+ SoKSign" (crs,stmt,wit,m

{teso)

crs Setup(1*,£)
o+ S(crs,stmtym) [
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Definition A.15 (Extractability). For all PPT adversaries A, there exists a PPT extractor Ea such that
for all stmte{0,1}*, if
crs < Setup(1*,£)
Pr|b=1|(c,m) + A (crs) >negl (\),
b+ SoKVerifyH(crs,stmt,U,m)
then
crs < Setup(crs,L)

w—E(crsstmt) |~ L—negl (A).

Pr| Rz =1

A perfectly complete, perfectly special honest-verifier zero-knowledge, public-coin logarithmic-round
argument of knowledge scheme for a language £ with extended-witness emulation can be transformed into
a perfectly complete, extractable, perfectly simulatable signature of knowledge scheme for £ and the message
space M ={0,1}* using the Fiat-Shamir heuristic [21].

A.4 Labeled Public-Key Encryption Scheme

The notion of the labeled public-key encryption scheme is formally considered by Shoup [55]. Compared with
the standard public-key encryption, the encryption and decryption algorithms of a labeled encryption scheme
take an additional labeled as input. A label can be considered as a binary string with a length polynomially
bounded by the security parameter.

Definition A.16 (Labeled Public-Key Encryption). A labeled public-key encryption scheme is a tuple of
algorithms PKE = (Setup,KGen,Enc,Dec) defined below.
pp < Setup(1*): The setup algorithm takes as input the security parameter 1, and outputs a public parameter pp.

(pk,sk) «— KGen(pp): The key generation algorithm takes as input the public parameter pp, and outputs a public
key pk and a secret key sk. We assume the existence of an algorithm SKVerify(pk,sk) which checks if pk is
a valid public key corresponding to sk.

c<—Enc(pk,7,m): The encryption algorithm takes as inputs the public key pk, a label T, and a message m, and
outputs a ciphertext c.

m < Dec(sk,7,¢): The deterministic decryption algorithm takes as inputs the secret key sk, a label T, and a
ciphertezt ¢, and outpuls a message m (or L upon failure).

Correctness of PKE requires that for all message-label pairs (m,7), all pp € Setup(1*), and all
(pk,sk) € KGen(pp), Dec(sk,,Enc(pk,m,m)) always returns m.

We follow the CCA security requirement of the labeled encryption considered in [55]. This notion is stronger
than weak CCA in [28, 35] by allowing the adversary to make any query to the decryption oracle provided
that the queried label and the queried ciphertext are not the challenging ones simultaneously.

Definition A.17 (IND-CCA). PKE is indistinguishable under chosen-ciphertext attack (IND-CCA) if for
every PPT adversary A there exists a negligible function negl (X\) such that

‘Pr [IND-CCAB, e 4 (1*)=1] —Pr[IND-CCAb 4 (1* 1]‘§negl (\)

where the game IND-CCAby A(1%) is defined in Figure 19.

Key-privacy of the public-key encryption is first introduced by Bellare et al. [6], which requires no
PPT adversary viewing a chosen message encrypted under one of two public keys can guess which public
key is used. It implies that the receiver of the ciphertext (i.e., the owner of the public key) is anonymous
from the point of view of the adversary. Key-privacy property is essential for the scenario where identities
are needed to be protected, e.g., anonymous communications and cryptocurrencies. We give the definition
of key privacy for a labeled public-key encryption scheme as below.

Definition A.18 (IK-CCA). PKE is key-private under chosen ciphertext attack (IK-CCA) if for every PPT
adversary A there exists a negligible function negl (A\) such that

’Pr [IK-CCAGe 4 (1%) =1] —Pr[IK-CCAbye 4 (17 1}(gneg| (\)

where the game IK-CCAB, (1Y) is defined in Figure 20.
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IND-CCAPe 4 DecO(,c)

pp < PKE.Setup(1*) if (r,0)=(7",c")

(pk,sk) «+— PKE.KGen(pp) return |
(mogmi )« AP<C(pk)  else

¢* < PKE.Enc(pk,7*,ms) return PKE.Dec(sk,7,c)
b « APeO () endif

return b’

Figure 19: Security game for IND-CCA of PKE.

IK-CCA e 4 DecO(i,7,c)

pp < PKE.Setup(1™) if (1,0)=(7",c")

({pk;,sk; }i—o) <~ PKE.KGen(pp) return L

(m* ,T*) - ADecO (pk07pk1) else

¢* < PKE.Enc(pk,,7*m") return PKE.Dec(sk;,7,c)
b/ <_.ADecO (C*) endif

return b’

Figure 20: Security game for IK-CCA of PKE.

A.5 Homomorphic Commitment Scheme

A commitment scheme allows the sender to commit to a value and later reveal that value to a receiver by showing
the value together with the opening. The receiver is able to verify that this value was indeed contained in the
commitment. A commitment scheme should be hiding that the commitment does not tell anything about the
committed value, and binding that the commitment can only be opened to the value which it was committed to.

Definition A.19 (Commitment). A commitment scheme is a pair HC=(Setup,Com) of algorithms defined
below.

pp < Setup(1}): The setup takes as input the security parameter 1*, and outputs public parameters pp, which
specify a message space M, a randomness space X and a commitment space C.

C<—Comp,(m;r): The commitment algorithm takes as inputs the common reference string pp, a message
meM, and a randomness r € x, and outputs a commitment C €C.

Definition A.20 (Perfect Hiding). A commitment scheme HC= (Setup,Com) is perfectly hiding if for every
PPT adversary A there exists a negligible function negl (\) such that

Pr[Hiding}ic_4(1*)=1] =Pr[Hidingjc_4(1*)=1],
where the game HidinngQA(l)‘) is defined in Figure 21.

Definition A.21 (Computationally Binding). A commitment scheme (Setup,Com) is computationally binding
if for every PPT adversary A there exists a negligible function negl (X) such that

Pr[Bindingc_4(1*)=1] <negl ()
where the game BindingHC’A(lA) is defined in Figure 22.

Suppose that (M,+), (x,+), and (C,) are groups. Then HC is said to be homomorphic if the product of
two commitments is a commitment to the sum of the two committed values.

Definition A.22 (Homomorphic Commitment Scheme). A commitment scheme is homomorphic if for all
pp € Setup(1Y), all mym’ € M and all rr' €

Compp(m~+m/, r+r")=Compp,(m,r)-Comp,(m’r").
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Hidingfc 4(1%)
pp<—Setup(1/\)
(mo,m1) < A(pp)
C < Compp(my)
b+ A(O)

/
return b

Figure 21: Security game for hiding of commitments.

Bindingpic 4 (1%)

pp(—Setup(l’\)

(mo,ro,ma,r1) <. A(pp)
bo :=((mo,ro) # (ma,r1))

b1 := (Compp(mo;ro) = Compp (m1;7r1))

return boAby

Figure 22: Security game for binding of commitments.

B Tracking and Viewing

B.1 Definitions

We extend the model to cover transaction tracking and viewing, which are features supported by some previous
schemes.

Definition B.1 (Extended RingCT). An extended RingCT is a RingCT scheme with a slightly extended
syntaz, where an original account acc is split into an extended form, consisting of an account acc, some
tracking information infotack, and some viewing information infoyiey .

B.1.1 Trackability

CryptoNote [60], the predecessor of RingCT, introduces a feature called tracking. It allows a user to voluntarily
delegate a tracking key to a trusted third party,? so that the latter can track incoming transactions on behalf
of the user. This is particularly useful for a computationally constrained user as tracking incoming transactions
requires monitoring all new messages posted on the public ledger.

