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ABSTRACT
In the past few years blockchains have been a major focus for security research, resulting in significant progress in the design,

formalization, and analysis of blockchain protocols. However, the more general class of distributed ledgers, which includes not just

blockchains but also prominent non-blockchain protocols, such as Corda and OmniLedger, cannot be covered by the state-of-the-art

in the security literature yet. These distributed ledgers often break with traditional blockchain paradigms, such as block structures

to store data, system-wide consensus, or global consistency.

In this paper, we close this gap by proposing the first framework for defining and analyzing the security of general distributed

ledgers, with an ideal distributed ledger functionality, called F
ledger

, at the core of our contribution. This functionality covers not

only classical blockchains but also non-blockchain distributed ledgers in a unified way.

To illustrate F
ledger

, we first show that the prominent ideal blockchain functionalities G
ledger

and GPL realize (suitable instantia-

tions of) F
ledger

, which captures their security properties. This implies that their respective implementations, including Bitcoin,

Ouroboros Genesis, and Ouroboros Crypsinous, realize F
ledger

as well. Secondly, we demonstrate that F
ledger

is capable of precisely

modeling also non-blockchain distributed ledgers by performing the first formal security analysis of such a distributed ledger,

namely the prominent Corda protocol. Due to the wide spread use of Corda in industry, in particular the financial sector, this

analysis is of independent interest.

These results also illustrate that F
ledger

not just generalizes the modular treatment of blockchains to distributed ledgers, but

moreover helps to unify existing results.

CCS CONCEPTS
• Security and privacy→ Formal security models; Cryptography; Distributed systems security.
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1 INTRODUCTION
In the past few years, researchers made significant progress in formalizing and analyzing the security of blockchain protocols [3, 5,

17, 22, 26]. Initially analyzed in the game-based setting based on trace properties [16, 21, 37], blockchain security research has

moved to simulation-based security which leverages modularity and strong security guarantees offered by universal composability

(UC) frameworks [11, 12, 32]. Several ideal blockchain functionalities have been proposed – most notably the functionality by

Badertscher et al. [5], called G
ledger

, and its privacy-preserving derivative GPL [26]. They have successfully been applied to prove

the security of various, partly newly designed blockchains (cf. [3, 5, 26]). However, the more general class of distributed ledgers

has been out of reach so far:

Distributed ledgers are a generalization of blockchains. A distributed ledger allows for establishing consensus on and distribution

of data. While the class of distributed ledgers includes blockchains as a special case, there are several prominent non-blockchain

distributed ledgers, such as Corda [9], OmniLedger [30], and Canton [43], which break with several central blockchain paradigms.

For example, some of these ledgers do not establish a system-wide consensus, do not use a block structure to store data, and/or

do not provide central security goals of traditional blockchains, such as global consistency, chain-growth, or chain-quality. By

departing from such blockchain paradigms, these systems aim for higher transaction throughput and security properties like

transaction privacy that are not easily provided by blockchains. Both of these aspects are highly desired by industry, thereby

making non-blockchain distributed ledgers very attractive for practical use [15, 20, 23, 24, 38].
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Due to the conceptual differences between traditional blockchains and non-blockchain distributed ledgers, existing security

definitions and results for blockchains do not apply to the class of distributed ledger protocols in general, and non-blockchain

distributed ledgers in particular (cf. Section 3 and Section 4).

In this work, we close this gap by proposing the ideal distributed ledger functionality F
ledger

. This functionality provides a

highly flexible tool set that allows for the modular security analysis of virtually arbitrary distributed ledgers, thereby, for the first

time, covering not only classical blockchains but also non-blockchain distributed ledgers. It does so in a single unified framework.

The Ideal Ledger Functionality F
ledger

. To capture and analyze security properties of arbitrary distributed ledger protocols

including blockchains, the design of and the features offered by F
ledger

follow these main objectives:

Firstly, F
ledger

is highly flexible due to various parameters, modeled as generic subroutines. This not only allows for capturing a

wide range of distributed ledgers, but also a broad spectrum of security properties without having to change the ideal functionality

itself. Such security properties include both established (blockchain) security notions, such as consistency and chain-growth, but

also entirely new security properties such as partial consistency, which we propose and formalize in this work for the first time

(see our case study below).

Secondly, the interface and core logic of F
ledger

abstract from technical details of the envisioned implementations/realizations,

such as purely internal roles (miners or notaries), maintenance operations such as mining, consensus mechanisms (proof-of-work,

proof-of-stake, Byzantine agreement, . . . ), and setup assumptions (networks with bounded delay, honest majorities, trusted

parties, . . . ). All of these details are left to realizations/implementations. Hence, F
ledger

can not only be implemented using vastly

different, e.g., consensus mechanisms, but F
ledger

also offers a very simple, clean, and implementation-independent interface to

higher-level protocols which should facilitate their specification, modeling, and analysis.

Thirdly, F
ledger

is built for a very general interpretation of corruption: parties in a realization cannot only be corrupted directly,

and hence controlled by the adversary, but whether or not they are considered corrupted may also depend on the security

assumptions, such as an honest majority. For example, if the honest majority assumption, say in Bitcoin, is violated, one would

consider all participants to be corrupted, even if they are not directly controlled by the adversary but still run the protocol honestly,

since it is impossible for honest parties to provide any security guarantees in this case. We believe that this technique, which has

already been successfully employed in the non-blockchain UC literature before (e.g., in [33]), will improve security analyses in the

field of distributed ledgers. For example, and as also illustrated by our case study, the commonly used environment-restricting

wrapper is typically obsolete when using this general corruption model.

We show the power and generality of F
ledger

via two core results, as further explained below: Firstly, as a fundamental result,

we show that existing results for the modular security of blockchains carry over to F
ledger

. Secondly, as a case study, we provide

the first formal model and security analysis of a non-blockchain distributed ledger, namely the prominent Corda system.

Covering Blockchains. To demonstrate that F
ledger

generalizes the existing literature on blockchains, we first show that

F
ledger

is indeed able to capture blockchains as a special case. Instead of illustrating this via a classical case study, which would

typically prove that, e.g., Bitcoin realizes F
ledger

, we choose a more general approach. We show that the so far most commonly

used blockchain functionality G
ledger

[5] (with some syntactical interface alignments) realizes a suitable instantiation of F
ledger

which captures the security properties provided by G
ledger

, and demonstrate that this result also holds for its privacy-preserving

variant GPL [26]. Hence, any realization of G
ledger

or GPL (with the mentioned alignments) also realizes F
ledger

, which covers all

published UC analyses of blockchains, including Bitcoin [5], Ouroboros Genesis [3], and Ouroboros Crypsinous [26].

We want to emphasize that, while G
ledger

realizes F
ledger

, both functionalities differ fundamentally in several core design choices.

For example, G
ledger

is designed for the special case of blockchains and hence, among others, requires the security property of

consistency for realizations. In contrast, F
ledger

requires only the existence of a totally ordered set of transactions. To give another

example, G
ledger

provides a lower-level interface to higher-level protocols than F
ledger

. Among others, G
ledger

includes an explicit

“mining” operation that has to be called manually by higher-level protocols. In contrast, F
ledger

keeps such operations implicit and

purely on the implementation side since higher-level protocols usually do not participate in mining (see Section 3 for details).

Similarly, the design rationales for GPL and F
ledger

are quite different as well.

We also discuss how other published ideal blockchain functionalities are captured by F
ledger

. Unlike G
ledger

and GPL these

functionalities, however, have only been used as setup assumptions for higher-level protocols.

Altogether, this shows that F
ledger

can cover the blockchain literature and unifies existing models and results.

Case study: Corda. We demonstrate that F
ledger

can capture non-blockchain distributed ledgers, making F
ledger

the first

such functionality. We do so via a case study. That is, we provide the first formal analysis of a non-blockchain distributed ledger:

Corda [8, 9, 39, 40]. We emphasize that existing ideal blockchain functionalities are not suitable for capturing Corda (cf. Section 3

and Section 4).

Corda is one of the most widely used distributed ledgers. It is currently used by more than 60 companies and institutions,

including Hewlett Packard Enterprise, Intel, Microsoft, and also by NASDAQ [15, 20, 23, 24, 38]. The main application of Corda is

within the financial industry, with many of the most important banks being part of the R3 consortium that develops Corda, including

Bank of America, Barclays, Commerzbank, Credit Suisse, Deutsche Bank, HSBC, Royal Bank of Canada, Royal Bank of Scotland,

and many more [25, 41]. Several consulting groups identify Corda as the most prominent distributed ledger technology [1, 7, 36].

2



Understanding the security and privacy of Corda is not only interesting due to its wide spread use in practice, but also from

a scientific perspective because of its conceptual differences to other distributed ledger technologies. Compared to traditional

blockchains, such as Bitcoin, three major differences strike immediately. First, Corda does not structure transactions in blocks. The

second one is the lapse of a common state, i. e., no party has a full view of the state, which in turn improves privacy of transactions.

In particular, while blockchains strive to achieve the notion of consistency, where every party is supposed to have the same full

view of the global state, Corda aims to provide a weaker security notion, which we call partial consistency. For partial consistency,
which we formalize for the first time in this work, parties may see only part of the state but these views put together should result

in a consistent global state. The third major difference is the inclusion of a number of trusted parties in Corda, so-called notaries,
which are used to prevent double-spending (see Section 4 for details).

In our case study, we model Corda and formalize its security and privacy properties via an instantiation of F
ledger

. We then show

that Corda realizes F
ledger

. Our analysis uncovers and defines the level of privacy provided for transactions in Corda, including

several meta-information leakages that Corda does not protect against. Further, while the official specification of Corda requires

security only under the assumption that all notaries are honest, our analysis shows that Corda achieves security even in the

presence of some corrupted notaries, thereby improving on the official security claims.

Summary of Our Contributions. In summary, our contributions are as follows:

• We propose, in Section 2, an ideal functionality – called F
ledger

– for general distributed ledgers. It is the first functionality that

can be applied to non-blockchain distributed ledgers. As demonstrated in this work, it covers both traditional blockchains and

non-blockchain distributed ledgers. Our functionality offers high flexibility to support a wide variety of different implementa-

tions with various security properties while simultaneously exposing a simple and implementation independent interface

to higher-level protocols. Thereby F
ledger

not only generalizes but also unifies the landscape of existing functionalities for

blockchains.

• We show in Section 3 that our functionality subsumes G
ledger

and GPL. In particular, this allows for directly transferring

all published results on the modular security of blockchains, such as Bitcoin and the Ouroboros family, to our functionality.

We further discuss that other published ideal blockchain functionalities, which have so far only been used to model setup

assumptions, are also captured by F
ledger

.

• In Section 4, we provide the first formal model and security analysis of a non-blockchain distributed ledger, Corda. As part of

this, we develop and formalize the novel security notion of partial consistency. Due to Corda’s wide-spread use in practice, this

case study is a significant contribution in its own right.

2 AN IDEAL FUNCTIONALITY FOR GENERAL DISTRIBUTED LEDGERS
In this section, we present the main contribution of our paper: our ideal functionality F

ledger
for distributed ledgers, which includes

“common” blockchains as a special case. At a high level, F
ledger

is designed around a read and write operation offered to higher-level

protocols. This captures the two common operations of distributed ledgers, which allow parties from higher-level protocols to

submit data to the ledger and get access to data from other parties. In what follows, we firstly explain F
ledger

in detail. Afterwards,

we elaborate on F
ledger

’s capabilities to capture different distributed ledger technologies and established distributed ledger security

properties.

2.1 Description of Fledger:
Our functionality F

ledger
is defined in the iUC framework [11], which is a recently proposed, expressive, and convenient general

framework for universal composability similar in spirit to Canetti’s UC model [12]. We explain our functionality in such a way

that readers familiar with the UC model are able to understand it even without knowing the iUC framework (for interested readers

see Appendix A for a brief introduction).

The functionality F
ledger

is a single machine containing the core logic for handling incoming read and write requests. In addition

to this main machine, there are also several subroutine machines that serve as parameters which must be instantiated by a protocol

designer to customize the exact security guarantees provided by F
ledger

. Figure 1 illustrates the structure of the functionality.
1

Intuitively, F
ledger

’s subroutines have the following purposes: F
submit

handles write requests and, e. g., ensures the validity of

submitted transactions, F
read

processes read requests and, e. g., models situations that not all clients are up-to-date or ensures

privacy properties, F
update

handles updates to F
ledger

’s global state, F
updRnd

controls updates to F
ledger

’s built-in clock, Finit
determines the initial state of F

ledger
, and F

leak
defines the information that leaks upon corruption of a party in F

ledger
. As we

exemplify in our Corda analysis in Section 4, these subroutines can, in principle, also specify and even share their own additional

subroutines. For example, all of the parameterized subroutines could share and access an additional (potentially global) random

oracle subroutine in order to obtain consistent hashes for transactions throughout all operations. We note, however, that only the

fixed parameterized subroutines can directly access, influence, and change the state of F
ledger

. Any additional subroutines are

transparent to F
ledger

and only serve to further structure, modularize, and/or synchronize the fixed parameterized subroutines.

The rest of this section describes and discusses the static subroutines in more detail.

1
We choose machines, instead of just algorithms, as parameters since they are more flexible in terms of storing and sharing state, and since they can interact with the

adversary. For example, they could all have access to a global random oracle.
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F
ledger

F
submit

F
read

F
update

F
updRnd Finit F

leak

E

A

I/O Connection

Figure 1: Overview of F
ledger

and its subroutines. The open headed arrow indicates that A also connects to all of
F
ledger

’s subroutines

During a run of F
ledger

, there can be multiple instances of the ideal functionality, each of which models a single session of a

distributed ledger that can be uniquely addressed by a session ID (SID). Each of these instances/sessions handles an unbounded

number of parties that can read from and write to the ledger, where a party ID identifies each party (PID). A party (in a session)

can either be honest or corrupted, where only honest parties obtain any form of security guarantees. In what follows, we explain –

from the point of view of honest parties – the process of submitting new transactions, adding those transactions to the global state,

and then reading from that state (cf. Figure 2 for a formal definition of these operations). Dishonest parties and further details are

discussed afterwards.