Note that the trackability is not meant to work if the delegating user is malicious. Indeed, a user can easily
avoid that incoming transactions are tracked by not delegating the tracking key or simply creating a second
master public key. Tracking also relies on the well-formedness of the account acc in a transaction. As a spend
proof does not necessarily guarantee the well-formedness of the entire account acc while still being considered
valid, a “cheating” spender can easily help the receiver to avoid being tracked.

Definition B.2 (Trackability). An extended RingCT scheme is said to be trackable if the following holds:

1. There exists additionally a tuple of PPT algorithms (TKGen, TKVerify, Track) defined as follows:

tsk<— TKGen(msk): The tracking key generation algorithm inputs a master secret key msk, and outputs
a tracking key tsk.

b+« TKVerify(mpk,tsk): The tracking key verification algorithm inputs a master public key mpk and a
tracking key tsk. It outputs a bit b indicating if tsk is a valid tracking key corresponding to the master
public key mpk.

2Different users can delegate to different third parties.
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b+« Track(tsk,acc,inforiack): The tracking algorithm inputs a tracking key tsk, an account acc, and some
tracking information. It outputs a bit b indicating if acc is an account generated from the master public
key mpk corresponding to tsk.

2. For all \,a,3,€N, all pp€Setup(1*,1%,17), all (mpk,msk) € SAKGen(pp), all tsk € TKGen(msk), it holds
that TKVerify(mpk,tsk)=1.

3. For all \,a,3,€ N, all pp € Setup(1*,1%,1%), all (mpk,tsk) such that TKVerify(mpk,tsk) =1, all a €
{0,...,2571}, all (ck,acc,inforrack,infoview ) € OTAccGen(mpk,a), it holds that Track(tsk,acc,inforrack)=1.

B.1.2 Viewability

RingCT extends the tracking capability such that the designated third party can also learn the amount to
be received in an incoming transaction. Viewability is useful in scenarios where a user wishes to have incoming
transactions to its address audited. For instance, a charity fund may want a third party or even the general
public to audit the amount of donations that it receives, given that the donors are willing to disclose it. To
allow more fine-grained tracking permissions, we call this new feature viewability. Similar to trackability,
viewability is not meant to be a security feature.

Definition B.3 (Viewability). An extended RingCT scheme is said to be viewable if the following holds:

1. There exists additionally a tuple of PPT algorithms (VKGen,VKVerify,View) defined as follows:

vsk<—VKGen(msk): The viewing key generation algorithm inputs a master secret key msk, and outputs
a viewing key vsk.

b<—VKVerify(mpk,vsk): The viewing key verification algorithm inputs a master public key mpk and a
viewing key vsk. It outputs a bit b indicating if vsk is a valid viewing key corresponding to the master
public key mpk.

a < View(vsk,acc,infoview): The view algorithm inputs a viewing key vsk, an account acc, and some
viewing information infoview. It outputs an amount a stored in the account acc.

2. For all \,a,BEN, all pp€Setup(1*,1%,1%), all (mpk,msk) € SAKGen(pp), all vsk € VKGen(msk), it holds
that VKVerify(mpk,vsk) =1.

3. For all \,a,3 € N, all pp € Setup(1*,1%,17), all (mpk,vsk) such that VKVerify(mpk,vsk) = 1, all
a€e {O,...,Qﬁfl }, all (ck,acc,inforyack,infoview ) € OTAccGen(mpk,a), it holds that View(vsk,acc,infoyiew) =a.

B.1.3 On Trackability and Viewability against Malicious Parties

The above definitions for traceability and viewability assume honest spenders and receivers, which is sufficient
for the intended purposes as discussed above. For curiosity, we briefly discuss trackability and viewability
against malicious spenders and receivers, and even trackers and viewers.

From a definitional point of view, defining such notions is not an issue. Indeed, similar notions are
well-known in related primitives, such as the traceability and non-frameability of group signatures [5]. It is
straightforward to adopt these definitions to RingCT.

Any schemes satisfying these strengthened notions however are likely much less efficient than those that
do not. Intuitively, in a scheme which is trackable against malicious receivers, a user should not be able to
spend from an account unless the account can be tracked by the tracker. Consider the following construction
template. The user generates a tracking key and proves that the key is bound to its master public key. To
spend, the user must prove that the source account is associated to some master public key. This convinces
the tracker that the user is only able to spend from accounts that can be tracked. However, notice that the
spender has to prove that the master public key associated to the source account is a member of the set of
all master public keys. This is much more expensive than proving that the source account is a member of
a set of ring accounts, and is against the design philosophy of RingCT.

Lastly, even if the RingCT scheme provides trackability and viewability against malicious parties, the users
can still easily avoid being tracked or viewed by simply creating another master public key.
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Extending syntax of accounts

/ All accounts acc = (pk,co,ek,ck) are now split into acc= (pk,co),
infotrack =€k, and infoyiey =ck.

TKGen(msk) VKGen(msk)

parse msk as (tsk,vsk,z) parse msk as (tsk,vsk,z)
return tsk return vsk
TKVerify(mpk,tsk) VKVerify(mpk,vsk)
parse mpk as (tpk,vpk,X) parse mpk as (tpk,vpk,X)
return SKVerify(tpk,tsk) return SKVerify(vpk,vsk)
Track(tsk,acc,infoTrack) View(vsk,acc,infoview)

return b:=Dec(tsk,acc,inforack) #Z-L  (a,r) < Dec(vsk,acc,infoyiew)
if co=Com(a;r) then return a

else return |

Figure 23: RingCT construction (extensions).

B.2 Extension to Construction
We extend our construction in Section 4 to support tracking and viewing. The descriptions of the algorithms

are in Figure 23.

Extending syntax of accounts All accounts (output of OTAccGen, input to Spend, Receive, and Vf)
acc= (pk,co,ek,ck) are now split into acc= (pk,co), inforrack =€k, and infoyie, =ck.

Tracking key generation Given the master secret key msk the tracking key generation algorithm parses
msk as (tsk,vsk,z) and returns tsk.

Track Given a tracking key tsk, an account acc, and some tracking information infor,c, the tracking
algorithm checks if Dec(tsk,acc,inforack)# L.

Viewing key generation Given the master secret key msk the viewing key generation algorithm parses
msk as (tsk,vsk,xz) and returns vsk.

View Given a viewing key vsk, an account acc, and some viewing information info,iew, the viewing
algorithm checks if Dec(vsk,acc,infoyiew ) = (a,r) # L and returns a if successful.
To prove security in the presence of these additional algorithms we define the oracles Figure 24.

C Security Proofs for ()

We present here the full security analysis of our RingCT construction €2 in Section 4. In addition to the oracles
given in Figure 1 we extend the security games for privacy and non-slanderability by providing the adversary
with the additional oracles described in Figure 24 to model the implications of Tracking and Viewing on security.

C.1 Proof of Theorem 4.2 (Balance)

Proof. First we show that CheckTag is computationally binding. Suppose not, let A be a PPT adversary who
outputs an account acc= (pk,co,ek,ck) and two distinct inputs (sk,tag) and (sk’,tag’) such that both satisfy
the predicate CheckTag. That is, tag= TagEval(sk), tag’ = TagEval(sk’), and pk=TagKGen(sk) =TagKGen(sk').
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InitOracles() VKGenO(k)

/ In addition to the original InitOracles()... / Reveal viewing key of an honest user
/ Initialize sets vsk <— VKGen(MSK]k])
Tracked := Viewed := TKRevealed := VKRevealed := () VKRevealed :=VKRevealedU {k}

return vsk

TKGenO(k)

ViewO(k,acc,infoy;
/ Reveal tracking key of an honest user ( ) ? VIEW)

tsk «— TKGen(MSK[E]) / Instruct (auditor of) user k view amount of account acc
TKRevealed := TKRevealedU {k} vsk:=VKGen(MSK[k])
return tsk a < View(vsk,acc)

Viewed := ViewedU{ (k,acc,infoview) }
TrackO(k,acc,infoTrack) return a

/ Instruct (auditor of) user k to track acc
tsk := TKGen(MSK[k])

b« Track(tsk,acc)

Tracked := Tracked U{ (k,acc,infotrack) }

return b

Figure 24: Oracles for track and view.