Main (excerpt):

recv (Submit,msg) from I/O: {Submission request from an honest identity
send (Submit,msg, internalState) to (pidcur, sidcur, Fsubmit

: submit)
wait for (Submit, response, leakage) s.t. response ∈ {true, false}
if response = true:
reqCtr← reqCtr + 1; requestQueue.add(reqCtr, round, pidcur,msg)

send (Submit, response, leakage) to NET
recv (Update,msg) from NET: {Update request triggered by the adversary.
send (Update,msg, internalState) to (𝜖, sidcur, Fupdate : update)
wait for (Update, listAdd, updRequestQueue, leakage)

s.t. listAdd ⊂ N × {round} × {tx, meta} × {0, 1}∗ × N × {0, 1}∗
max ← max{𝑖 | (𝑖, _, _, _, _, _) ∈ msglist}
check ← listAdd ≠ ∅ ∨ updRequestQueue ≠ ∅
for 𝑖 = max + 1 to max + |listAdd | do:

if (�1 (𝑖, _, _, _, _, _) ∈ listAdd) :
check ← false

if ∃(𝑖, _, meta, _, a, b) ∈ listAdd ∧ (a ≠ ⊥ ∨ b ≠ ⊥) :
check ← false

if check:
msglist.add(listAdd)
for all item ∈ updRequestQueue do:
requestQueue.remove(item)

reply (Update, check, leakage)
recv (Read,msg) from I/O: {Read request from an honest identity
send (InitRead,msg, internalState) to (pidcur, sidcur, Fread : read)
wait for (InitRead, local, leakage) s.t. local ∈ {true, false}
if local:
send responsively (InitRead, leakage) to NET (★)
wait for (InitRead, suggestedOutput)
send (FinishRead,msg, suggestedOutput, internalState)
to (pidcur, sidcur, Fread : read)

wait for (FinishRead, output, leakage′)
if output = ⊥:
Go back to (★) and repeat the request (local variables suggestedOutput, output, and leakage′ are cleared)

send responsively (FinishRead, leakage′) to NET
wait for ack; reply (Read, output)

else:
readCtr← readCtr + 1; readQueue.add(pid, readCtr, round,msg)
send (Read, readCtr, leakage) to NET

recv (DeliverRead, readCtr, suggestedOutput) from NET s.t.
(pid, readCtr, r,msg) ∈ readQueue: {Deliver network read

send (FinishRead,msg, suggestedOutput, internalState)
to(pidcur, sidcur, Fread : read)

wait for (FinishRead, output, leakage′)
if output ≠ ⊥:
send responsively (FinishRead, readCtr, leakage′) to NET
wait for ack; readQueue.remove(pid, readCtr, r,msg)
send (Read, output) to (pid, sidcur, I/O)

else:
send nack to NET

Figure 2: Excerpt of F
ledger

’s handling of submit, read, and update operations. See Figure 5 to 6 in Appendix B for the
full specification. pidcur is the current party and sidcur the ledger’s current session . round is the current time.4



Submitting transactions. During the run of F
ledger

, a higher-level protocol can instruct an honest party pid in session sid of

the distributed ledger to submit a transaction tx. Upon receiving such a request, F
ledger

forwards the request to the subroutine

F
submit

,
2
which then decides whether the transaction is accepted, i.e., is “valid”, and which exact information of tx should leak to

the adversary. As a result, F
ledger

expects to receive a boolean value from F
submit

indicating whether the transaction is accepted as

well as an arbitrary leakage. If the transaction tx is accepted, F
ledger

adds tx together with the submitting party pid and a time

stamp (see below) to a buffer list requestQueue that keeps track of transactions from honest parties which have not yet been added

to the global transaction list. In any case, both the acceptance result as well as the leakage are then forwarded to the adversary.

As mentioned above, the specification of F
submit

is a parameter that is left to the protocol designer to instantiate. This allows

for customizing how the format of a “valid transaction” looks like and whether submitted transactions are supposed to remain

(partially) private or fully leak to the adversary on the network. For example, most blockchains do not provide any privacy for

transactions, and hence, for those blockchains the leakage generated by F
submit

would be the full transaction tx. We provide

example instantiations of F
submit

as well as of all other subroutines in Sections 3 and 4.

Adding transactions to the global transaction list. At the core of F
ledger

is a global list of transactionsmsglist, representing
the global state of the ledger. These transactions are ordered, i.e., they are numbered without gaps starting from 0, and form the

basis for reading requests of honest parties. Furthermore, they are stored along with some additional information: the ID of the

party which submitted the transaction and two time stamps indicating when the transaction was submitted, and when it was

added to the global state (we discuss the modeling of time further below). In addition to transactions submitted by parties, we also

allow the ledger to contain ordered meta-information represented as a special type of transaction without a submitting party and

without a submitting a time stamp. This meta transaction can be useful, e.g., to store block boundaries of a blockchain in those

cases where this should be captured as an explicit property of a realization. Similar to ideal functionalities for blockchains, the

global transaction list of F
ledger

is determined and updated by the adversary, subject to restrictions that ensure expected security

properties.

More specifically, at any point in time, the adversary on the network can send an update request to F
ledger

. This request, which

contains an arbitrary bit string, is then forwarded to the subroutine F
update

. The exact format of the bit string provided by the

adversary is not a priori fixed and can be freely interpreted by F
update

. This subroutine then computes and returns to F
ledger

an

extension of the current global state, an update to the list requestQueue of submitted transactions that specify transactions which

should be removed (as those have now become part of the global state, or they became invalid concerning the updated global state),

and leakage for the network adversary. Upon receiving the response from F
update

, F
ledger

ensures that appending the proposed

extension to msglist still results in an ordered list of transactions. If this is the case, then F
ledger

applies the proposed changes

to both lists. In any case, F
ledger

sends the leakage from F
update

as well as a boolean indicating whether any changes have been

applied to the adversary.

The functionality F
ledger

, by default, guarantees only that there exists a unique and ordered global list of transactions. Further

security properties which should be enforced for the global state can be specified by appropriately instantiating F
update

. For

example, F
update

can be used to enforce the security properties of double spending protection and no creation. On a technical level,

such an instantiation of F
update

would be defined in such a way that it checks that the incoming update requests from the adversary

contain a proposed extension of the global state that does not cause double-spending and does not contain transactions for honest

parties that have not previously been submitted.

We note that the default guarantee provided by F
ledger

(existence of a unique and ordered global list of transactions) is somewhat

weaker than the security notion of consistency for blockchains, which additionally requires that all honest parties also obtain the

same (prefix of) that global state. Indeed, many distributed ledgers, such as Corda, are not designed to and do not meet this notion

of consistency in its traditional sense (cf. our case study in Section 4). If desired, the property of consistency can, of course, also be

captured in F
ledger

, namely via a suitable instantiation of F
read

(see below).

Reading from the global state. A higher-level protocol can instruct a party of F
ledger

to read from the global state. There are

two types of reading requests that we distinguish, namely, local and non-local read requests: a local read request generates an

immediate output based on the current global state, whereas a non-local read request might result in a delayed output, potentially

based on an updated global transaction list, or even no output at all (as determined by the adversary on the network). Local reads

capture cases where a client already has a copy of the ledger stored within a local buffer and reads from that buffer. To the best of

our knowledge local reads offered by realizations have not been formalized in idealizations before in the blockchain literature.

This is a very useful feature for higher-level protocols since when local reads are possible they do not have to deal with arbitrarily

delayed responses, dropped responses, or intermediate state changes. In contrast, a non-local read instead models a thin client that

first has to retrieve the data contained in the ledger via the network, and hence, cannot guarantee when (and if at all) the read

request finishes.

More specifically, when F
ledger

receives a read request, the subroutine F
read

is used to decide whether the read request is

performed locally or non-locally (this decision might depend on, e.g., party names or certain prefixes contained in the read-request)

and which exact information leaks to the adversary by the read operation. F
ledger

provides the adversary with the responses of

2
Requests forwarded to subroutines always also contain a copy of the full internal state of F

ledger
to allow subroutines to make decisions based on, e.g., the current list

of corrupted parties. In what follows, we keep this implicit for better readability.
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F
read

. The adversary is then supposed to provide a bit string used to determine the output for the read request. This response is

forwarded back to F
read

, which uses the bit string to generate the read request’s final output. The exact format of the bit string

provided by the adversary is not a priori fixed and can be freely interpreted by F
read

. Finally, the resulting output is forwarded by

F
ledger

to the higher-level protocol.

On a technical level, for properly modeling local read requests, we use a feature of the iUC framework that allows for forcing

the adversary to provide an immediate response to certain network messages (in Figure 2 the operation “send responsively”

indicates such network messages with immediate responses). That is, if the adversary receives such a network message and wants

to continue the protocol run at all, then in the next interaction with the protocol he has to provide the requested response; he

cannot interact with any part of the overall protocol before providing the response. As shown in [10], this mechanism can, in

principle, also be added to Canetti’s UC model. Non-local read requests are split into two separate activations of F
read

, with the

adversary being activated in-between: the adversary has to be able to delay a response to such requests and potentially also update

the global state.

Besides local and non-local reads, any further security properties regarding reading requests can be specified by instantiating

F
read

appropriately. F
read

can also be used to model access and privacy properties of the global state where, e.g., parties may read

only those transactions from the global state where they have been involved in. We use the latter in our analysis of Corda (cf.

Section 4).

Having explained the basic operations of submitting transactions, we now explain several further details and features of F
ledger

.

Initialization of F
ledger

. Distributed ledgers often rely on some initial setup information – in blockchains often encoded in a

so-called genesis block – that is shared between all participants. To allow for capturing such initially shared state F
ledger

includes

an ideal initialization subroutine Finit that can be defined by a protocol designer and is used to initialize the starting values of all

internal variables of F
ledger

, including transactions that are already part of the global transaction list (say, due to a genesis block

that is assumed to be shared by all parties).

Built-in clock. Our functionality F
ledger

includes a clock for capturing security properties that rely on time. More specifically,

F
ledger

maintains a counter starting at 0 used as a timer. One can interpret this counter as an arbitrary atomic time unit or the

number of communication rounds determined by an ideal network functionality. As mentioned above, both the transactions

submitted to the buffer requestQueue and transactions included in the global ordered transaction list msglist are stored with

timestamps representing the time they were submitted respectively added to the global state. This allows for defining security

properties, which can depend on this information.

Higher-level protocols/the environment can request the current value of the timer, which not only allows for checking that

passed time was simulated correctly but also allows for building higher-level protocols that use the same (potentially global) timer

for their protocol logic. The adversary on the network is responsible for increasing the timer. More specifically, he can send a

request to F
ledger

to increase the timer by 1. This request is forwarded to and processed by a subroutine F
updRnd

, which gets to

decide whether the request is accepted and whether potentially some information is to be leaked to the adversary. If the request is

accepted, then F
ledger

increments the timer by 1. In any case, both the decision and the (potentially empty) leakage are returned to

the adversary.

The subroutine F
updRnd

can be instantiated to model various time-dependent security properties, such as various forms of

liveness [21, 22, 37] (see below). We note that the timer in F
ledger

is optional and can be ignored entirely if no security properties

that rely on time should be modeled. In this case, F
updRnd

can reject (or accept) all requests from the adversary without performing

any checks.

Corrupted parties. At any point in time, the adversary can corrupt an honest party in a certain session of a distributed ledger.

This is done by sending a special corrupt request to the corresponding instance of F
ledger

. Upon receiving such a request, the

ideal functionality uses a subroutine F
leak

to determine the leakage upon a party’s corruption. In the case of ledgers without

private data where the adversary already knows all transactions’ content, this leakage can be empty. However, in cases where

privacy should be modeled and hence the adversary does not already know all transactions, this leakage typically includes those

transactions that the corrupted party has access to.

As is standard for ideal functionalities, we give the adversary full control over corrupted parties. More specifically, F
ledger

acts

as a pure message forwarder between higher-level protocols/the environment and the network adversary for all corrupted parties.

Also, the adversary may send a special request to F
ledger

to perform a read operation in the name of a corrupted party; this request

is then forwarded to and processed by the subroutine F
read

, and the response is returned to the adversary. Just as for F
leak

, this

operation is mainly included for instantiations of F
ledger

that include some form of privacy for transactions, as in all other cases,

the adversary already knows the full contents of all transactions.

Novel interpretation of corruption in realizations. Typically, realizations of ideal functionalities use the same corruption

model as explained above. That is, a party in a realization considers itself to be corrupted if it (or one of its subroutines) is under

direct control of the adversary. While realizations with this corruption model are supported by F
ledger

, we also propose to use a

more general interpretation of corruption in realizations (cf., e.g., [33]): parties in a realization of F
ledger

should consider themselves

to be corrupted – essentially by setting a corruption flag – not just if the adversary directly controls them, but also if an underlying

security assumption, such as honest majority or bounded network delay, is no longer met. Importantly, even if a party sets a
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corruption flag due to broken assumptions it still follows the protocol honestly. The point of setting a corruption flag is to allow a

simulator to tell F
ledger

that a party is corrupted, and hence, F
ledger

no longer has to provide security guarantees for parties that

rely on broken assumptions.
3

This interpretation of corruption, which is a novel concept in the field of universally composable security for blockchains and

distributed ledgers, avoids having to encode specific security assumptions into F
ledger

(and more generally ideal functionalities for

blockchains and distributed ledgers), and hence, makes such functions applicable to a wider range of security assumptions and

corruption settings: the corruption status of a party is sufficient to determine whether F
ledger

must provide security guarantees for

that party. It is not necessary to include any additional security assumptions of an intended realization in F
ledger

explicitly (e.g., by

providing consistency only as long as there is an honest majority of parties) or to add a wrapper on top of F
ledger

that forces the

environment to adhere to the security assumptions. Such security assumptions can rather be specified by and stay at the level of

the realization, which in turn reduces the complexity of the ideal functionality while enabling a wide variety of realizations based

on potentially vastly different security assumptions. We use this more general concept of corruption in our case study of Corda (cf.

Section 4.2), where a client considers itself to be corrupted not only if she is under the direct control of the adversary but also if

she relies on a corrupted notary. This models that Corda assumes (and indeed requires) notaries to be honest in order to provide

security guarantees. Importantly, this is possible without explicitly incorporating notaries and their corruption status in F
ledger

. In

fact, following the above rationale, F
ledger

still only has to take care of the corruption status of clients.

Further features. F
ledger

also provides and supports many other features, including dynamic registration of clients, different

client (sub-)roles with potentially different security guarantees, full support for smart contracts, and a seamless transition between

modeling of public and private ledger without having to reprove any security results. We discuss these features in Appendix C.