From the last relation, we must have sk=sk’ since TagKGen is bijective. It then follows that tag=tag’ since
TagEval is deterministic. We therefore have (sk,tag) = (sk’,tag’) which is a contradiction.

Next we show that CheckAmount is computationally binding. Suppose not, let A be a PPT adversary who out-
puts an account acc= (pk,co,ek,ck) and two distinct inputs (ck,a) and (ck’,a’) such that both satisfy the predicate
CheckAmount. That is, co=Com(a;ck)=Com(a’;ck’). This directly contradicts with the binding property of HC.

We then construct an extractor £ given any PPT adversary A which outputs (tx,0) such that Vf(tx,0)=1
with non-negligible probability. By extractability of the SoK, there exists an efficient extraction algorithm
SoK.£ 4 which extracts a witness wit for the statement stmt=stmt(tx) with overwhelming probability. Parse

stmt and wit as IR| s IT1
stmt:( {accf} ", {tag, 112, {accz—}izl)
) . 1S 71
wit= ( {(]iaxivaisvrf)}izl’ {(af,rf)}i:J
171

|
, and T = {(ck?,af,acc?)} . Clearly

o RIRI - .S s s
and let R = {acc] }7221’ S = 1{(jicks ,af sk;tag;)

i=1

tx=tx(R,S,T,u). Furthermore, we have the following relations:

pk;-f =TagKGen(x;)
Vi€ (S]], § co¥=Com(af;ry)

tag; = TagEval(z;)
co] =Com(a] ;7
al € {0,...2°-1}

IS I

i€[|S[] €| 7]

vie [T, {

This implies the following:
o YVic]|S]], CheckTag(acc;f,ski,tagi) =1
o Vie[|S]], CheckAmount(acczf,ckf,af) =1

e Vie[|T]], CheckAmount(acc? ,ck! a7 )=1
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Privacy?lyA(lA,la,lﬁ)
pp  Setup(1*,1%,1%), InitOracles()
0:= {SAKGenO,TKGenO,VKGenO,SpendO, TrackO,ViewO }
(IJRS,T ) = A° (pp)
Sp:=81:=8, To:=T1:=T
/ Preparing honest spenders as instructed by adversary
parse [ as {(si,{jt,i,accii}%zo)}
for i€[|I]] do

for t€{0,1} do

11

=1

S S S . S . S . S
(th,i ,sktvi,at7i,tagt1i,mfoTrack_’t’i,mfoViewvt’i) ::TryRecelve(acctvi)

. s
R[je,i] :=accy;
) S S s
Stlsi]i=(Jt,i,cky 15Ky 1,0y 4:tag ;)
endfor

if tag, ; #tag; ; A{tagg ;,tag; ; }NSpent#( then return 0
endfor

/ Preparing honest receivers as instructed by adversary
T T 11
parse J as {(dj,{kt’j,atvj}tlzo)}
for j€[|J|] do
for t€{0,1} do

(cki j,ace] ;infod g 4 3 sinfov, ¢ ;) :=0TAccGen(MPK[k/] 1.0/ ;)

j=1

Teld;) = (ckzj 7‘12,-3‘ ,acczj ,info-?-:ackrtj ,info?,?ew’tyj)
endfor
endfor
for t€{0,1} do
txt :=tx(R,St, Tt 1b)
ot < Spend(R,S¢, T, 1)
if Vf(tx¢,04)=0 then return 0
endfor

bo %AO(D(I,,D'[,)

by = ((TKReveaIeduVKRevealed)ﬂ {k{j te{0,1},5€7]] } :(z))
by = (Trackedﬁ {(kzj,accgjj,infoz:ackybvj) :te{0,1},5€(|J]] } :(D)

b= (Viewedﬁ {(k,z] ,acc;r_’jtinfo\?ew,bvj) :t€{0,1},5€(|J]] } :@>

return bg Abj; Abs Abs

Figure 25: Privacy experiment (with tracking and viewing)

Furthermore, since a] € {0,...,2° =1} for all i€ [|T|], [T]<2%, and {0,....2°"P -1} C M, Eie[m]az‘T has the
same value when interpreted as an element in M and as an element in Z. On the other hand, for each i€]|S]],
the value of af when interpreted as an element in Z must be greater than that when interpreted as an element
in M. Therefore Zie[‘suafzzie“ﬂ}az— (in M) implies Zie“suaf ZZie“THaZ— (in Z).

Now, for any PPT adversary A, let £€=S0K.E4. By the analysis above, it must hold that

Pr[BaIanceQ,A,gA(1)‘,1“,1[’) =1] <negl ().

C.2 Proof of Theorem 4.3 (Privacy)
We extend the privacy game from Figure 3 to include viewing and tracing.

Proof. We give a brief intuition of the proof.
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Intuition We prove by hybrid arguments. To give some intuition as to how we progress through the hybrids:
We start off in the real experiment for Privacy& 4 Where the challenge bit b is set to 0. This means that the
challenge spend proof given to the adversary is associated with the keys from the sets Sy and Ty (remember,
two sets of source accounts Sy and S; with |Sp| = |S1| and target accounts Ty and 77 with |7o| =|7T1| were
specified by the adversary). We then transition through four hybrids where in the end the spend proof is
independent of the sets Sp and 7, while the tags are generated corresponding to the keys in Sy.

We now begin switching the target accounts from being associated with the set 7p to the set
Ti- We can do this without worrying about the spending keys because the spending keys are al-
ready delinked from the tags and are independent from the target accounts. After a sequence of
hybrids we will completely switch to having the target accounts as being associated with set 7;.
Now we switch the spend proof from being simulated to being honestly generated from (S, 77).
With this we finally end up with a hybrid that is identical to the real experiment for Privacy%zﬁ A
where the challenge bit b is set to 1. Proving the indistinguishability of the successive hybrids
results in proving indistinguishability in the theorem. We define the hybrid experiments as fol-
lows:

Definition of main hybrid experiments We define experiments as follows:

Hyb, is identical to the privacy experiment Privacy& A

Hyb, differs from Hyb, in the way the signature o is generated whenever the Spend algorithm is
executed (both in the spend oracle and the challenge selection). Instead of using SoKSig, the
challenger computes ¢ using the simulator S that is guaranteed to exist by the simulatability of

SoK.

Note that in Hyb, the only information about b available to the adversary is the transaction

IR S
txo= ( {accF by {tago; }Lzll,

[T]
T T C e T
{aCCO,i7|nf°Track,O,i7mfoView,0,i} . 17# .

=

The proof og does not give any extra information as it is computed from stmt(txg). In the following hybrids,
we gradually switch

Tl
S| T e T P !
{tago,i };~, and §accy ;,infoqpac 0.i5iNfOview 0. ¢ . .
i=
to
Tl
S| T e T Lo T !
{tagl,i}izl and accl,i7'nfoTrack,l,iameView,l,i =1
i=
respectively.

Hyb, differs from Hyb, in the way the proof is simulated. The proof is now simulated from

Tl
R IR S T T A |

( {acci }i:p {tag,i }L:‘p {acco,i7'nfoTrack,O,i’mfoView,O,i 1—1’“
instead of from

Tl
RAIRI |S| T e T T \
({acci }i:p {tago,i }7;:1? aCCO,iaInfOTrack,O,i7'nfOView,O,i 1a# .

Hyb, differs from Hyb; in the way the proof is simulated. The proof is now simulated from

Tl
R IRI || T T T '
< {acci }i:p {tag17i }Z‘:l’ accl,i7'nfOTrack,l,iameView,l,i 717.[1

1=
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instead of from
[T

RAIRI S| T o e T C T
({acci }i:p{tagl,i}i:p aCCO,iaInfOTrack,O,i7'nfOView,0,i 1a# .

=
Hyb; differs from Hyb, in the way the signature o is generated whenever the Spend algorithm is executed
(both in the spend oracle and the challenge selection). Instead of using the simulator S of SoK, the challenger
computes o using SoKSig. Note that this hybrid is identical to the privacy experiment Privacy?l 4 With
b=1.

Proving indistinguishability of hybrids The proof proceeds as follows.

Hyb; =Hyb, The equivalence of Hyb, and Hyb, follows directly from the perfect simulatability of the signature
of knowledge SoK.

Hyb, ~. Hyb; To show the indistinguishability between Hyb, and Hybs; we build a series of |S|+1 sub-hybrids
with Hyb, =Hyb, 4 and Hybs =Hyb, 5. In Hyb, ,, The proof is now simulated from

RAIRI ¢ S|
{acci }i:p {tagy, };_, U {tago; %‘,\:HN
T e T e T
{aCCo,i7'”fOTrack,mia'nfOView@,i} 1’”

1=

It remains to show that Hyb, , ; ~. Hyb,y ,. Note that at every point in the experiment TagEval is called
with a randomly chosen input of the form x+s, where s is an output of the random oracle. Therefore we
can use the related-input pseudorandomness of the tag function as defined in Definition 4.1 to argue that
tago¢ and tag; ¢ are both indistinguishable from a random tag in %, and hence indistinguishable from each
other.

Hybs ~.Hyb, To show the indistinguishability between Hybs and Hyb, we build a series of | 7|41 sub-hybrids
with Hybs =Hybs 4 and Hyb, =Hybs ;7. In Hyb; ,, The proof is now simulated from

R
{accF }Lzlp {tagi; 1),

¢
{accl,iﬂ'nfoTrack,l,i7mfoView,1,i A_IU .
17T

T T s T
{aCCO,i7'nfoTrack,O,z"meView,O,i i*ZJrl"LL

It remains to show that Hybs ,_; ~.Hyb; ,. For this we define 4 sub-hybrids with Hybs ,_; =Hyb; , ; ; and
Hybs ,=Hybs ;4 3. In Hybs ,_; ;, the proof is simulated from

T oo T o T
(accl,i7'nfoTrack,O,i7mfoView,0A,i)'
In Hybs ;_ 5, the proof is simulated from
T e T LT
(accl,iaInfoTrack,l,i7mfoView,O,i)'
In Hybs ,_; 3, the proof is simulated from
N e T
(accl,ivmfoTrack,l,i7'nfOView,1,i)'
Recall that acc], and acc], are of the form

T 0T T
acCy = (Pko,bcoo,e),

accﬂ = (pk{l,cofg).

Clearly, pkOT’Z and pk& are identically distributed. Moreover, since HC is perfectly hiding, cooTyl and cofé are
also identically distributed. Therefore Hybs ,_; o=Hybs ;1 ;.
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Next we argue that Hybs ,_; ; ~.Hybs ,_ 5. Note that in Hybs ,_; 1, info?,ack’o’i is of the form
info%ack,oﬂ- — PKE.Enc(tpkO,(ka,coﬂ),eko)
for some tpk, and ekg. In Hybs ,_; 5, infofTrraCkJ’i is of the form
info] . 1. < PKE.Enc(tpky,(pk] ,,cof ;).eki)

for some tpk; and ek;. Note that by the definition of the privacy experiment, the adversary cannot
succeed if it requests for the keys tsky or tsk;, or queries the tracking oracle on ((pka,coze),info%—rack’o’i)
or ((pkfg,cofgLinfogack)lﬁi). We can thus use the IK-CCA and IND-CCA security of PKE to show that
Hybs s 1.1 ~cHybs o1 5.

The argument for Hybs ,_; 5~ Hybs ;,_; 5 is similar to that for Hybs ,_; ; ~-Hybs ,_; 5, except that now the
adversary might be able to learn the amount hidden in co{z using the ViewO oracle. To do so, the adversary could
query the ViewQO oracle on ((pk,co@),c) for some pk and c. If the oracle outputs some a=£ |, then the adversary
could learn the amount hidden in coﬂ. We argue that this would only happen with negligible probability.

Note that since HC is perfectly hiding, cofg contains no information about the amount that is committed.
Therefore the probability that the ViewO oracle outputs the “correct” amount is negligible. Suppose the oracle
outputs a different amount than what is committed, then the oracle would have obtained a different opening
to co{z which breaks the binding property of HC. We can therefore conclude that the ViewQO oracle outputs
1 on such inputs with overwhelming probability.

Hyb, =Hyby The equivalence of Hyb, and Hyb; follows directly from the perfect simulatability of the signature
of knowledge SoK. O

C.3 Proof of Theorem 4.4 (Non-slanderability)

We extend the non-slanderability game in Figure 4 to the one in Figure 26 which includes viewing and tracing.

NSlandg, 4(1*,1%,17)

pp < Setup(1*,1%,17), InitOracles()
) ¢ ASAKGENO SpendO, TKGenO VKGen©

(", (pp)

% R~ IR |S| T . T T [eal
parse tx as ( {acci }7%17 {tag; };2, {acci 7|m‘o-|-rackyi,lnfoVieWJ’} l,p

bo :=Vf(tx*,0™)
b= ((tx",0") €%)
b= ( {tag; }Li‘l ﬂSpent;ﬁ@)

return bg Abj Abo

Figure 26: Non-slanderability experiment (with tracking and viewing).

Proof. We prove by hybrid arguments. Consider a PPT adversary A who participates in the experiment
NSlandg, (12, 1918). Without loss of generality, we assume that A makes at most gn, ga, and gg
queries to the H oracle, SAKGenO oracle, and SpendQ oracle respectively. We define a hybrid experiment
NSIand/Q’A(l)‘,l“,lB) as follows:

NSIand,Q’A(l’\,la,lﬂ) differs from NSlandg, 4(1*, 1%, 1°) in the way the SpendO behaves. In
NSIand,Q’A(l’\, 19, 19), after running the line tx := tx(R,S, T, p) and stmt = stmt(tx), the challenger

runs the simulator & (which is guaranteed to exist by the simulatability property of SoK) to obtain o.
We argue that the two hybrid experiments are functionally identical, i.e., NSlandg, A1 1918 =

NSIand/Q’ A(V‘,l“,lﬁ ), which follows directly from the simulatability property of SoK.
Now, we show that if there exists a PPT adversary A such that

Pr|NSland, 4(1*,1%,17) :1} > %
’ P
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for some polynomial p, then we can construct another PPT adversary B that can find a pre-impage of Tag
with non-negligible probability thus breaking the OneWay property of Tag.

The algorithm B simulates the NSIand;l A(12,1%.17) experiment for A by generating pp<Q.Setup(1*) and
simulating the oracles in the following way: B guesses an index k* € [g4] such that user k* will be slandered
and answers oracle queries as follows.

H oracle When the adversary queries with a master public key mpk and an ephemeral key ek as inputs for
the j-th time, B queries TagO,() and receives (s;,TagEval(z+s;)). B programs H(mpk,ek) :=s; and returns
s;. Since we assume that A only queries H at most gy times, we have that j € [gn].

SAKGenO oracle When the adversary queries the SAKGenO oracle for the k-th time, if k£ k*, B generates
the keys for the k-th user by running SAKGen algorithm honestly. If k = k*, it generates vpk,vsk,tsk,tpk
honestly, and set pk:=X which is received from the OneWay challenger.