2.2 Ledger Technologies and Security Properties
Having explained the technical aspects of F

ledger
, this section discusses that F

ledger
can indeed capture various types and features

of distributed ledgers as well as their security properties – including new ones – illustrating the generality and flexibility of F
ledger

.

2.2.1 Ledger Technologies. F
ledger

supports a wide range of ledger types and features, including all of the following:

Types of global state. At the core of F
ledger

is the totally ordered msglist, which includes transactions and meta data and is

interpreted by F
read

and F
update

. By defining both subroutines in a suitable manner, it is possible to capture a wide variety of

different forms of global state, including traditional blockchains (e.g., [4, 17, 21, 26, 44]), ledgers with a graph structure (e.g., [6, 8])

or ledgers that use sharding [30, 35, 46]. In Section 3, we describe how blockchains are captured and in Section 4 we capture the

global graph used by Corda. To capture sharding, where participants are assigned to a shard of a ledger and are supposed to

have a full view of their respective shard, F
update

ensures that each transaction is assigned to a specific shard (this information is

stored together with the transaction in msglist). F
read

then ensures that parties have access only to transactions assigned to their

respective shard(s).

Consensus protocols. F
ledger

itself is agnostic to the consensus protocol used in the realization. This allows for realizations using

a wide variety of consensus protocols such as Byzantine fault-tolerant protocols, Proof-of-Work, Proof-of-Stake, Proof-of-Elapsed-

Time, Proof-of-Authority, etc. If desired, it is also possible to customize F
update

to capture properties that are specific to a certain

consensus algorithm. In Section 3, we exemplify that F
ledger

can indeed capture Proof-of-Work and Proof-of-Stake blockchains. In

Section 4, we show that F
ledger

can capture the partially centralized consensus service of Corda, i.e., Proof-of-Authority. Other

consensus mechanisms can be captured using analogous techniques.

Networkmodels. F
ledger

can capture various types of networkmodels, including, e.g., (i) synchronous, (ii) partially synchronous,
and (iii) asynchronous networks. To model these cases, F

updRnd
needs to be customized appropriately. For synchronous/partially

synchronous network models one typically enforces in F
updRnd

that time/rounds cannot advance as long as messages are not

delivered within expected boundaries, say 𝛿 rounds (cf. Section 4). Additionally, one might also define F
read

to give honest parties

read access to (at least) all messages in msglist that are more than 𝛿 (or 𝑐 · 𝛿 for some constant 𝑐) rounds old. To model fully

asynchronous networks, F
updRnd

and F
read

do not impose any restrictions.

Time models. F
ledger

can capture different time models including, e.g., (i) synchronous clocks, (ii) clocks with bounded time

drift, and (iii) asynchronous clocks. For synchronous clocks, we can directly use the global clock of F
ledger

which then defines the

time for all parties. For other types of clocks, protocol designers typically add a new type of read request (via the bit string msg
that is part of read requests, say, by using msg = getLocalTime and interpreting this in F

read
) for reading the local time of a party.

F
read

then allows the adversary to determine the local time freely (for asynchronous clocks) or subject to the condition that it is

within a certain time frame w.r.t. the global time (for clocks with bounded shift).

Smart contracts and dynamic party (de-)registration. As noted above and detailed in Appendix C, F
ledger

can capture both

of these features.

3
We note that this concept can easily be extended to capture multiple different levels of “broken” assumptions, e.g., to handle cases where the assumption for the

security property of liveness is broken, but another assumption that guarantees the property of consistency still holds. The main requirement is that the environment

can check that real and ideal world are consistent in their corruption levels.
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2.2.2 Security Properties. F
ledger

can capture a wide variety of (combinations of) security properties from the blockchain security

literature, including existing properties from both game-based and universally composable settings. This includes the following

properties, which have game-based and/or universally composable formalizations:

Consistency [22, 30, 37] as already explained above, states that honest parties share a prefix of the global state of a ledger. This

can be enforced by properly defining F
read

as we also show in Section 3. We note that the notions of agreement, persistence, and

common prefix [2, 21] are closely related to consistency and can be covered in an analogous way.

Chain-growth [5, 17, 21, 28, 37] ensures that a blockchain grows at least with a certain speed, i.e., a certain minimal number of

blocks is created per time unit. As we show in Section 3, this can be captured in F
ledger

via F
updRnd

. Specifically, F
updRnd

rejects

round/time update requests whenever there are not sufficiently many blocks yet as would be required for the next time period.

Chain-quality [5, 17, 21, 28, 37] requires that honest users create a certain ratio of blocks in a blockchain in order to prevent

censorship. This can be captured in F
ledger

, e.g, by recording the block creators as metadata in F
ledger

’s msglist. F
update

then

rejects updates if they violate chain-quality (cf. Appendix D).

Liveness [5, 17, 21, 28, 37] ensures that transactions submitted by honest clients enter the global state respectively the state

read by other honest clients within 𝜌 rounds. As we exemplify in Section 3 and 4, protocol designers can use F
updRnd

to ensure

various forms of liveness. Specifically, F
updRnd

forbids the adversary from advancing time as long as conditions for the next time

unit are not yet met, e.g., because a transaction that is already 𝜌 rounds old is not yet in the global state.

Privacy Properties, such as transaction privacy [31, 34, 42, 45], ensure secrecy of transactions, e.g., that only parties involved

in a transaction are aware of its contents. To capture different forms/levels of privacy in F
ledger

, the leakages of its subroutines

are specified to keep private information hidden from the adversary as long as the adversary does not control any parties that

have access to this information. Furthermore, F
read

ensures that also honest parties gain read access only to information that they

are allowed to see. In Section 4, we use this technique to formalize and analyze the level of privacy of Corda, including which

information is leaked to the adversary for honest transactions.

Soundness Properties, such as transaction validity and double-spending protection, can be captured by customizing F
submit

and/or F
update

to reject incoming messages that violate soundness properties. This is exemplified in Sections 3 and 4 with further

details provided in Appendices D and F.

New security properties that have not yet been formally defined in the distributed ledger security literature can potentially

also be supported by F
ledger

. One example is our novel notion of partial consistency (cf. Section 4).

In summary, as discussed above, F
ledger

is indeed able to formalize existing security notions from the game-based blockchain

security literature [17, 21, 22, 28, 31, 34, 37, 42, 45]. For the universally composable blockchain security literature we show an

even stronger statement in Section 3: F
ledger

can not only formalize existing security properties; existing security proofs and

security results obtained for concrete blockchains, such as Bitcoin, carry over to F
ledger

(after lifting them to the abstraction level

of F
ledger

).

3 COVERING BLOCKCHAINS WITH Fledger
In this section, we demonstrate that F

ledger
is able to capture traditional blockchains as a special case. Firstly, we show that the

so far most commonly used blockchain functionality G
ledger

[5] (with some syntactical interface alignments) realizes a suitable

instantiation of F
ledger

, which captures the security guarantees of G
ledger

, and demonstrate that this result also holds for its privacy-

preserving variant GPL [26]. Hence, any realization of G
ledger

or GPL (with interface alignments) also realizes F
ledger

. This in fact

covers all published UC analyses of blockchains, including Bitcoin [5], Ouroboros Genesis [3], and Ouroboros Crypsinous [26].

Secondly, we discuss that F
ledger

can also capture other published ideal blockchain functionalities, which so far have been used

only to model setup assumptions for higher-level protocols. Altogether, this illustrates that F
ledger

not only generalizes but also

unifies the landscape of ideal blockchain functionalities from the literature.

The ideal blockchain functionality G
ledger

. Let us start by briefly summarizing the ideal blockchain functionality G
ledger

(further information, including a formal specification of G
ledger

in the iUC framework, is available in Appendix D). G
ledger

offers

a write and read interface for parties and is parameterized with several algorithms, namely validate, extendPolicy,Blockify, and
predictTime, which have to be instantiated by a protocol designer to capture various security properties. By default, G

ledger

provides only the security property of consistency which is standard for blockchains. An honest party can submit a transaction

to G
ledger

. If this transaction is valid, as decided by the validate algorithm, then it is added to a buffer list. G
ledger

has a global

list of blocks containing transactions. This list is updated (based on a bit string that the adversary has previously provided) in a

preprocessing phase of honest parties. More specifically, whenever an honest party activates G
ledger

, the extendPolicy algorithm

is executed to decide whether new “blocks” are appended to the global list of blocks, with the Blockify algorithm defining the

exact format of those new blocks. Then, the validate algorithm is called to remove all transactions from the buffer that are now,

after the update of the global blockchain, considered invalid. An honest party can then read from the global blockchain. If the

honest party has been registered for a sufficiently long amount of time (larger than parameter 𝛿), then it is guaranteed to obtain a

prefix of the chain that contains all but the last at most windowSize blocks. This captures the security property of consistency.

In addition to these basic operations, G
ledger

also supports dynamic (de-)registration of parties and offers a clock, modeled via a

subroutine G
clock

, that advances depending on the output of the predictTime algorithm (and some additional constraints).
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As becomes clear from the above short description of G
ledger

, F
ledger

draws inspiration from G
ledger

. However, there are several

fundamental differences:

• G
ledger

is designed for capturing blockchains and therefore, e.g., requires that transactions are stored in a “block” format (via the

Blockify algorithm) and always provides the security property of consistency. As already discussed in Section 2, F
ledger

only

requires the existence of a totally ordered list of transactions.

• Read operations in G
ledger

always output a full prefix of G
ledger

’s blockchain in plain, i.e., G
ledger

is built for blockchains without

privacy guarantees and those that do not modify/interpret data in any way. F
ledger

includes a parameter F
read

to modify and

also restrict the contents of outputs for read requests, which in turn allows for capturing, e.g., privacy properties (as illustrated

by our Corda case study).

• G
ledger

takes a lower level of abstraction compared to F
ledger

. That is, G
ledger

has several details of the envisioned realization

built into the functionality and higher-level protocols have to take these details into account. In other words, the rationale

of how higher-level protocols see and deal with blockchains is different to F
ledger

. G
ledger

requires active participation of

higher-level protocols/the environment, while F
ledger

models blockchains (and distributed ledgers) essentially as black boxes

that higher-level protocols use. More specifically, G
ledger

includes a mining or maintenance operation MaintainLedger that
higher-level protocols/the environment have to call regularly, modeling that higher-level protocols have to manually trigger

mining or state update operations in the blockchain for security to hold true. Similarly, the clock used by G
ledger

also has to be

regularly and manually triggered by higher-level protocols/the environment for the run of the blockchain to proceed. In contrast,

F
ledger

abstracts from such details and leaves them to the realization. The motivation for this is that higher-level protocols

usually do not (want to) actively participate in, e.g., mining operations and rather expect this to be handled internally by the

underlying distributed ledger.

• G
ledger

includes a predictTime parameter that, based on the number of past activations (but not based on the current global

state/blockchain), determines whether time should advance. This parameter can be synchronized with suitable definitions of the

extendPolicy, which has access to and determines the global state, to model time dependent security properties such as liveness.

F
ledger

instead allows the adversary to choose arbitrarily when time should advance. The single parameter F
updRnd

can then

directly enforce time dependent security properties without requiring synchronization with other parameters (cf. Section 2.2).

• G
ledger

uses algorithms as parameters, whereas F
ledger

uses subroutines, with the advantages explained in Footnote 1.

In summary, the main differences between G
ledger

and F
ledger

are due to (i) different levels of abstraction to higher-level protocols

and (ii) the fact that G
ledger

is built specifically for traditional blockchains. Both of these aspects have to be addressed to show

that G
ledger

is a realization of a suitable instantiation of F
ledger

. To address (i), we use a wrapperW
ledger

that we add on top of

the I/O interface of G
ledger

and which handles messages from/to the environment. This wrapper mainly translates the format

of data output by G
ledger

to the format used by F
ledger

(e.g., from a blockchain to a list of transactions). It also handles the fact

that F
ledger

does not include certain operations on the I/O interface by instead allowing the adversary A to run the maintenance

operation MaintainLedger and perform clock updates in G
clock

even in the name of honest parties. That is,W
ledger

models real

world behavior, usingA as a scheduler, where blockchain participants perform mining based on external events, such as incoming

network messages, without first waiting to receive an explicit instruction from a higher-level protocol to do so (see also the

remarks following Corollary 3.2). Issue (ii) is addressed via a suitable instantiation of the parameters of F
ledger

in order to capture

the same (blockchain) properties provided by G
ledger

respectively the parameterized algorithms of G
ledger

. This instantiation

roughly works as follows, with full definitions and details provided in Appendix D:

• Finit is defined to run the extendPolicy algorithm to generate the initial transaction list (that is read from the blocks output

by the algorithm). This is because extendPolicy might already generate a genesis block during the preprocessing of the first

activation of the functionality before any transactions have even been submitted.

• F
submit

executes the validate algorithm to check validity of incoming transactions.

• F
update

executes the extendPolicy and Blockify algorithms to generate new blocks from the update proposed by the adversary.

These blocks are transformed into individual transactions which are appended to the global transaction list of F
ledger

together

with a special meta transaction that indicates a block boundary. Additionally, the validate algorithm is used to decide which

transactions are removed from the transaction buffer.

• F
read

checks whether a party has already been registered for an amount of time larger than 𝛿 and then either requests the

adversary to provide a pointer to a transaction within the last windowSize blocks or lets the adversary determine the full output

of the party. We note that F
read

has to always use non-local reads: this is because a read operation in G
ledger

might change the

global state during the preprocessing phase and before generating an output, i.e., read operations are generally not immediate

(in the sense defined in Section 2).

• If the parameters of G
ledger

are such that they guarantee the property of liveness, then F
updRnd

can be defined to also encode

this property (cf. Section 2); similarly for the time dependent security property of chain-growth and other time-related security

properties.

• F
leak

does not leak (additional) information as all information is leaked during submitting and reading.
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Figure 3: Realization relation of G
ledger

and F Gledger
ledger

as stated in Theorem 3.1. The system E denotes the environment,
modeling, as usual in UC setting, arbitrary higher level protocols. All machines are additionally connected to the
network adversary.

Let F Gledger
ledger

be the protocol stack consisting of F
ledger

with all of its subroutines instantiated as sketched above. Then we can

indeed show that G
ledger

(with the wrapperW
ledger

) realizes F Gledger
ledger

(cf. Figure 3).