Spending oracle To simulate a spend proof, B needs to get hold of the transaction description of the form

-
tx= ( {aCCZz }LZL {tago,i }‘zilp {aCCZainfo',{';ack,iainfozl—iew,i }i_!vﬂ)
While most information of the transaction are provided by the adversary A explicitly, B has to compute the
tags {tago, }L‘i‘l and the corresponding source accounts based on the instruction I provided by A. Towards
this end, for each tuple (s;,j;,acc;) €I, B runs Receive on acc; with each master secret key, except for that of
user k*. For the user k¥, it uses the viewing and tracking key to check the validity of acc;, and if it is valid with
respect to those keys, it generates the tag by querying the tagging oracle provided by the OneWay challenger.
With the description of the transaction, B can simulate the responses to the SpendO queries honestly as
in NSIand/QyA(l’\,la,1'@)7 since SoK is simulatable.
A eventually outputs a slander (tx*,0*). B parses tx* as

IR| . [T
( {accza }1:1’ {tag; }gp {(accf,mfoi) }izl,;L).
Since NSIand’Q’A(lk,1‘)‘,15)=17 we know that SoKVf(stmt*,0*tx*)=1 and

Jtag;. € ( {tag; }LillﬁSpentyé @)7

where stmt* =stmt(tx*).
B exploits the PPT extractor £ of SoK to extract a witness wit* for the statement stmt*. Parse wit* as

. S . . . . .
( {(ji,xi,a‘f ) }‘ | {(aT r7) }ZD Since tag;. € Spent, it must be the case that in a previous received oracle

i=1 W\ o'
query on some account acc’ and help information info’, the algorithm computes the tag tag’ where tag,. =tag’.
If B has guessed correctly that tag’ was generated by user k*, then tag’ was set as tag’ =TagEval(x+s*) where
s* =H(mpk,ek’) for some ek’. B then simply outputs z; as a pre-image of Tag.
Note that B has at least 1/q4 probability of guessing k* correctly, and the extractability property of
SoK guarantees that R(stmt*,wit*) =1 with non-negligible probability. So z;« is a pre-image of Tag with
non-negligible probability, which violates the security of Tag from Definition 4.1. O

D Security Proofs for Argument of Knowledge Construction

We present the formal security proofs of the argument of knowledge construction in Section 5.

D.1 Proof of Theorem 5.1 (Zero-Knowledge)

Proof. By inspection, V is public-coin and IT consists of 8 rounds. IT is also trivially perfectly complete. Next,
we show that II is perfect special honest-verifier zero-knowledge by constructing an efficient simulator S.
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Let stmt= (R,GR,T,GT) and the verifier public coin (F,fﬂé’,ﬁ,u,v,w,&y,z) be provided by A. Recall
that S computes Y7 T, and G, as in II. That is,

Y:ﬁoé%
Tu2o!S|

T=T
G =((G|H|T|[Y)*"oP||G')

S then samples A, 15 <G, 7,7 +sZ,, and Z? <sZq'. It computes t = (T,?) It then computes S and T}
as follows:

S= (F—7'Aég—7ﬁ8—60710?)—1/z
ITQgcz)71/m

|7

T = (Gé(y,z)ftHf'ré,Z;'fl

Finally, S outputs (A,S,11,T: g,T,r,T,?,t).
Since all elements produced by S and those produced by II are either independently randomly distributed
or fully determined by the verification equations, they are identically distributed. O

D.2 Proof of Theorem 5.2 (Soundness)

To prove that II is sound, or more precisely has extended-witness emulation, we first state some useful lemmas
(Lemma 1 and Lemma 2). We establish the following notation.

For ¢ € {L,R}, let ¥ = (Vi1,%i,2%i,3) Vids - Vi9) € Zy* be variable vectors of the same format as ¢;,
L IR Rl - RIS T o~ - S _
i€, Yi1,7i,2,7i,3 € Ly Via € Z‘q ; Vi € Z‘q s, Vi € Z?' ) Va7 Vi8Y4i,0 € Z‘q |, and ¥i5 = vec(I';) and
7i6=vec(A;) for some matrices I'; GZ!ZS‘XW and A; GZ‘qﬂXﬁ.

We define a system of constraints CS=CS[a” ,u,v] parameterized by as,u,v as follows:

CS(V1,Yr)=0 =

(VL57L,6)° (TR TR6) = O RISHAIT] (14)
VR,9 272,}1 (15)
A28 =a’ (16)
FLT|R| =118l (17)
VL1 =—(0luA L7 +u? A Ro) (18)
VL2 =— (0181 7 9+u-FLg) (19)
VL4 LY (20)
(11 71.7) =117A,2° (21)
(YRr5YR6) =YL L6)— LRISHAITI (22)
VL3 =1 (23)

Lemma 1. Fiz ¢>2*, a’ € ZLTI, u,v € Zy. Suppose there exists Y1, Yr € Zy' such that, for [R||S|+B[T]
different values of y we have EQ(71,7r)=0, then CS(¥1,7r)=0.

Proof. Since EQ(7L,7r) =0 for [R||S|+ 3|7 different values of y, then the following polynomials (in y) of
degree at most |R||S|+3|T|—1 each has |R||S|+8|T| different roots and therefore must be all equal to the
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zero polynomial. These polynomials are:

(Frs571.6)°0(TRs,TR6) T ISHATH =0 by Eq (5)
(Fr9oTR9)— 115151y =0 by Eq (6)
(77 (AL2P—aT))=0 by Eq (7)
(Yp3—1)y!SI (T TR =118 315l =0 by Eq (3)
Vit (Vo u ) +(Frou® 1) =0 by Eq (9)
Y2+ (T Lew v+ (710,05 =0 by Eq (10)
@®IT L —714,5R) =0 by Eq (11)
T7TIAL 28— (118 5, ) =0 by Eq (12)
(Tr.5:72.6)~ (Trs T re) — LRISHATLgIRISIHATT —0 by Eq (13)

By comparing coefficients, we conclude that CS(¥,5g)=0. O
The following is obtained by observing the system CS.
Lemma 2. If CS(71,7r)=0, then:
e Each row of T'p, is a unit vector of length |R].
e The i-row of Ay is the length-B binary representation of a] .
o <T|S"7L,7>:Zie[m]af~
Using the above lemmas, we now prove that II has witness-extended emulation.

Proof. (Theorem 5.2) Assuming the discrete logarithm assumption holds over G, by Theorem A.6, the
interactive discrete logarithm assumption (as defined in Definition A.5) also holds over G. The following is
a straightforward corollary of Theorem A.6.

Corollary 1. If there exists a PPT adversary A which does the following:

1. On input (G,q,G,H), choose vector of group elements (T||X) and an integer w.

2. Receive a uniformly random vector of group elements (F||P||G/|[H) of appropriate dimensions.

3. Produce a non-zero integer vector (r||a||b) such that I:Frééwﬁf’, where G, = (G| H||T|[Y)“oP||G).
then there exists a PPT algorithm solving the discrete logarithm problem over G.

Proof. Suppose A exists, we construct an adversary B against the interactive discrete logarithm assumption.