Theorem 3.1 (informal). Let F Gledger
ledger

be as above and letW
ledger

be the wrapper for G
ledger

and its subroutine clock G
clock

.

Then, (W
ledger

| G
ledger

,G
clock
) ≤ F Gledger

ledger
.

We formalize this theorem and provide precise specifications of F Gledger
ledger

,W
ledger

, G
ledger

, and G
clock

as well as a full proof in

Appendix D. As explained above, the additional componentW
ledger

merely aligns the syntax of G
ledger

and F
ledger

, and makes

explicit that maintenance operations and clock updates are performed automatically based on external events. In fact, all existing

higher-level protocols we are aware of do not trigger maintenance operations and do not update the clock themselves (see, e.g., [27]).

They rather leave this to the adversary/environment, as one might expect. Hence, from the point of view of a higher-level protocol,

typically it does not matter whether it uses G
ledger

or F Gledger
ledger

; there are only slight syntactical alignments necessary.

From Theorem 3.1, transitivity of the realization relation, and the composition theorem of the iUC framework we immediately

obtain that existing realizations of G
ledger

also apply to and can be re-used with F
ledger

.

Corollary 3.2 (informal). Let Pblockchain be a realization of G
ledger

, e.g., Bitcoin or Ouroboros Genesis. Furthermore, let QF
Gledger
ledger

be a higher-level protocol using F Gledger
ledger

and let QP be the same protocol as Q but using Pblockchain (plus the wrapperWledger
and

G
clock

) instead of F Gledger
ledger

. Then, QP realizes QF
Gledger
ledger .

The corollary intuitively states that if we have analyzed and proven secure a higher-level protocol Q based on F Gledger
ledger

, then Q
remains secure even if we run it with an actual blockchain P

blockchain
that realizes G

ledger
.

GPL and other ideal blockchain functionalities. Similarly to the above result, in Appendix E we provide a proof sketch

showing that G
ledger

’s privacy preserving variant GPL [26] (plus a wrapper aligning syntax and mapping abstraction levels) also

realizes a suitable instantiation of F
ledger

. Hence, the famous privacy preserving blockchain protocol Ouroboros Crypsinous [26],

which has been proven to realize GPL, also realizes Fledger with slight adjustments to the interface as described above. Besides

GPL, Appendix E also discusses further ideal ledger functionalities [18, 19, 29] which so far have only been used to model setup

assumptions for higher-level protocols and which have not been realized yet. We show that F
ledger

can be instantiated to model

the same security properties as those ideal functionalities and hence can be used as an alternative within higher-level protocols.

4 CASE STUDY: SECURITY AND PRIVACY OF THE CORDA LEDGER
Corda is one of the most widely employed distributed ledgers. It is a privacy-preserving distributed ledger where parties share

some information about the ledger but not the full view. It is mainly used to model business processes within the financial sector.

In this section, we first give a description of Corda. We then provide a detailed security and privacy analysis by proving that Corda

realizes a carefully designed instantiation of F
ledger

.

4.1 Description of the Corda Protocol
There are two types of participants/roles in Corda: (i) Nodes or clients, who can submit transactions to and read from the ledger,

and (ii) notary services (called just notaries in what follows) which are trusted services that are responsible for preventing double

spending. Each participant is identified via its public signing key, which is certified via one or more certificate agencies and then

distributed via a so-called network service provider to all participants. All participants communicate via secure authenticated

channels.

Clients own states (sometimes also called facts) in Corda. A state typically represents an asset that the party owns in reality,

e.g., money, bonds, or physical goods, like a car. States can be “spent” via a transaction, which consumes a set of input states and

creates a set of new output states. These transactions are validated by notaries to prevent double spending of states.
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States, transactions, attachments. On a technical level, a state is represented via a tuple consisting of at least one owner of

the state (identified via public signature keys) and an arbitrary bit string that encodes the asset. States are stored as the outputs of

transactions in Corda, similar to how Bitcoin stores ownership of currency as an output of a transaction. Transactions in Corda

consist of a (potentially empty) set of pointers to input states,4 a (potentially empty) set of pointers to reference states (see below), a
set of output states, a non-empty set of participants (clients), a notary that is responsible for validating this transaction and for

preventing double spending of its inputs, a (potentially empty) set of pointers to smart contracts, an arbitrary bit string that can

encode parameters for the transaction, and an ID that is computed as a hash over the transaction. The participants contain at least

all owners of input states, who are expected to confirm the transaction by a signature. One of the participants takes the role of an

initiator, who starts and processes the transaction, while the other participants, if any, act as so-called signees who, if they agree

with the transaction, only add their signatures to confirm the transaction. The set of input states can be empty, which allows for

adding new assets to Corda by creating new output states. The referenced smart contracts are stored in so-called attachments with
a unique ID (computed via the hash of the attachment) and can be used to impose further conditions for the transaction to be

performed. These conditions may in particular depend on reference states, which, unlike input states, are not consumed by the

transaction but rather only provide some additional information for the smart contracts. For example, a smart contract might

state that an initiator’s car is bought by a signee only if its age is below a certain threshold. A reference state might contain the

manufacturing date of the car, including a signature of the manufacturer, which can then be validated by the smart contract.
5

In the following, we call the set of input states, reference states, and smart contracts the direct dependencies of a transaction.
The set of (full) dependencies of a transaction is a set of all direct dependencies, their respective direct dependencies, and so on. A

transaction is called valid if the format of the transaction is correct, the set of participants includes all owners of input states, and

all smart contracts referenced by the transaction allow the transaction.

Partial views. In a Corda instance, the set of all transactions and attachments used by those transactions forms a global

directed graph (which is not necessarily a tree or a forest). However, clients do not obtain a full view of this graph. Instead, each

client has only a partial view of the global graph consisting of those transactions it is involved in as an initiator/signee as well as

the full dependencies of those transactions. Generally speaking, a client forwards one of its known transactions 𝑡𝑥 (or one of its

known attachments) to another client only if both clients are involved in a transaction 𝑡𝑥 that (directly or also indirectly) depends

on 𝑡𝑥 , i.e., where both clients are allowed to and need to learn 𝑡𝑥 in order to validate 𝑡𝑥 .

This decentralized graph structure, where clients are supposed to learn only those parts that they actually are involved in,

facilitates privacy but makes it impossible for an individual client to detect and protect itself against double spending attacks:

Assume Alice has an input state representing a car and she uses this state in a transaction with Bob. Now, Alice might use the

same state again in a transaction with Carol. Both Bob and Carol would assume that they now own Alice’s car, however, neither of

them can detect that Alice has sold her car twice since neither of them is able to see both transactions. To solve this problem,

Corda, as already briefly mentioned, introduces the concept of notaries, which are trustees that are responsible for validating

transactions and preventing double spending, as discussed in more detail in what follows.

Each transaction 𝑡𝑥 is assigned one notary N who is responsible for this transaction; N , just as the participants, also learns the

full dependencies of 𝑡𝑥 . To be able to detect double spending of input states, it is required that 𝑡𝑥 only uses inputs for which N is

also responsible for, i. e., the input state was produced as an output for which N is responsible. The notary then checks that 𝑡𝑥 is

valid (which entails checking that the set of participants of 𝑡𝑥 contains all owners of input states), there are valid signatures of all

participants, and also that no input state has already been used by another transaction. If this is the case, the notary signs 𝑡𝑥 ,

which effectively adds 𝑡𝑥 to the global graph of Corda. To change the notary N responsible for a certain state to a different one,

say N ′, Corda offers a special notary change transaction. This transaction takes a single input state, generates a single output state

that is identical to the input, and is validated by the notary N who is responsible for the input state. The responsibility for the

output is then transferred to N ′, i.e., future transactions need to rely on that notary instead.

Submitting transactions. A new transaction is first signed by the initiator, who then forwards the transaction to all signees

to collect their signatures. The initiator then sends the transaction together with the signatures to the notary, who adds his own

signature to confirm validity of the transaction. The initiator finally informs all signees that the transaction was successful. The

initiator is required to know the full dependencies of the transaction such that he can distribute this information to signees and

the notary. To obtain this knowledge in the first place, which might include input states known only to, say, one of the signees,

clients/signees can proactively send known transactions to other clients. In what follows, we say that a client pushes a transaction
(see Appendix F.1 for details).

Customization and security goals. All protocol operations in Corda, such as the process of submitting a transaction, can be

customized and tailored towards the specific needs of a deployment of Corda. For example, one could decide to simply accept

transactions without signatures of a notary, with all of its implications for security and double spending. Our description given

above (and our analysis carried out below) of Corda follows the predefined standard behavior which captures the most typical

deployment as specified by the documentation [40]. The white paper of Corda [9] states three major security goals:

4
Technically, such a pointer includes the ID of the transaction that created the state as an output as well as a counter that determines which output state of that

transaction is to be used.

5
In addition to reference states, smart contracts can also access so-called oracles, which are trusted third parties, to provide data points. Since the same can also be

achieved by reference states, we did not explicitly include oracles in our analysis.
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Figure 4: Corda protocol Pc and realization statement.

Partial consistency: Whenever parties share some transaction, they agree on the content of the transaction as well as on

(contents of) all dependencies. In this work we propose and formalize the novel notion of partial consistency to capture this goal,

which is stated only on an intuitive level in the white paper.

Double spending protection: Transaction’s output states cannot be spent twice.
Privacy: A transaction between a group of parties is only visible to them and all parties that need to validate this transaction as

part of validating another (dependent) transaction in the future.

According to the Corda white paper, these goals should be achieved under the assumption that all notaries behave honestly.

Jumping slightly ahead, while some level of trust into notaries is clearly necessary, our analysis refines this requirement by showing

that participants enjoy security guarantees as long as they do not rely on a dishonest notary (even if other notaries are dishonest).

4.2 Model of Corda in the iUC Framework
Our model Pc

of Corda in the iUC framework closely follows the above description. Formally, Pc
is the protocol (client |

notary, Funicast, Fcert, Fro) consisting of a client machine that is accessible to other (higher-level) protocols/the environment, an

internal notary machine, and three ideal subroutines Funicast, Fcert, and Fro modeling secure authenticated channels, certificate

based signatures using a EUF-CMA signature scheme, and idealized hash functions respectively (cf. Figure 4). In a run, there can

be multiple instance of machines, modeling different participants of the protocol. We consider a static but unbounded number of

participants, i.e., clients and notaries. We discuss technical details of our modeling in what follows.

Recall from above that signees are free to agree or decline an incoming transaction, depending on whether their higher-level

protocol wants to perform that transaction. We model agreement to a transaction by letting the higher-level protocol submit the

transaction (but not its dependencies) to the signee first. Upon receiving a new transaction from an initiator, the signee then

checks whether it has previously received the same transaction from the higher-level protocol and accepts or declines accordingly.

This modeling is realistic: in practice, the users of the initiator and signee clients would typically have to first agree on some

transaction out of band, and can then input this information into the protocol. Since this modeling means that transactions are

submitted to both clients in the initiator and the signee roles, we assume w.l.o.g. that transactions indicate which party is supposed

to perform the initiation process (e.g., by listing this party first in the list of participants).

In addition to explicit agreement of signees, we also model the process of pushing a transaction to another client. On a technical

level, this is modeled via a special submit request that instructs a client to push one of its known transactions to some client with a

certain PID. Explicitly modeling agreement of signees and pushing of transactions, instead of assuming that this is somehow done

out-of-band, allows for obtaining more realistic privacy results.

A notary in Corda may not just be a single machine but a service distributed across multiple machines. In our modeling, for

simplicity of presentation, we model a notary as a single machine. However, the composition theorem of the iUC framework

then allows for replacing this single machine with a distributed system that provides the same guarantees, thereby extending our

results also to distributed notaries.

All network communication between parties of Corda is via an ideal functionality Funicast, modeling authenticated secure

unicast channels between all participants. This functionality also offers a notion of time and guarantees eventual message delivery,

i.e., time may not advance if there is any message that still needs to be delivered and has been sent at least 𝛿 time units ago.

We allow dynamic corruption of clients and notaries. The adversary gains full control over corrupted clients and notaries and

can receive/send messages in their name from/to other parts of the protocol/higher-level protocols. While the ideal subroutines

are not directly corruptible, the adversary can simply corrupt the client/notary using the subroutine to, e.g., sign messages in the

name of that client/notary.

In addition to being explicitly corruptible by the adversary, clients also consider themselves to be (implicitly) corrupted – they

set a corruption flag but otherwise follow the protocol honestly – if they know a transaction that relies on (signatures of) a

corrupted notary.
6
More specifically, we capture the fact that Corda needs to assume honesty of notaries to be able to provide its

security guarantees. Consequently, if a client relies on a corrupted notary, then it cannot obtain the intended security guarantees

such as double spending protection anymore. Note that this modeling actually captures a somewhat weaker security assumption

than Corda: Corda officially requires all notaries to be honest in order to provide security guarantees. Our modeling only assumes

6
Here we use the more general corruption model we proposed in Section 2 to capture the security assumption of honest notaries in Corda. Using this modeling, we do

not have to hardwire this assumption explicitly into F
ledger

.
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that those notaries that a specific client actually relies on are honest, i.e., our analysis shows that security guarantees can be given

to clients even in the presence of corrupted notaries as long as these notaries are not used by the clients.

4.3 Corda Realizes F c
ledger

In this section, we present our security analysis of Corda. On a high-level, we will show the following security properties for

Corda:

Partial consistency: All honest parties read subsets of the same global transaction graph. Hence, for every transaction ID they

in particular also agree on the contents and dependencies of the corresponding transaction.

Double spending protection: The global graph, which honest parties read from, does not contain double spending.

Liveness: If a transaction involves honest clients only, then, once it has been approved by all clients, it will end up in the

global graph within a bounded time frame. Further, after another bounded time frame, all participating clients will consider this

transaction to be part of their own partial view of the local state, i. e., this transaction will be part of the output of read requests

from those participants.

Privacy: A dishonest party (or an outside attacker) does not learn the body of a transaction 𝑡𝑥7 unless he is involved in 𝑡𝑥 (e.g.,

(i) because he is an initiator, signee, or the notary of 𝑡𝑥 , or (ii) because one of the honest clients who has access to 𝑡𝑥 pushes 𝑡𝑥 or

a transaction that depends on 𝑡𝑥 to the dishonest party).

Formally, we first define F c
ledger

, an instantiation of F
ledger

, which formalizes and enforces the above security properties. This is

the first formalization of the novel notion of partial consistency. As part of defining this instantiation, we also identify the precise

privacy level provided by Corda, including several (partly unexpected) privacy leakages. That is, we define F c
ledger

to leak only the

information that an attacker on Corda can indeed obtain but not anything else, as discussed at the end of this section. We then

show that Corda indeed realizes F c
ledger

and discuss why this result implies that Corda itself in fact enjoys the above mentioned

properties.

On a technical level, we define the subroutines of F
ledger

to obtain the instantiation F c
ledger

= (F
ledger

| F c
submit

, F c
read

, F c
update

,

F c
updRnd

, F c
init
, F c

leak
, F c

storage
) as described next (cf. Figure 1, the additional subroutine F c

storage
is explained below). We provide the

formal specification of F c
ledger

in Appendix F.

In what follows, we call the set of transaction and attachment IDs a party pid may have access to in plain its potential knowledge.
More specifically, the potential knowledge of pid includes all transactions from the buffer and global graph that involve only

honest clients and which either directly involve pid, or which have been pushed to pid by another honest party that knows the

transaction. In addition, it also contains arbitrary transactions that involve at least one corrupted client, with the exact set of

transactions determined by A. We use the term current knowledge to describe the set of transactions that a party pid currently

knows, where we allow A to determine this set as a growing subset of the potential knowledge.

• F c
init

is parameterized by a set of participants. It provides this set to F
ledger

.

• F c
submit

handles (i) transaction and attachment submission, and (ii) pushing transactions from one party to another party. In

Case (i), F c
submit

ensures that incoming transactions and attachments are valid according to a validation algorithm, a parameter

of F c
submit

. If pid is the initiator of the transaction, F c
submit

also checks that pid can execute the validation, i. e., whether all

dependent objects of the transaction are in pid’s current knowledge. For valid transactions and attachments, F c
submit

generates

an object ID and leaks all meta-information (e.g., involved parties, IDs of dependent objects, ...) to A plus the length of the

transaction/attachment body. If a corrupted party is involved, then F c
submit

also leaks the body. If a party pid𝑎 (tries to) push a

transaction identified by txID to a party pid𝑏 (Case (ii)), F c
submit

first ensures that all dependencies of tx are in the current

knowledge of pid𝑎 and, if so, then leaks to A that pid𝑎 shared txID with pid𝑏 . From then on, tx and all of its dependencies are

considered to be part of the potential knowledge of pid𝑏 .
• F c

update
mainly handles updates to the state (proposed by A). The adversary A can specify a set of IDs of transactions/attach-

ments that have previously been submitted by honest parties and submit a set of transactions/attachments from dishonest

parties to extend the transaction graph. F c
update

ensures that (i) all (honest) participants agreed to a transaction, (ii) all
dependencies are included in the global graph, (iii) dishonest transactions are valid, and (iv) there is no double spending. If any

of the checks fails, the graph update is rejected.

• F c
read

always enforces local read operations. Upon receiving such a read request for an honest party pid, the adversary is

expected to provide a subgraph 𝑔 of the global graph. This graph 𝑔 must also be a subset of pid’s current knowledge, must

be self-consistent, i. e., it must contain at least the previous outputs to pid’s read requests, and it must be complete, i. e., the

graph 𝑔 contains all dependencies of objects in 𝑔. Furthermore, if there is a transaction tx in the global graph which has an

honest initiator, pid is a participant, and which has been submitted at least 2𝛿 time units ago, where 𝛿 is a parameter which

specifies the network delay, then tx must be included in 𝑔. The graph 𝑔 is then returned as response to the read request. For

7
We consider the “transaction body” to consist of the bit string contained in the transaction (and which might contain, e.g., inputs for the smart contracts) as well as the

bit strings contained in output states (encoding, e.g., assets modeled by those states). We consider everything else to be meta-information of the transaction, including

its ID, references to input states and smart contracts, and the set of participants.
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read requests from corrupted parties F c
read

returns an empty response. Intuitively, this is because F
submit

and F
leak

already

leak all information known to corrupted parties.

• Whenever A requests to advance time, F c
updRnd

checks whether a transaction 𝑡𝑥 exists in the buffer where all participants are

honest, agreed on the transaction, and the last acknowledgment respectively the initiation (if no signees are involved) was

received more than 𝜔 (tx) time units ago.
8
If such a transaction exists, then the time increment request is denied. Otherwise, it

is accepted.

• As explained in Section 2, the subroutines of F
ledger

can themselves share other subroutines, e.g, to exchange shared state. We

use this feature by adding an additional subroutine F c
storage

which provides an interface for all other F c
ledger

subroutines (i) to
query the potential knowledge of a party, (ii) to generate unique IDs, to store them, and to distribute them, and (iii) to access

transactions/attachments by ID. F c
storage

simplifies the specification as it allows to easily synchronize internal state used for

bookkeeping purposes across the subroutines of F
ledger

.

• Upon corruption of a client, F c
leak

computes its potential knowledge and forwards this information to A.

• To capture Pc
’s random oracle, the adversary A is also allowed to query F c

update
for (new) transaction and attachment IDs.

• To capture that Corda might leak the validity of a transaction, F c
read

allows the adversary to query the validity of transactions

regarding a parties pid current state.

Using this instantiation of F
ledger

, we can state our main theorem.

Theorem 4.1. Let Pc and F c
ledger

be as described above. Then, Pc ≤ F c
ledger

.

Here we provide a proof sketch with the core intuition. The full proof is given in Appendix F.

Sketch. We show that F c
ledger

leaks just enough details for a simulator to internally simulate a blinded version of the Corda

protocol. As mentioned and discussed at the end of this section, all leakages defined by F c
ledger

are indeed necessary for a successful

simulation since the same information is also leaked by Corda. Hence, F c
ledger

precisely captures the actual privacy level of Corda.

As explained above, all meta-information of transactions leak, only transaction bodies stay private. The meta data information

already allows to execute all checks in the Corda protocol except for the validity check of the transaction body. For honest

participants, we can directly derive the validity of the transaction body from the leakage during transaction submission of the

transaction’s initiator and use this during the simulation.

Our simulator S (cf. proof of Theorem F.1 in Appendix F for a full definition) internally simulates a blinded instance of Pc
, in

the following called Pc
. During the simulation, S uses dummy transactions generated from the submission leakage. The dummy

transaction is identified by the original transaction ID, contains all leaked data and pads the transaction body such that the dummy

version has the same length as the original transaction. As S can extract the knowledge of honest parties, the transaction graph

structure, and the validity of transactions, S can derive all steps in Pc
without having access to the full data. In particular, S

knows for all honest parties which transaction/attachment IDs are in the parties knowledge. This allows it to perfectly simulate

all network interaction of Pc
as S knows when a party needs to trigger, e. g., the SendTransactionFlow subprotocol instead of

directly simulating the approval to a transaction. Further, S can keep states of honest parties in Pc
and F c

ledger
synchronous such

that read requests lead to the same output in real and ideal world. We observe that the output from S to F c
ledger

never fails. Pc

ensures that knowledge does not violate the boundaries of F c
ledger

, e. g., Pc
’s build-in network Funicast ensures delivery boundaries.

Regarding S interaction with the network. As corrupted parties send transactions and attachments in plain to S and S can

evaluate the validity of transactions (according to a parties knowledge), S has access to all relevant information to answer

request/handle operations indistinguishably between Pc
and F c

ledger
. This is due to the fact that S replaces the dummy transaction

by the original transaction as soon as they leak (and regenerate dependent data, especially signatures, to make both worlds

indistinguishable).

We highlight two edge cases: Firstly, an attacker may try to break privacy of transactions by brute forcing the hashes. As

S queries F c
ledger

for IDs, this attack would be successful in both real and ideal world. Secondly, when corrupted parties push

arbitrary transactions to honest parties, S might not know whether the validity check succeeds (since this transaction might

reference input states that the corrupted party and hence S does not know). In this case (and only in this case), S directly queries

F c
ledger

for the validity of the transaction according to the honest party’s knowledge. We will discuss both cases in more detail in

the following discussion. □
We now discuss the implications of Theorem 4.1 for the security properties of Corda.

Partial consistency. By definition of F c
read

, the responses to read requests of honest parties are subsets of the global graph.

This directly implies that honest clients (i. e., clients that are neither controlled by the adversary nor rely on a malicious notary) of

Corda obtain consistent partial views of the same global state.

8𝜔 (tx) is a function that linearly depends on the network delay 𝛿 and the size of the subgraph defined by the transaction tx and all of its inputs (including their

respective inputs, etc.). Such a function is necessary due to the way parties in Corda retrieve unknown dependencies for transactions.
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Double spending protection. By definition of F c
update

, the global graph does not contain any double spending. Since this

global graph is a superset of read outputs of honest parties (as per F c
read

), this implies that Corda protects honest clients from

double spending.

Liveness. F c
updRnd

guarantees that transactions which involve only honest clients end up in the global graph after an upper

bounded delay (once all clients have acknowledged the transaction). Furthermore, F c
read

ensures that transactions with honest

initiators end up in the local state of all honest signees after another bounded time delay. By Theorem 4.1, these properties directly

translate to Corda. A stronger liveness statement is not possible for Corda: if a notary is corrupted (and by extension all clients

that rely on this notary also consider themselves to be corrupted), then a transaction might never be signed by that notary and

hence not enter the global graph. Further, since the initiator is solely responsible for forwarding responses from the notary, such a

response might not end up in the local state of a signee if the initiator misbehaves.

Privacy. Privacy needs a bit more explanation than the other properties. Firstly, observe that F c
read

ensures that honest parties

can only read transactions that are part of their potential knowledge, i. e., those they are directly involved in or that have been

forwarded to them by someone that already knew the transaction. Furthermore, by definition of F c
submit

, if no dishonest client

is involved in a new transaction, only the length of the body is leaked. For Corda, this implies that the body of a transaction

that involves only honest clients (and in extension an honest notary) stays secret from everyone, unless one of those clients

intentionally forwards the transaction to another party.

We can also derive what a dishonest client or dishonest notary in Corda can learn at most, thereby determining the level of

privacy that Corda provides: By definition of F c
submit

and F
leak

, all of the metadata of transactions is leaked. In contrast, the message

bodies of transactions leak only if they involve a dishonest client. Hence, an adversary on Corda learns at most the metadata

of transactions, all transaction bodies that use a dishonest notary, and all transaction bodies that involve a dishonest client. An

adversary cannot learn anything else since otherwise the simulation of dishonest clients/notaries would fail, i. e., Theorem 4.1

could not be shown.

We note that Corda indeed leaks (some) meta-information of transactions. This is because an outside adversary can observe

the network communication, which in itself strongly depends and changes based on the meta-information of a transaction. For

example, the initiator of an honest transaction collects the approvals of all signees, which makes it trivial to derive the set of

participating clients. Similarly, the notary is obvious from watching where a transaction is sent by the initiator after collecting

approvals from signees. Even the set of inputs to a transaction is partially visible as, e.g., the signees and the notary request missing

inputs from the initiator. While we slightly over approximate this information leakage by leaking the full meta-information in

F c
ledger

, it is not possible to obtain a reasonably stronger privacy statement for meta-information in Corda.

Furthermore, observe that the adversary on F c
ledger

is allowed to obtain IDs for arbitrary transactions. This captures that the IDs

of transactions in Corda are computed as hashes over the full transaction, including the body of the transaction in plain. Hence, if

an attacker gets hold of such an ID, then he can use it to try and brute force the content of the transaction.

Finally, observe that an adversary on F c
ledger

is also allowed to validate arbitrary transactions with respect to the current partial

view of some honest client, which might in particular leak information about input states. This captures the following attack on

Corda: If an adversary is in control of a notary and he knows an ID of a (currently secret) transaction 𝑡𝑥 from an honest client, then

he can create (and let the notary sign) a new transaction 𝑡𝑥 ′ that uses one or more output states from the secret transaction 𝑡𝑥 as

input. Now, the adversary can push this transaction via a corrupted client to the honest client, which then verifies the transaction

and, depending on whether verification succeeds, adds 𝑡𝑥 ′ to his partial view of the global state. Since this is generally observable,

the adversary learns the result of the verification, which, depending on the smart contracts involved, might leak parts of 𝑡𝑥 .

We emphasize that both of the above leakages, respectively attacks, on Corda are possible only if an ID of a transaction is leaked

by a higher-level protocol, illustrating the importance of the IDs for secrecy. Since we consider arbitrary higher-level protocols

(simulated by the environment) in our proof, we cannot circumvent these leakages. However, if we were to consider a specific

higher-level protocol, say, Q using Corda/the ideal ledger such that Q keeps the transaction IDs secret (at least for honest parties),

then one can actually prove that Corda in this specific context realizes a variant of F c
ledger

that does not leak transaction IDs, does

not give access to a hash oracle, and does not leak verification results. But, again, our results show that this is not true in general.

Other security properties. Appendix F.3 discusses why other standard blockchain security properties, including chain-quality
and chain-growth, are not applicable to Corda.

ACKNOWLEDGMENTS
This research was partially funded by the Ministry of Science of Baden-Württemberg, Germany, for the Doctoral Program “Services

Computing”.
9
This work was also supported by Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) through

grant KU 1434/13-1, 442893093, and as part of the Research and Training Group 2475 “Cybercrime and Forensic Computing” under

grant number 393541319/GRK2475/1-2019 and by the state of Bavaria at the Nuremberg Campus of Technology (NCT).

9
http://www.services-computing.de/

15

http://www.services-computing.de/


REFERENCES
[1] Accenture. 2019. Accenture and SAP Build Prototype that Uses Distributed Ledger Technology to Enable More Efficient, Secure and Reliable Payments Between

Banks and Customers. https://newsroom.accenture.com/news/accenture-and-sap-build-prototype-that-uses-distributed-ledger-technology-to-enable-more-

efficient-secure-and-reliable-payments-between-banks-and-customers.htm. (Accessed on 05/26/2020).

[2] Elli Androulaki, Artem Barger, Vita Bortnikov, Christian Cachin, Konstantinos Christidis, Angelo De Caro, David Enyeart, Christopher Ferris, Gennady Laventman,

Yacov Manevich, Srinivasan Muralidharan, Chet Murthy, Binh Nguyen, Manish Sethi, Gari Singh, Keith Smith, Alessandro Sorniotti, Chrysoula Stathakopoulou,

Marko Vukolic, Sharon Weed Cocco, and Jason Yellick. 2018. Hyperledger fabric: a distributed operating system for permissioned blockchains. In Proceedings of
the Thirteenth EuroSys Conference, EuroSys 2018, Porto, Portugal, April 23-26, 2018. ACM, 30:1–30:15.