B receives (G,q,G) and samples a random group element H. It passes (G,q,G,H) to A, and receives from

the latter a vector of group elements (T ||Y) and an integer w. B then sends to its challenger the vector

(G||H||T|[Y), and receives from the latter a uniformly random vector of group elements (h||P|G’||H). B

simply forwards (h||P||G/||H) to A, and receives a non-zero integer vector (r||a|/b) such that I=F" G2 HP.
Let a=(aj,a2) be of the appropriate dimensions. We can thus write

I=(G||H|[T|[Y)" (]| P||G/||E) 1212

Since (r||a||b) is non-zero, (w-§1||r||§||BLis a valid solution to the interactive discrete logarithm problem
instance. B therefore outputs (w-a||r||a||b). O

With the above corollary, we can proceed to construct an extractor. Let pp < Setup(1*, L) and
(stmt,wit) < As(pp). We construct an extractor £ which, on input pp and stmt, outputs a transcript and, if
the transcript is accepting, a witness wit’ to the statement stmt. It is trivial for £ to produce a transcript
which is indistinguishable to that produced by (P*(pp,stmt,wit),V(pp,stmt)) for any prover P* as & is given

40



an oracle O = (P*(pp,stmt,wit),V(pp,stmt)). We thus focus on describing how £ can extract a witness wit’
in the case where the transcript is accepting.

& runs P* on 1 uniformly random chosen (u,v), 2 different values of w, |R||S|+ 3|T| different values of
y, 9 different values of z, 3 different values of 2. This results in 54(|R||S|+8|T|) transcripts. Fix a particular
choice of (w,y,z), £ obtains three transcripts of the form (A,S,Tl,TQ,TI“Tz”TIi,?xi ;) for i=1,2.3. Below,
we show how the extractor can extract the discrete logarithm representations of A, .S, T1, and T5.

Extracting A Choose k;—1 2 € Z, such that Zi:1,2"€i =1 and Zi:l,zﬁimi =0. This leads to the extraction
of A by Equation (3) as
A_FZlemrIi GZ?:U‘%'?II'76‘1?12?:1111’@0’10?” -3
- w
— PGS

Note that 774, €/, and €, depend on w. To obtain a discrete logarithm representation which is independent
of w, &€ repeats the above for the other choice of w, which we denote by w’. With this additional transcript

the extractor can extract A as F' 4 éff, H". Note that we now have two (possibly different) representations
of A. Write €7, = (€7, ,[[€], 5) and €] =(<€7 ,|[€7 ,) with appropriate dimensions. We have

S B

'y AT it 7L T c
FA GO H R = FAGS H

1= 7 (G H Ty = S (B )P i

We can assume 7";4 =", €}, =¢" and €/, =¢'%. Suppose not, since (F|P||G’|/H) is chosen uniformly after
fixing (G||H||T|[Y), we would have an efficient algorithm against interactive discrete logarithm assumption.
Note that w#w'. Let €7 ; =(¢'||n’[|¢']|€’). We can obtain the following relations:

I=(GH|T|[Y)" ") e

I=(G[H|[ (1Y)

I=GSH"TY'Y¥ (24)

Extracting S Similar to the extraction of A, £ can extract S from Equation (3) by sampling some k;=1,2
with >, ori=0and }_,_, ,rz;=1. This leads to

2 . $2 f’ ) 2 Z01 = ’ —7 —7
S:thlﬁﬂmi(}%z:l“il% HXiz1mib° ofe;, . s éqSULITISR.

Note that for fixed w, the above expressions of A and S hold for all choices of (x,y,z), for otherwise we would
obtain a non-trivial discrete logarithm representation base (h||G.,||H), which violates the discrete logarithm
assumption due to Corollary 1.

Putting the expressions of A and S back into Equation (3), it follows that for all challenges (x,y,2)

1, =¢)+0°To(@-D)+8,

7, =00(Ch+5R2)+

or otherwise we would have obtained a non-trivial representation of the identity element base (h”éwHﬁ),
and thus violated the discrete logarithm assumption due to Corollary 1.

Extracting 77 and 7> To extract 77, the extractor chooses k;—1 23+ Z, with Z?:l"fi =0, Z?Zlﬁixi: 1
and Z?leiiil}% =0. Together with Equation (4) we have

3 3
T :Gzizl"it% Hzizl"'ﬂwi = thl HT{ .
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Similarly, by choosing xj_; 5 5 = Z, with S k=0, wai=0and 320 ka2 =1 and Equation (4)
we have

3 3
T, :GZi:lK’;tii sz‘:l”;“’i :;thzHTé.

Note that the above expressions of T and 75 hold for all challenge z, or otherwise we would have obtained
a non-trivial discrete logarithm representation of the identity element base (G||H) which directly violates
the discrete logarithm assumption.

Extracting éT Fix a certain choice of (y,z). By putting the representations of 77 and T5 back
ol T
to Equation (4), the extractor can find some (a,r) with G*H" =C¥ . Repeating this for |7 different y,
and using the technique similar to that for extracting A, S, T1, and T5, £ can extract (aZTI,rZT /) such that
T _cal el - ~ o w5l — (T 1ol 7 — (T T
co/ =G% H" for all i€][|T]]. In the following, we write =(aj [l.-[lajg) and T" = (r{ .- |lr/7)-
Note that the above expressions of coiT hold for all challenges (z,y,z), for otherwise we would obtain a non-
trivial discrete logarithm representation base (G| H), which directly violates the discrete logarithm assumption.

Outputting Witness Write €/ as
€= (€9 [[vec(B) |vec(B) [ || %),
Together with the vectors a’’ and ¥7 ' extracted above, £ outputs the witness
wit' = (E',i’,as’,fs/,B’,ﬁT’,fT/).
Showing Well-Formedness It remains to show that ¢/, (and ¢’) are well-formed, and hence wit’ is a
valid witness to stmt. Putting the expression of C7 back to Equation (4), we have
t=22.@7T g +5+t| a+tha?

for all challenges (z,y,z), or we would have a discrete logarithm relation between G and H. Assume the
following equations hold:

We have that for each choice of (y,z) the quadratic polynomial
2
> HX—1(X)
i=0

has at least three distinct roots and therefore is the zero polynomial. In particular, for all (y,z) it holds that
t,=t'(0). Examining both sides of the equation, we have
th=z2@&" jlTh+s
=2 (T8, gl8) 22 (@7 51Tl 22 (T glSHY 4 (@) 4+ (T ),

and
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The above implies that
21181 glSh 422 @7 glTl) +23. (11511 ISt

=(€7,00€R)+((€L,C) +(Cp®)) +(c—cr—1"7)
1 7

—Zz ¢’ ,crovy) +Zz ¢ Vi) 2 e uy) +28(E) — - 17 ).
=2

Since the above holds for 9 different values of z, the system of equations EQ[57/7u,v,y](6’L,6’R) as defined
=/ =/

in Figure 11 is satisfied for |R||S|+3|T| different values of y. By Lemma 1, we have CS[a”",u,v](€},€%)=0.
Then from the definition of CS[QT/,U,U], and by Lemma 2, the following conditions must hold:

e Each row of E’ is a unit vector of length |R.

e The ¢-th row of B’ is the length-3 binary representation of aZ—/.

/ !
* Diciisnt = e -

Furthermore, let vec(E’):(e’l,...,éiS‘), we can write

g=—@w"ua 8 2. D)
' =—(01 % +u- 1)
=1

&¢=vI5E' = Y " vl

e[|l
By Equation (24), we have
I=GEH"TV'Y®

— - a0 = (@19 K Htagi o
Le[|S]]

(f{oé%‘)zfensu”zfl'é?

:Hc;—<a “Hg< )

2€[|8)] Le[|S]]

H H*(ml yof~t H Hf(r w1 H tag

Le(ls|] Le(ls|] Lefls]

IT @ [T @™
Le|sl] L[Sl
_ H (H—:cg’ﬁé@)v
e[lS|]
II @ a
Le|sl]

[T 67 g™

Le(ls|]

2[1

£—1

£—1

£—1

The last equality can be viewed as an evaluation of a degree-(|S|41) polynomial (in the exponent) at a random
point (u,v) to zero. By the Schwartz—Zippel lemma, the probability that this happens when the polynomial

is non-zero is bounded by |5|+ which is negligible given ¢>2*. We can therefore assume that the polynomial
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is always zero. That is, for all £€[|S|], the following equations hold:

Réz — HIZ
¢y - al'm
tag, = G/
To conclude, wit" extracted by &€ is indeed a valid witness corresponding to stmt. O

E Detailed Instantiation

We describe the details of the instantiation mentioned in Section 4.4.

E.1 Tag Function

We instantiate the tagging scheme Tag = (TagSetup, TagKGen, TagEval) as (G, q,G, H) < TagSetup(1*),
TagKGen(z):= H?, and TagEval(z):=Gx.

Theorem E.1. If the general discrete logarithm assumption and the strong decisional Diffie-Hellman inversion
assumption hold over G = (G,q,G), then the tagging scheme Tag instantiated as above is a secure tagging
scheme according to Definition 4.1.

Proof. We prove related-input one-wayness and related-input pseudorandomness separately.

Related-input one-wayness Suppose Tag is not related-input one-way, let A be a PPT adversary for which
Pr[OneWay 4(1*)=1] > negl (A),

i.e. A can guess a preimage for TagEval(x+s*). Without loss of generality, we assume .4 makes at most
£—1 queries to the oracle TagQ,. We construct an adversary B against /-DL from Definition A.1 with input
(G,q,G,...,Gﬁ) as follows:

e Sample a,5,51,...,8—1 < Zjq.

e Denote symbolically the polynomial

-1 £
p(X)=(X+s) ][ [(X+5:)=> _a:X".
=1 =1

Set T:=GPX) = Qe+ LS (e+s) | fT.—Ge,

Set pp=(G,q,T,H), pk* :=(G*)*, and tag* —T# . Note that

@+ ] (t5y)

1
Toer =G @t

Run A on (pp,pk*,s*,tag*). Note that since GG’”,...,G“’Z are not given to A, pp generated this way
has the same distribution as those generated using Setup.

_1
On the j-th query to TagO, return T'**% . Note that

(@+55)I1EZ] (+57)

1
T+ =G (@+s5)

e Eventually, A returns 2/. B outputs x=1"—s*.

With non-negligible probability, A is successful in breaking the related-input one-wayness of Tag, i.e.,
2/ =x+s*. Then, with the same non-negligible probability, B recovers x correctly and solve the ¢-DL instance,
violating the parametrized discrete logarithm assumption.
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Related-input pseudorandommness Suppose Tag is not related-input pseudorandom, let A be a
PPT adversary for which

[Pr[PRY(1%) = 1] ~Pr[PRL4 (1) =1] | > negl (1)

holds, i.e. it can distinguish Tag(z+s*) from a random value y; +sG given s*.
We construct an adversary I3 against SDDHI from Definition A.3, which uses A as follows:

e On input (G,q,G,G*) sample s*<«Z, and output s* to get a challenge y.

o Sample a<Z,, set pp=(G,q,G,G*), and run A on (pp,(G*)%,s*,yp).

o Upon receiving a query to TagO,, from A, sample s<Z, and return (s,0,(s)).
e Eventually, A outputs ¥ which is also output by B.

Note that if B is participating in SDDHIOB, then it simulates the environment of PR?L‘ perfectly. Likewise, if B is
participating in SDDHIIB, then it simulates the environment of PR}4 perfectly. Furthermore, with overwhelming
probability, we have s s*. Therefore, for each b€ {0,1}, the probability that B outputs 1 in SDDHI% is
negligibly close to that of 4 outputting 1 in PR}L‘. Hence,

’Pr[SDDHI%(G,qG) —1]—Pr[SDDHI}(G,q,G) =1] ‘ > negl (M)

which violates the SDDHI assumption. O

E.2 Homomorphic Commitments

The Pedersen commitment [47] can commit to a vector of messages m= (my,...,my,) €Zy by picking group
elements Gi,...,Gy, <G and computing Comp,(m;r):=H" [} GI"". The Pedersen commitment is naturally
homomorphic. This commitment scheme is perfectly hiding, and it is computationally binding under the
discrete logarithm assumption.

E.3 Labeled Public-Key Encryption

The Elliptic Curve Integrated Encryption Scheme (ECIES) [54] is a practical hybrid encryption scheme on
elliptic curves. We provide below an abstract description of a labeled variant over generic groups. Below,
let H:{0,1}*—{0,1}?* be a hash function modeled as a random oracle, and let SKE and MAC be a symmetric
key encryption scheme and a message authentication code scheme respectively both with key space {0,1}*.

Setup(1*): The setup algorithm takes as input the security parameter 1*and outputs public parameters pp
consisting of a description of a cyclic group G of order g together with a group elements G €G.

KGen(pp): The key generation algorithm takes as input the public parameters pp. It samples « < Z; and
computes H:=G*. Then H is the public key pk and z is the secret key sk.

Enc(pk,r,m): The encryption algorithm takes as inputs the public key pk, a label 7, and a message m € G.
It samples 7 < Zq and computes R:=G", P:=H", (skskg,Skmac) = H(P,7), e <= SKE.Enc(skgyg,m), and
0+ MAC.Sig(skyac,¢). The ciphertext is then c:=(R,e,0).

Dec(sk,7,c): The decryption algorithm takes as input the secret key sk, a label 7, and a ciphertext c¢. It
computes P := R* and (skskg,Skmac) := H(P,7), and checks if MAC.Vf(skyac.€,0) = 1. If so, it outputs
m:=SKE.Dec(skgyg,e). Otherwise, it outputs L.

It is well-known that if the GapDH assumption (Definition A.2) holds in G, SKE is IND-CPA and MAC
is a strongly unforgeable MAC, then ECIES is IND-CCA in the random oracle model [18, 54]; this can easily
be extended to key-privacy (IK-CCA [6]).
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F Adaption to Monero

Our RingCT scheme Omniring presented in the body of the paper is incompatible with Monero due to
the difference in the formats of tags. In Omniring, the tag for an account with public key pk=H?" is given
by tag= G= . On the other hand, the corresponding tag in Monero would be tag=H(pk)* for some hash
function H. If Monero were to adopt Omniring while keeping the current set of unspent transaction outputs,
a spender who has already spent from an account with tag=H(pk)* would be able to spend from that account
again using a transaction with tag:G’J_l7 which would wrongly not be rejected as a double-spend.

To resolve this issue and make Omniring usable in Monero, we describe slight changes to the instantiations
of the tagging scheme and the argument system, which ensure that tags have the same format as those
currently used in Monero.

F.1 Tagging Scheme

The tagging scheme Tag, = (TagSetup,, TagKGeny,, TagEval,) in Monero is as follows. TagSetup,, chooses a
hash function H: G— G (modeled as a random oracle) which maps group elements to group elements, and
a group element H which is shared with the commitment scheme. On input = €Z,, TagKGen,, outputs H”.
On input z €Z,, TagEval,, outputs H(H?")®.

We show that Tag satisfies (related-input) one-waynesss and pseudorandomness.

Theorem F.1. If the discrete logarithm assumption holds over G=(G,q,G), then the tagging scheme Tag,,
instantiated as in Monero is a secure tagging scheme according to Definition 4.1 in the random oracle model.

Proof. We prove related-input one-wayness and related-input pseudorandomness separately.

Related-input one-wayness Suppose Tag,, is not related-input one-way, let A be a PPT adversary for which
Pr [OneWayA(l)‘) =1] >negl ()),

i.e. A can guess a preimage for TagEval,(z+s*). Without loss of generality, we assume A makes at most
q: queries to the oracle TagOQ, and g¢;, queries to the random oracle. We construct an adversary B against
the discrete logarithm assumption (1-DL) with input (G,q,G,G*) as follows:

e Sample 5*,a* < Z,.

e Compute G*t5" =G®-G*" and set H(G*+*")=G*

e Compute the challenge tag tag* =G+ e" =(G=)*" .G,

e Set pp=(G,q,G) and run A on (pp,G¥,s* tag*).

e On the j-th query to TagO,, sample s;,a; < Z, and set H(G*+%)=G%. Then return (s;,G*F5)),

e On querying the random oracle with input X, check if X =G**% for some s; where H(G"7) was
set during the j-th query to the TagO,. If so, return the set value. If not, sample a<-Z, and return
G*® as the reply.

e Eventually, A returns 2’. B outputs x=12"—s*.