[3] Christian Badertscher, Peter Gazi, Aggelos Kiayias, Alexander Russell, and Vassilis Zikas. 2018. Ouroboros Genesis: Composable Proof-of-Stake Blockchains with

Dynamic Availability. In Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security, CCS 2018, Toronto, ON, Canada, October 15-19,
2018. ACM, 913–930.

[4] Christian Badertscher, Peter Gazi, Aggelos Kiayias, Alexander Russell, and Vassilis Zikas. 2018. Ouroboros Genesis: Composable Proof-of-Stake Blockchains with

Dynamic Availability. IACR Cryptology ePrint Archive 2018 (2018), 378.
[5] Christian Badertscher, Ueli Maurer, Daniel Tschudi, and Vassilis Zikas. 2017. Bitcoin as a Transaction Ledger: A Composable Treatment. In Advances in Cryptology

- CRYPTO 2017 - 37th Annual International Cryptology Conference, Santa Barbara, CA, USA, August 20-24, 2017, Proceedings, Part I (Lecture Notes in Computer
Science), Vol. 10401. Springer, 324–356.

[6] Leemon Baird. 2016. Hashgraph Consensus: Fair, Fast, Byzantine Fault Tolerance. http://www.swirlds.com/wp-content/uploads/2016/06/2016-05-31-Swirlds-

Consensus-Algorithm-TR-2016-01.pdf. (Accessed on 03/06/2020).

[7] BCG. 2019. Digital Ecosystems in Trade Finance. https://image-src.bcg.com/Images/BCG_Digital_Ecosystems_in_Trade_Finance_tcm38-229964.pdf. (Accessed on

05/26/2020).

[8] Mike Brown and Richard Gendal Brown. 2019. Corda: A distributed ledger. https://www.r3.com/reports/corda-technical-whitepaper/. (Accessed on 11/11/2019).

[9] Richard Gendal Brown. 2020. The Corda Platform: An Introduction. https://www.r3.com/wp-content/uploads/2019/06/corda-platform-whitepaper.pdf. (Accessed

on 28/05/2020).

[10] Jan Camenisch, Robert R. Enderlein, Stephan Krenn, Ralf Küsters, and Daniel Rausch. 2016. Universal Composition with Responsive Environments. In Advances in
Cryptology - ASIACRYPT 2016 - 22nd International Conference on the Theory and Application of Cryptology and Information Security (Lecture Notes in Computer
Science), Jung Hee Cheon and Tsuyoshi Takagi (Eds.), Vol. 10032. Springer, 807–840. A full version is available at https://eprint.iacr.org/2016/034.

[11] Jan Camenisch, Stephan Krenn, Ralf Küsters, and Daniel Rausch. 2019. iUC: Flexible Universal Composability Made Simple. In Advances in Cryptology - ASIACRYPT
2019 - 25th International Conference on the Theory and Application of Cryptology and Information Security, Kobe, Japan, December 8-12, 2019, Proceedings, Part III
(Lecture Notes in Computer Science), Vol. 11923. Springer, 191–221. The full version is available at http://eprint.iacr.org/2019/1073.

[12] Ran Canetti. 2001. Universally Composable Security: A New Paradigm for Cryptographic Protocols. In Proceedings of the 42nd Annual Symposium on Foundations
of Computer Science (FOCS 2001). IEEE Computer Society, 136–145.

[13] R. Canetti, Y. Dodis, R. Pass, and S. Walfish. 2007. Universally Composable Security with Global Setup. In Theory of Cryptography, Proceedings of TCC 2007 (Lecture
Notes in Computer Science), S. P. Vadhan (Ed.), Vol. 4392. Springer, 61–85.

[14] Ran Canetti, Abhishek Jain, and Alessandra Scafuro. 2014. Practical UC security with a Global Random Oracle. In Proceedings of the 2014 ACM SIGSAC Conference
on Computer and Communications Security, Scottsdale, AZ, USA, November 3-7, 2014. ACM, 597–608.

[15] coindesk. 2019. Over 50 Banks, Firms Trial Trade Finance App Built With R3’s Corda Blockchain. https://www.coindesk.com/over-50-banks-firms-trial-trade-

finance-app-built-with-r3s-corda-blockchain. (Accessed on 06/02/2020).

[16] Phil Daian, Rafael Pass, and Elaine Shi. 2019. Snow White: Robustly Reconfigurable Consensus and Applications to Provably Secure Proof of Stake. In Financial
Cryptography and Data Security 2019 (LNCS), Vol. 11598. Springer, 23–41.

[17] Bernardo David, Peter Gazi, Aggelos Kiayias, and Alexander Russell. 2018. Ouroboros Praos: An Adaptively-Secure, Semi-synchronous Proof-of-Stake Blockchain.

In Advances in Cryptology - EUROCRYPT 2018 - 37th Annual International Conference on the Theory and Applications of Cryptographic Techniques, Tel Aviv, Israel,
April 29 - May 3, 2018 Proceedings, Part II (Lecture Notes in Computer Science), Vol. 10821. Springer, 66–98.

[18] Stefan Dziembowski, Lisa Eckey, Sebastian Faust, Julia Hesse, and Kristina Hostáková. 2019. Multi-party Virtual State Channels. In Advances in Cryptology
- EUROCRYPT 2019 - 38th Annual International Conference on the Theory and Applications of Cryptographic Techniques, Darmstadt, Germany, May 19-23, 2019,
Proceedings, Part I (Lecture Notes in Computer Science), Vol. 11476. Springer, 625–656.

[19] Christoph Egger, Pedro Moreno-Sanchez, and Matteo Maffei. 2019. Atomic Multi-Channel Updates with Constant Collateral in Bitcoin-Compatible Payment-

Channel Networks. In Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications Security, CCS 2019, London, UK, November 11-15, 2019.
ACM, 801–815.

[20] Forbes. 2020. NASDAQ Partnership With Blockchain Firm R3 Is Great For Crypto. https://www.forbes.com/sites/benjessel/2020/05/22/why-nasdaqs-partnership-

with-r3-is-great-for-digital-asset-adoption/. (Accessed on 05/26/2020).

[21] Juan A. Garay, Aggelos Kiayias, and Nikos Leonardos. 2015. The Bitcoin Backbone Protocol: Analysis and Applications. In Advances in Cryptology - EUROCRYPT
2015 - 34th Annual International Conference on the Theory and Applications of Cryptographic Techniques, Sofia, Bulgaria, April 26-30, 2015, Proceedings, Part II
(Lecture Notes in Computer Science), Vol. 9057. Springer, 281–310.

[22] Mike Graf, Ralf Küsters, and Daniel Rausch. 2020. Accountability in a Permissioned Blockchain: Formal Analysis of Hyperledger Fabric. In IEEE European
Symposium on Security and Privacy, EuroS&P 2020, Genoa, Italy, September 7-11, 2020. IEEE, 236–255.

[23] Hewlett Packard Enterprise. 2018. Blockchain unchained. https://www.hpe.com/us/en/newsroom/blog-post/2018/07/blockchain-unchained.html. (Accessed on

05/26/2020).

[24] HM Land Registry. 2018. HM Land Registry to explore the benefits of blockchain. https://www.gov.uk/government/news/hm-land-registry-to-explore-the-

benefits-of-blockchain. (Accessed on 05/26/2020).

[25] International Business Times. 2015. Blockchain expert Tim Swanson talks about R3 partnership of Goldman Sachs, JP Morgan, UBS, Barclays et al.

https://www.ibtimes.co.uk/blockchain-expert-tim-swanson-talks-about-r3-partnership-goldman-sachs-jp-morgan-ubs-barclays-1519905. (Accessed on 05/26/2020).

[26] Thomas Kerber, Aggelos Kiayias, Markulf Kohlweiss, and Vassilis Zikas. 2019. Ouroboros Crypsinous: Privacy-Preserving Proof-of-Stake. In 2019 IEEE Symposium
on Security and Privacy, SP 2019, San Francisco, CA, USA, May 19-23, 2019. IEEE, 157–174.

[27] Aggelos Kiayias and Orfeas Stefanos Thyfronitis Litos. 2020. A Composable Security Treatment of the Lightning Network. In 33rd IEEE Computer Security
Foundations Symposium, CSF 2020, Boston, MA, USA, June 22-26, 2020. IEEE, 334–349.

[28] Aggelos Kiayias, Alexander Russell, Bernardo David, and Roman Oliynykov. 2017. Ouroboros: A Provably Secure Proof-of-Stake Blockchain Protocol. In Advances
in Cryptology - CRYPTO 2017 - 37th Annual International Cryptology Conference, Santa Barbara, CA, USA, August 20-24, 2017, Proceedings, Part I (Lecture Notes in
Computer Science), Vol. 10401. Springer, 357–388.

[29] Aggelos Kiayias, Hong-Sheng Zhou, and Vassilis Zikas. 2016. Fair and Robust Multi-party Computation Using a Global Transaction Ledger. In Advances in
Cryptology - EUROCRYPT 2016 - 35th Annual International Conference on the Theory and Applications of Cryptographic Techniques, Vienna, Austria, May 8-12, 2016,
Proceedings, Part II (Lecture Notes in Computer Science), Vol. 9666. Springer, 705–734.

[30] Eleftherios Kokoris-Kogias, Philipp Jovanovic, Linus Gasser, Nicolas Gailly, Ewa Syta, and Bryan Ford. 2018. OmniLedger: A Secure, Scale-Out, Decentralized

Ledger via Sharding. In 2018 IEEE Symposium on Security and Privacy, SP 2018, Proceedings, 21-23 May 2018, San Francisco, California, USA. IEEE Computer Society,

583–598.

[31] Ahmed E. Kosba, Andrew Miller, Elaine Shi, Zikai Wen, and Charalampos Papamanthou. 2016. Hawk: The Blockchain Model of Cryptography and Privacy-

Preserving Smart Contracts. In IEEE Symposium on Security and Privacy, SP 2016, San Jose, CA, USA, May 22-26, 2016. IEEE Computer Society, 839–858.

[32] R. Küsters. 2006. Simulation-Based Security with Inexhaustible Interactive Turing Machines. In Proceedings of the 19th IEEE Computer Security Foundations
Workshop (CSFW-19 2006). IEEE Computer Society, 309–320. See [? ] for a full and revised version.

16

https://newsroom.accenture.com/news/accenture-and-sap-build-prototype-that-uses-distributed-ledger-technology-to-enable-more-efficient-secure-and-reliable-payments-between-banks-and-customers.htm
https://newsroom.accenture.com/news/accenture-and-sap-build-prototype-that-uses-distributed-ledger-technology-to-enable-more-efficient-secure-and-reliable-payments-between-banks-and-customers.htm
http://www.swirlds.com/wp-content/uploads/2016/06/2016-05-31-Swirlds-Consensus-Algorithm-TR-2016-01.pdf
http://www.swirlds.com/wp-content/uploads/2016/06/2016-05-31-Swirlds-Consensus-Algorithm-TR-2016-01.pdf
https://image-src.bcg.com/Images/BCG_Digital_Ecosystems_in_Trade_Finance_tcm38-229964.pdf
https://www.r3.com/reports/corda-technical-whitepaper/
https://eprint.iacr.org/2016/034
http://eprint.iacr.org/2019/1073
https://www.coindesk.com/over-50-banks-firms-trial-trade-finance-app-built-with-r3s-corda-blockchain
https://www.coindesk.com/over-50-banks-firms-trial-trade-finance-app-built-with-r3s-corda-blockchain
https://www.forbes.com/sites/benjessel/2020/05/22/why-nasdaqs-partnership-with-r3-is-great-for-digital-asset-adoption/
https://www.forbes.com/sites/benjessel/2020/05/22/why-nasdaqs-partnership-with-r3-is-great-for-digital-asset-adoption/
https://www.hpe.com/us/en/newsroom/blog-post/2018/07/blockchain-unchained.html
https://www.gov.uk/government/news/hm-land-registry-to-explore-the-benefits-of-blockchain
https://www.gov.uk/government/news/hm-land-registry-to-explore-the-benefits-of-blockchain
https://www.ibtimes.co.uk/blockchain-expert-tim-swanson-talks-about-r3-partnership-goldman-sachs-jp-morgan-ubs-barclays-1519905


[33] Ralf Küsters and Daniel Rausch. 2017. A Framework for Universally Composable Diffie-Hellman Key Exchange. In IEEE 38th Symposium on Security and Privacy
(S&P 2017). IEEE Computer Society, 881–900.

[34] Russell W. F. Lai, Viktoria Ronge, Tim Ruffing, Dominique Schröder, Sri Aravinda Krishnan Thyagarajan, and Jiafan Wang. 2019. Omniring: Scaling Private

Payments Without Trusted Setup. In Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications Security, CCS 2019, London, UK, November
11-15, 2019. ACM, 31–48.

[35] Loi Luu, Viswesh Narayanan, Chaodong Zheng, Kunal Baweja, Seth Gilbert, and Prateek Saxena. 2016. A Secure Sharding Protocol For Open Blockchains. In

Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, Vienna, Austria, October 24-28, 2016. ACM, 17–30.

[36] McKinsey Digital. 2018. The strategic business value of the blockchain market. https://www.mckinsey.com/business-functions/mckinsey-digital/our-insights/

blockchain-beyond-the-hype-what-is-the-strategic-business-value. (Accessed on 05/26/2020).

[37] Rafael Pass, Lior Seeman, and Abhi Shelat. 2017. Analysis of the Blockchain Protocol in Asynchronous Networks. In Advances in Cryptology - EUROCRYPT 2017 -
36th Annual International Conference on the Theory and Applications of Cryptographic Techniques, Paris, France, April 30 - May 4, 2017, Proceedings, Part II (Lecture
Notes in Computer Science), Vol. 10211. 643–673.

[38] R3. 2017. R3’s Corda Partner Network Grows to Over 60 Companies Including Hewlett Packard Enterprise, Intel and Microsoft. https://www.r3.com/press-

media/r3s-corda-partner-network-grows-to-over-60-companies-including-hewlett-packard-enterprise-intel-and-microsoft/. (Accessed on 06/02/2020).