With non-negligible probability, A is successful in breaking the related-input one-wayness of Tag,, i.e.,
2/ =x+s*. Then, with the same non-negligible probability, B recovers x correctly and solve the 1-DL instance,
violating the discrete logarithm assumption.
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Related-input pseudorandomness Suppose Tag, is not related-input pseudorandom, let A be a
PPT adversary for which

‘Pr[PR&(P):q —Pr[PRY(1%) =1] ’ > negl (\)

holds, i.e. it can distinguish Tag, (z+5*) from a random value y; < sG given s*.
We construct an adversary 5 against DDH from Definition A.4, which uses A as follows:

e On input (G,q,G,G*,GY,7Z), sample s* +G and set H(G"t*")=H(G*-G*")=GY and tag* =Z-(G¥)*".
e Set pp=(G,q,G) and run A on (pp,G¥,s* tag*).
e On the j-th query to TagQ,, sample s;,a; +Z, and set H(G**5)=G%. Then return (sj,G(”3+5j)'“j).

e On querying the random oracle with input X, check if X =G**% for some s; where H(G"57) was
set during the j-th query to the TagQ,. If so, return the set value. If not, sample a <7, and return
G® as the reply.

e Eventually, A outputs ¥ which is also output by B.

Note that if B is participating in DDHOB, then it simulates the environment of PR& perfectly. Likewise, if
B is participating in DDH%, then it simulates the environment of PR}L‘ perfectly. Therefore, for each be {0,1},
the probability that B outputs 1 in DDH% equals the probability of A outputting 1 in PRZ‘. Hence,

’Pr[DDH%(G,q,G) —1]—Pr[DDHL(G..G) =1] ’ > negl (\),

which violates the DDH assumption. O

F.2 Language for Spend Proofs

With the new instantiation of the tagging scheme, the language that needs to be proven by spenders changes
slightly. Given a vector of public keys R, we define a new vector H of hashes of public keys as

H— (H(pk?),...,H(pk‘%l))

The corresponding language is changed to the following:

Ly[G,q,G,H]

stmt=(R,Cz,H,T,C7):
wit=(E,x,a%,r5B,a’ ¥7) s.t.
€; is a unit vector of length |R|

o Vie HSHv é% :Gaf ]{11"?
He: :tagfi
vie[ T, b, is the binary rep. of a] of length j

coZT =Gal gl
Yiclisa = Sy

F.3 Argument System

As in Section 5 we describe a protocol I, with linear communication for the updated language Ly,. A protocol
with logarithmic communication can be obtained using the same squashing technique presented in Section 5. The
notation used in the protocol below is defined above (for H), and in Section 4.4, Figures 27 to 29 and Table 2.

Setup,, (1*,Ly):
Recall that L, is specified by a tuple (G,q,G,H). Output crs=(G,q,G.H).
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(Pry(crs,stmt,wit),Vy (crs,stmt)):
2

1. u,v 452,

2. F G, P <—$G2+|R|+‘S|, G/ <—$Gm_|7€|_|8‘_27 H +sG™

2, T:=To v?
3. For weZy, denote

G, =((GIH[Y|IT)* oP|G") (25)

1. TA <—$Zq

2. Aim FraGErFCn

Note that éff :éff, for all w,w' €Z, since I=G*H Y e x| Thus A=Fra éﬁ} HC* for all
WE ZLyg.

Py — Vi A
Vg W —3Zg
Py Vy:w
Py

Pry— VS
Vi 1,2 < sLq
Py Vi 9,2
Pry:

1. Define the following polynomials (in X):

(
I(X):=cr+a+sp-X
r(X):=00(Cr+Sp-X)+7i
HX):=(U(X)r (X)) =t2 X%+, X +1o

for some tg,t1,t2 €Z4. In particular

2. T1,72 (—$Zq
3. Ty:=Gh F™, Ty:=Gi2F™

Pm %VmITl,TQ
VHJ T <—$Zq
Py Vo
Py
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L 7=22(F7 gl +mzt+mna?
2. ri=rp+trgz
3. (1,7.0) = (I(x),r(x),t(x))
Py — Vi o LT
Vpy: Check if the following relations hold:
t=(1.7) (26)
FrGLAT " = AS* G HP (27)

Tl

G'H™=G°CHY " ey (28)

Theorem F.2. The verifier Vy, is public-coin. 11, is constant-round, perfectly complete, and perfect special
honest-verifier zero-knowledge.

Theorem F.3. Assuming the discrete logarithm assumption holds over G, Il has computational
witness-extended emulation.

The proofs of the above theorems are almost identical to those of Theorems 5.1 and 5.2 and are omitted.
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Notation

Description

Y=Y(u) ::Roé%oﬁo“2

Vector of compressed public keys and coins with randomness u € Z,

s 21ST

T=T(up):=T°"*"

Scaled tag with randomness u,v €Z,

ng(uﬂ)) = _<ﬁ‘5| ,u.§5>

Compressed secrets with randomness u,v € Z,.

A A A s0—1

n=n(uw):=— (TS| X4+u-v5) Note that (¢£,7,6,X°7!) satisfies [ =G¢HTY*T*
é=é(v):=1°E
CL,CR Encoding of witness by honest prover dependent on u and wv,

see Figure 27.

m=2+|R|+|R||S|+8|T|+3|S|

Length of €1, and ¢g

(607---7687135) = (vOa'“av87ﬁ5)(u7v7y)

Constraint vectors parameterized by the randomness u,v,y € Zj,
see Figure 28.

@)(u,0,9,2)

Compressed constraint vectors parameterized by the randomness
u,,Y,2 € Lq, see Figure 28 and Figure 29.

T

System of equations parameterized by the amounts a’ and

randomness u,v,y € Zq, see Figure 11.

Table 2: Notation for signatures of knowledge construction (for Monero).

cL=(&nlellxt|l
CRr:

vec(E) || vec(B) [|a% | T¥)

ri=(0FFRU x| vec() — TIRIST || vee(B) 1771 02151 )

Figure 27: Honest encoding of witness (for Monero).

Vo
Vi
Va
V3
vy
Vs
Ve -7
V7 .
\L:]

us

IR|

. G RISIHAITI . _—
7ol .
y|7-\®§5
71SIg1IRI
. w- oS!
. u-glsl
1Sl ylRI .
1Tg28 _TISI
. g RISIHAITI
oSl |

Figure 28: Definitions of constraint vectors (for Monero). (Dots mean zeros.)

EQ#Hr,7r)=0<=

I I 8. . (YL, YroV0) =0

=) v (=) 29 =y 2 (T2 roV) _ (1 gy
=0 =2 =2 ! c

(Yr,v2) =(a’,ylTh
8 o 5 (Y1,V3) = (1151 7151

S e (Yr,Va) =0

Zo—1 N Sl <7Lav5>+<7Rau5> =0

a:=0"""o(w-7) B:=0"""op (Y1.:6) )

(YL, V7) =0

0= (111,10 422 (119,510 - (@ i) + (1) (Yo—Ar—1"¥s) =0

W W W N
N o= O O

N TN TN N N N N N T/
W W W w
S Ot R W

oo o o ol

w
g

Figure 29: Definitions of constraint vectors (for Figure 30: A system of equations guaranteeing the

Monero) (cont.).
Monero).
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