[39] R3. 2020. Corda Source Code. https://github.com/corda/corda. (Accessed on 04/24/2020).

[40] R3. 2020. R3 Corda Master documentation. https://docs.corda.net/docs/corda-os/4.4.html. (Accessed on 04/24/2020).

[41] Reuters. 2015. Nine of world’s biggest banks join to form blockchain partnership. https://www.reuters.com/article/us-banks-blockchain/nine-of-worlds-biggest-

banks-join-to-form-blockchain-partnership-idUSKCN0RF24M20150915. (Accessed on 05/26/2020).

[42] Shifeng Sun, Man Ho Au, Joseph K. Liu, and Tsz Hon Yuen. 2017. RingCT 2.0: A Compact Accumulator-Based (Linkable Ring Signature) Protocol for Blockchain

Cryptocurrency Monero. In Computer Security - ESORICS 2017 - 22nd European Symposium on Research in Computer Security, Oslo, Norway, September 11-15, 2017,
Proceedings, Part II (Lecture Notes in Computer Science), Vol. 10493. Springer, 456–474.

[43] Digital Asset Canton Team. 2019. Canton: A Private, Scalable, and Composable Smart Contract Platform. https://www.canton.io/publications/canton-

whitepaper.pdf. (Accessed on 11/27/2019).

[44] Gavin Wood. 2014. Ethereum: A secure decentralised generalised transaction ledger. https://gavwood.com/paper.pdf. (Accessed on 01/18/2019).

[45] Tsz Hon Yuen, Shifeng Sun, Joseph K. Liu, Man Ho Au, Muhammed F. Esgin, Qingzhao Zhang, and Dawu Gu. 2020. RingCT 3.0 for Blockchain Confidential

Transaction: Shorter Size and Stronger Security. In Financial Cryptography and Data Security - 24th International Conference, FC 2020, Kota Kinabalu, Malaysia,
February 10-14, 2020 Revised Selected Papers (Lecture Notes in Computer Science), Vol. 12059. Springer, 464–483.

[46] Mahdi Zamani, Mahnush Movahedi, and Mariana Raykova. 2018. RapidChain: Scaling Blockchain via Full Sharding. In Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security, CCS 2018, Toronto, ON, Canada, October 15-19, 2018. ACM, 931–948.

APPENDIX:
A A BRIEF INTRO TO THE IUC FRAMEWORK
This section provides a brief introduction to the iUC framework, which underlies all results in this paper. The iUC framework [11]

is a highly expressive and user friendly model for universal composability. It allows for the modular analysis of different types of

protocols in various security settings.

The iUC framework uses interactive Turing machines as its underlying computational model. Such interactive Turing machines

can be connected to each other to be able to exchange messages. A set of machines Q = {M1, . . .,M𝑘 } is called a system. In a run of

Q, there can be one or more instances (copies) of each machine in Q. One instance can send messages to another instance. At any

point in a run, only a single instance is active, namely, the one to receive the last message; all other instances wait for input. The

active instance becomes inactive once it has sent a message; then the instance that receives the message becomes active instead

and can perform arbitrary computations. The first machine to run is the so-called master. The master is also triggered if the last

active machine did not output a message. In iUC, the environment (see next) takes the role of the master. In the iUC framework

a special user-specified CheckID algorithm is used to determine which instance of a protocol machine receives a message and

whether a new instance is to be created (see below).

To define the universal composability security experiment (cf. Camenisch et al. [11]), one distinguishes between three types of

systems: protocols, environments, and adversaries. As is standard in universal composability models, all of these types of systems

have to meet a polynomial runtime notion . Intuitively, the security experiment in any universal composability model compares

a protocol P with another protocol F , where F is typically an ideal specification of some task, called ideal protocol or ideal
functionality. The idea is that if one cannot distinguish P from F , then P must be “as good as” F . More specifically, the protocol

P is considered secure (written P ≤ F ) if for all adversaries A controlling the network of P there exists an (ideal) adversary

S, called simulator, controlling the network of F such that {A,P} and {S, F } are indistinguishable for all environments E.
Indistinguishability means that the probability of the environment outputting 1 in runs of the system {E,A,P} is negligibly
close to the probability of outputting 1 in runs of the system {E,S, F } (written {E,A,P} ≡ {E,S, F }). The environment can

also subsume the role of the network attacker A, which yields an equivalent definition in the iUC framework. We usually show

this equivalent but simpler statement in our proofs, i.e., that there exists a simulator S such that {E,P} ≡ {E,S, F } for all
environments.

A protocol P in the iUC framework is specified via a system of machines {𝑀1, . . ., 𝑀𝑙 }; the framework offers a convenient

template for the specification of such systems. Each machine 𝑀𝑖 implements one or more roles of the protocol, where a role

describes a piece of code that performs a specific task. For example, a (real) protocol Psig for digital signatures might contain

a signer role for signing messages and a verifier role for verifying signatures. In a run of a protocol, there can be several

instances of every machine, interacting with each other (and the environment) via I/O interfaces and interacting with the adversary

(and possibly the environment subsuming a network attacker) via network interfaces. An instance of a machine 𝑀𝑖 manages

one or more so-called entities. An entity is identified by a tuple (pid , sid , role) and describes a specific party with party ID (PID)

pid running in a session with session ID (SID) sid and executing some code defined by the role role where this role has to be
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(one of) the role(s) of 𝑀𝑖 according to the specification of 𝑀𝑖 . Entities can send messages to and receive messages from other

entities and the adversary using the I/O and network interfaces of their respective machine instances. More specifically, the I/O

interfaces of both machines need to be connected to each other (because one machine specifies the other as a subroutine) to enable

communication between entities of those machines.

Roles of a protocol can be either public or private. The I/O interfaces of private roles are only accessible by other (entities

belonging to) roles of the same protocol, whereas I/O interfaces of public roles can also be accessed by other (potentially unknown)

protocols/the environment. Hence, a private role models some internal subroutine that is protected from access outside of the

protocol, whereas a public role models some publicly accessible operation that can be used by other protocols. One uses the

syntax “(pubrole1, . . . , pubrolen | privrole1, . . . , privrolen)” to uniquely determine public and private roles of a protocol. Two

protocols P and Q can be combined to form a new more complex protocol as long as their I/O interfaces connect only via their

public roles. In the context of the new combined protocol, previously private roles remain private while previously public roles

may either remain public or be considered private, as determined by the protocol designer. The set of all possible combinations of

P and Q, which differ only in the set of public roles, is denoted by Comb(Q,P).
An entity in a protocol might become corrupted by the adversary, in which case it acts as a pure message forwarder between

the adversary and any connected higher-level protocols as well as subroutines. In addition, an entity might also consider itself

(implicitly) corrupted while still following its own protocol because, e.g., a subroutine has been corrupted. Corruption of entities in

the iUC framework is highly customizable; one can, for example, prevent corruption of certain entities during a protected setup

phase.

As explained, the iUC framework offers a convenient template for specifying protocols (which can then also be combined with

each other). This template includes many optional parts with sensible defaults such that protocol designers can customize exactly

those parts that they need. The specifications using the iUC template that we give in this paper are mostly self explanatory, except

for a few aspects:

• The CheckID algorithm is used to determine which machine instance is responsible for and hence manages which entities.

Whenever a new message is sent to some entity 𝑒 whose role is implemented by a machine𝑀 , the CheckID algorithm is run

with input 𝑒 by each instance of𝑀 (in order of their creation) to determine whether 𝑒 is manages by the current instance. The

first instance that accepts 𝑒 then gets to process the incoming message. By default, CheckID accepts entities of a single party

in a single session, which captures a traditional formulation of a real protocol. Other common definitions include accepting all

entities from the same session, which captures a traditional formulation of an ideal functionality.

• The special variable (pidcur, sidcur, rolecur) refers to the currently active entity of the current machine instance (that was

previously accepted by CheckID). If the current activation is due to a message received from another entity, then (pidcall,
sidcall, rolecall) refers to that entity.

• The special macro corr(pid𝑠𝑢𝑏 , sid𝑠𝑢𝑏 , role𝑠𝑢𝑏 ) can be used to obtain the current corruption status (i.e., whether this entity is

still honest or considers itself to be implicitly/explicitly corrupted) of an entity belonging to a subroutine.

• The iUC framework supports so-called responsive environments and responsive adversaries [10]. Such environments and

adversaries can be forced to respond to certain messages on the network, called restricting messages, immediately and without

first activating the protocol in any other way. This is a useful mechanism for modeling purposes, e.g., to leak some information

to the attacker or to let the attacker decide upon the corruption status of a new entity but without disrupting the intended

execution of the protocol. Such network messages are marked by writing “send responsively” instead of just “send”.

The iUC framework supports the modular analysis of protocols via a so-called composition theorem:

Corollary A.1 (Concurrent composition in iUC; informal). Let P and F be two protocols such that P ≤ F . Let Q be
another protocol such that Q and F can be connected. Let R ∈ Comb(Q,P) and let I ∈ Comb(Q, F ) such that R and I agree on
their public roles. Then R ≤ I.

By this theorem, one can first analyze and prove the security of a subroutine P independently of how it is used later on in the

context of a more complex protocol. Once we have shown that P ≤ F (for some other, typically ideal protocol F ), we can then

analyze the security of a higher-level protocol Q based on F . Note that this is simpler than analyzing Q based on P directly as

ideal protocols provide absolute security guarantees while typically also being less complex, reducing the potential for errors in

proofs. Once we have shown that the combined protocol, say, (Q | F ) realizes some other protocol, say, F ′, the composition

theorem and transitivity of the ≤ relation then directly implies that this also holds true if we run Q with an implementation P of

F . That is, (Q | P) is also a secure realization of F ′. Please note that the composition theorem does not impose any restrictions

on how the protocols P, F , and Q look like internally. For example, they might have disjoint sessions, but they could also freely

share some state between sessions, or they might be a mixture of both. They can also freely share some of their subroutines with

the environment, modeling so-called globally available state. This is unlike most other models for universal composability, such as

the UC model, which impose several conditions on the structure of protocols for their composition theorem.

Notation in Pseudo Code. ITMs in our paper are specified in pseudo code. Most of our pseudo code notation follows the

notation of the iUC framework as introduced by Camenisch et al. [11]. To ease readably of our figures, we provide a brief overview

over the used notation here.
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The description in the main part of the ITMs consists of blocks of the form Recv ⟨msg⟩ from ⟨sender⟩ to ⟨receiver⟩, s.t.
⟨condition⟩:⟨code⟩ where ⟨msg⟩ is an input pattern, ⟨sender⟩ is the receiving interface (I/O or NET), ⟨receiver⟩ is the dedicated
receiver of the message and ⟨condition⟩ is a condition on the input. ⟨code⟩ is the (pseudo) code of this block. The block is executed
if an incoming message matches the pattern and the condition is satisfied. More specifically, ⟨msg⟩ defines the format of the

message𝑚 that invokes this code block. Messages contain local variables, state variables, strings, and maybe special characters. To

compare a message𝑚 to a message pattern msg, the values of all global and local variables (if defined) are inserted into the pattern.
The resulting pattern 𝑝 is then compared to𝑚, where uninitialized local variables match with arbitrary parts of the message. If the

message matches the pattern 𝑝 and meets ⟨condition⟩ of that block, then uninitialized local variables are initialized with the part

of the message that they matched to and ⟨code⟩ is executed in the context of ⟨receiver⟩; no other blocks are executed in this case.

If𝑚 does not match 𝑝 or ⟨condition⟩ is not met, then𝑚 is compared with the next block. Usually a recv from block ends with a

send to clause of form send ⟨msg⟩ to ⟨sender⟩ where msg is a message that is send via output interface sender.
If an ITM invokes another ITM, e.g., as a subroutine, ITMs may expect an immediate response. In this case, in a recv from

block, a send to statement is directly followed by a wait for statement. We write wait for ⟨msg⟩ from ⟨sender⟩, s.t. ⟨condition⟩
to denote that the ITM stays in its current state and discards all incoming messages until it receives a message𝑚 matching the

pattern msg and fulfilling the wait for condition. Then the ITM continues the run where it left of, including all values of local

variables.

To clarify the presentation and distinguish different types of variables, constants, strings, etc. we follow the naming conventions

of Camenisch et al. [11]:

1. (Internal) state variables are denoted by sans-serif fonts, e.g., a.
2. Local (i.e., ephemeral) variables are denoted in italic font.
3. Keywords are written in bold font (e.g., for operations such as sending or receiving).

4. Commands, procedure, function names, strings and constants are written in teletype.

Additional Notation. To increase readability, we use the following non-standard notation during the specifications of machines

in the iUC template:

• For a set of tuples 𝐾 , 𝐾.add(_) adds the tuple to 𝐾 .
• For a string 𝑆 , 𝑆.add(_) concatenates the given string to 𝑆 .

• 𝐾.remove(_) removes always the first appearance of the given element/string from the list/tuple/set/string 𝐾 .

• 𝐾.contains(_) checks whether the requested element/string is contained in the list/tuple/set/string 𝐾 and returns either true
oder false.
• We further assume that each element as a tuple in a list or set can be addressed by each element in that tuple if it is a unique

key.

• Elements in a tuple are ordered can be addressed by index, starting from 0. We write [𝑛] = {1, . . . , 𝑛}.
• For tuples, lists, etc. we start index counting at 0.

B THE IDEAL LEDGER FUNCTIONALITY
In this section, we present the full specification of the ideal ledger functionality F

ledger
in Figure 5 to 7. For technical details of

and notation specific to the iUC framework, please see our brief summary in Section A.

Note that, in addition to what is described in Section 2, F
ledger

as defined in Figure 5 to 7 also provides a read interface for the

adversary (CorruptedRead) on behalf of corrupted parties. This may allow A to query F
ledger

on behalf of a corrupted party, e. g.,

to access private data of the party which has not been leaked so far.

C FURTHER FEATURES OF Fledger
Here we explain and discuss some features of F

ledger
that were only briefly mentioned in Section 2.

Roles in F
ledger

. By default, F
ledger

does not distinguish between different roles of participants. Every party is a client with

the same read and write access to the ledger, while any additional internal non-client roles, such as miners and notaries, only

exist in the realization. If one needs to further differentiate clients into different client roles, e.g., to capture that in a realization

certain clients can read only part of the global transaction list while others can read the full list, then this can be done via a suitable

instantiation of the subroutines of F
ledger

– such client-roles can easily be added as prefixes within PIDs. The subroutines that

specify security properties, such as F
read

, can then depend on this prefix and, e.g., offer a more or less restricted access to the

global transaction list.

Dynamic party registration. The ideal functionality F
ledger

keeps track of all currently registered honest parties, including

the time when they registered. An honest party is considered registered once it issues its first read or write request, modeling that

participants in a distributed ledger first register themselves before interacting with the ledger. A higher-level protocol can also

deregister a party by sending a deregister command. Such a party is removed from the set of registered parties (and will be added

again with a new registration time if it ever issues another read or write request).
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Description of the protocol F
ledger

= (client) :

Participating roles: {client}
Corruption model: dynamic corruption

Description of𝑀client :

Implemented role(s) : {client}
Subroutines: F

submit
: submit, F

update
: update, F

read
: read, F

updRnd
: updRnd, Finit : init, Fleak : leak

Internal state:
– identities ⊂ {0, 1}∗ × N, identities = ∅ {The set of participants and the round when they occured first.

– round ∈ N≥0, round = 0 {Current (network) round in the protocol execution.

– msglist ⊂ N × N × {tx, meta} × {0, 1}∗ × N × {0, 1}∗,
msglist = ∅.


(Totally ordered) sequence of recorded messages that
is considered as stable/immutable of the form (id,
commitRound, type,msg, submitRound, pid) . If type =
meta, pid = submitRound = ⊥.

– requestQueue ⊂ N × {0, 1}∗ × N × {0, 1}∗,
requestQueue = ∅

{
The list of so far not ordered, honest, incoming “transactions”. Format
(tmpCtr, tx, submittingRound, submittingParty) .

– readQueue ⊂ {0, 1}∗ × N × N × {0, 1}∗,
readQueue = ∅,

{The queue of read responses that need to be delivered
(pid, responseId, round,msg)

– readCtr ∈ N, readCtr = 0, {readCtr is temporary ID for transactions in the readQueue.

– reqCtr ∈ N, reqCtr = 0, {reqCtr are temporary IDs for transactions in the requestQueue.

In the following, we pass through the complete internal state of F
ledger

to its subroutines. Thus, we use the variable internalState as follows:
internalState← (identities, round,msglist, requestQueue, readQueue, 𝛿,CorruptionSet, transcript)
We often use the CorruptionSet as specified in [11]. We often write pid ∈ CorruptionSet instead of (pid, sidcur, rolecur) ∈ CorruptionSet for
brevity.

CheckID(pid , sid , role) :
Accept all messages with the same sid.

Corruption behavior:
– LeakedData(pid , sid , role) :

if ∃(pid, registrationRound) ∈ identities, registrationRound ∈ N:
identities.remove(pid, registrationRound)

send (corrupt, pid, sid, internalState) to (pidcur, sidcur, Fleak : leak)
wait for (corrupt, leakage)
return(leakage)

{
Depending on the desired properties of F

ledger
, output after corruption needs to be

specified
– AllowAdvMessage(pid, sid, role, pidreceiver, sidreceiver, rolereceiver,𝑚) : A is not allowed to call subroutines on behalf of a corrupted party.

Initialization:
send InitMe to (pidcur, sidcur, Finit : init) {Finit handels initilaization if necessary.
wait for (Init, identities,msglist, corrupted, leakage) s.t.

1. identities ⊂ {0, 1}∗ × {0}, round ∈ N,msglist ⊂ N × N × {meta} × {0, 1}∗ × N × {0, 1}∗ },
2. corrupted ⊂ {0, 1}∗ × {sidcur } × {client},
3. msg ∈ msglist are consecutivley enumarted started at 0,

4. ∃(_, _, _, _, a, b) ∈ msglist, s.t. a ≠ ⊥ ∨ b ≠ ⊥
identities← identities,msglist← msglist,CorruptionSet← corrupted

{
We enforce correct formats and that msglist
is a total ordered sequence.

send responsively (Init, leakage) to NET {Send leaked information from initilaization to A.
wait for ack from NET

MessagePreprocessing:

recv (pidcur, sidcur, rolecur,msg) from I/O:
if (pidcur, _) ∉ identities ∧msg starts with Submit or Read:

{Register unknown party before its first submit/read operation
identities.add(pidcur, round)

Figure 5: The ideal ledger functionality F
ledger

(Part 1).
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Description of𝑀client (continued):

Main:

recv (Submit,msg) from I/O: {Submission request from a honest identity
send (Submit,msg, internalState) to (pidcur, sidcur, Fsubmit

: submit) {Forward request to Fsubmit

wait for (Submit, response, leakage) s.t. response ∈ {true, false}
if response = true:

reqCtr← reqCtr + 1
requestQueue.add(reqCtr, round, pidcur,msg)

{
requestQueue.add(_) equals requestQueue← requestQueue∪
{_}. Records message, round, identity and its state for “consensus”

send (Submit, response, leakage) to NET
{
If F

submit
leakes data regarding the submitted transaction, this is forwarded

to A.
recv (Read,msg) from I/O: {Read request from an honest identity

send (InitRead,msg, internalState) to (pidcur, sidcur, Fread : read) {Forward the request to Fread .

wait for (InitRead, local, leakage) s.t. local ∈ {true, false}
{
local = true models a “local” read, clients get imme-
diate response, otherwise it is a network read

if local:
send responsively (InitRead, leakage) to NET (★) {Fread leakes data, this is forwarded to A.
wait for (InitRead, suggestedOutput) {A may influence the read processing
send (FinishRead,msg, suggestedOutput, internalState) to (pidcur, sidcur, Fread : read)
wait for (FinishRead, output, leakage′)
if output = ⊥: {If A’s input for F

read
is not accepted, he is triggered again.

Go back to (★) and repeat the request (local variables suggestedOutput, output, and leakage′ are cleared)
send responsively (FinishRead, leakage′) to NET {Fread leakes data, this is forwarded to A.
wait for ack
reply (Read, output)

else:
readCtr← readCtr + 1; readQueue.add(pid, readCtr, round,msg) {In case of network read, store request

send (Read, readCtr, leakage) to NET {If Fread leakes data, this is forwarded to A.

recv (DeliverRead, readCtr, suggestedOutput) from NET s.t. (pid, readCtr, r,msg) ∈ readQueue:{
A tiggers message delivery per message (this may includes reordering of messages, non-delivery of messages, and manipulation of
delivered data - if not enforced by F

updRnd
).

send (FinishRead,msg, suggestedOutput, internalState) to (pidcur, sidcur, Fread : read)
wait for (FinishRead, output, leakage′)
if output ≠ ⊥:

send responsively (FinishRead, readCtr, leakage′) to NET
wait for ack
readQueue.remove(pid, readCtr, r,msg) {Clean up readQueue.
send (Read, output) to (pid, sidcur, I/O)

else:
send nack to NET {Delivery request of A was denied

recv (CorruptedRead, pid,msg) from NET s.t. pid ∈ CorruptionSet: {Read request from a corrupted identity.

send (CorruptedRead, pid,msg, internalState) to (pid, sidcur, Fread : read)
{
Forward request to F

read

wait for (FinishRead, leakage)
send (Read, pid, leakage) to NET {Forwarded data to A.

recv (Update,msg) from NET: {Update or maintain request triggered by the adversary.
send (Update,msg, internalState) to (𝜖, sidcur, Fupdate : update)
wait for (Update,msglist, updRequestQueue, leakage)

s.t msglist ⊂ N × {round} × {tx, meta} × {0, 1}∗ × N × {0, 1}∗{
F
update

outputs which data to append tomsglist and an updated requestQueue.

max ← max{𝑖 | (𝑖, _, _, _, _, _) ∈ msglist}
{
Check that msglist is a totally ordered sequence, extending the exist-
ingmsglist. Ifmsglist = ∅ then max defaults to −1check ← msglist ≠ ∅ ∨ updRequestQueue ≠ ∅

for 𝑖 = max + 1 to max + |msglist | do:
if �1 (𝑖, _, _, _, _, _) ∈ msglist:

{Check that there exists exactly one entry for every id 𝑖 in a
continous sequence (no gaps)check ← false

if ∃(𝑖, _, meta, _, a, b) ∈ msglist ∧ (a ≠ ⊥ ∨ b ≠ ⊥) : {Check that meta data has correct format
check ← false

if check:
{If update is totally ordered and no new messages where added to
requestQueue, we accept the update.

msglist.add(msglist)
for all item ∈ updRequestQueue do: {Remove elements “consumed” elements from requestQueue

requestQueue.remove(item)
reply (Update, check, leakage) {Inform A if update was successful and leake data.

Figure 6: The ideal ledger functionality F
ledger

(Part 2).
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Description of𝑀client (continued):

Main:

recv UpdateRound from NET:
{
A triggers round update if current round satisfies rules of F

updRnd
.

send (UpdateRound, internalState) to (pidcur, sidcur, FupdRnd : updRnd)
wait for (UpdateRound, response, leakage)
if response = true:

round← round + 1
reply (UpdateRound, response, leakage)

recv GetCurRound: {A and E are allowed to query the current round.
reply (GetCurRound, round)

recv DeRegister from I/O: {De-register honest party
Remove the unique tuple (pidcur, r) from identities
send responsively DeRegister to NET {Inform A on the deregistration
wait for ack
reply DeRegister

Figure 7: The ideal ledger functionality F
ledger

(Part 3).

This mechanism allows for capturing security properties that depend on the (time of) registration. For example, an honest party

might only obtain consistency guarantees after it has been registered for a certain amount of time (due to network delays in the

realization). We note that, just like a clock, party registration is an entirely optional concept that can be ignored by not letting any

subroutines depend on this information. This is useful to capture realizations that, e.g., do not model an explicit registration phase

but rather assume this information to be static and fixed at the start of the protocol run.

Public and private ledgers. Existing functionalities for blockchains have so far been modeled as so-called global functionalities

using the GUC extension [13] of the UC model. The difference between a global and a normal/local ideal functionality is that, when

a global functionality is used as a subroutine of a higher-level protocol, then also the environment/arbitrary other (unknown)

protocols running in parallel can access and use the same subroutine. This is often the most reasonable modeling for public

blockchains: here, the same blockchain can be accessed by arbitrarily many higher-level protocols running in parallel. However,

such global functionalities do not allow for capturing the case of, e.g., a permissioned blockchain that is used only within a

restricted context. This situation rather corresponds to a local ideal blockchain functionality.

The iUC framework that we use here provides seamless support for both local and global functionalities, and in particular allows

for arbitrarily changing one to the other. Hence, our functionality F
ledger

can be used both as a global or as a local subroutine

for higher-level protocols, allowing for faithfully capturing both public and private subroutine ledgers. This is possible without

proving any of the realizations again, i.e., once security of a specific realization has been shown, this can be used in both a public

and private context. As already explained at the beginning of this section, it is also possible to instantiate subroutines of F
ledger

in

such a way that they also are (partially) globally accessible, e.g., to provide a global random oracle to other protocols. This can be

done even in cases where F
ledger

itself is used as a private subroutine.

Modelling smart contracts. We also note that F
ledger

fully supports capturing smart contracts, if needed. Typically, smart

contracts are modeled by fixing some arbitrary programming language for specifying those smart contracts as a parameter of

F
ledger

(the security analysis is then performed for an arbitrary but fixed parameter which makes the security result independent

of a specific smart contract language). Smart contracts are then simply bit strings which are interpreted by the subroutines

F
submit

, F
update

, F
read

, etc. according to the fixed smart contract programming language. While interpreting a smart contract, these

subroutines can then enforce additional security properties as desired, e.g., they might ensure that all smart contracts added to the

global state are indeed well defined (according to the fixed programming language) and/or that running the smart contracts yields

the correct results as specified in some transaction.

We use this concept to model smart contracts in our Corda case study. Here, our subroutines of F
ledger

(as part of transaction

validation) guarantee the property of correct execution of smart contracts, i.e., the output states of transactions were indeed

computed by running the referenced smart contracts correctly. As stated above, our security analysis of Corda treats the program-

ming language as an arbitrary parameter and hence our results show that Corda provides correct execution of smart contracts

independently of the chosen smart contract programming language as long as all participants agree on the same language.

We note that, if the algorithm used by smart contracts can be provided externally by the adversary/environment, then the

execution of smart contracts in F
ledger

needs to be upper bounded by some polynomial in order to preserve the polynomial runtime

of the ideal functionality as required for composition. Observe, however, that most if not all distributed ledgers in reality, including

Corda, already hard code such a polynomial upper bound into their protocol to prevent malicious clients form creating smart

contracts with exponential (or worse) runtime. The same bound can be used for F
ledger

.
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D FULL DETAILS: Gledger REALIZES F Gledger
ledger

In this section, we provide full details for Theorem 3.1, including formal specifications of all machines and a formal proof of the

theorem. We start by explaining the ideal blockchain functionality G
ledger

on an intuitive level (we recall the formal specification

of this functionality formulated in the iUC framework in Figure 8 to 10).

Our ideal functionality F
ledger

is in the spirit of and adopts some of the underlying ideas from the existing ideal blockchain

functionality G
ledger

. As a result, both functionalities share similarities at a high level. More specifically, G
ledger

also offers a writing

and reading interface for parties. It is parameterized with several algorithms validate, extendPolicy,Blockify, and predictTime that
have to be instantiated by a protocol designer to capture various security properties. By default, G

ledger
provides only the security

property of consistency. An honest party can submit a transaction to G
ledger

. If this transaction is valid, as decided by the validate
algorithm, then it is added to a buffer list. G

ledger
has a global list of blocks containing transactions. This list is updated (based on a

bit string that the adversary has previously provided) in a preprocessing phase of honest parties. More specifically, whenever an

honest party activates G
ledger

, the extendPolicy algorithm is executed to decide whether new blocks are appended to the global

list of blocks, with the Blockify algorithm defining the exact format of those new blocks. Then the validate algorithm is called to

remove all transactions from the buffer that are now, after the update of the global blockchain, considered invalid. An honest

party can then read from the global blockchain. More specifically, if the honest party has been registered for a sufficiently long

amount of time (larger than parameter 𝛿), then it obtains a prefix of the chain that contains all but the last at most windowSize ∈ N
blocks. This captures the security property of consistency. In addition to these basic operations, G

ledger
also supports dynamic

(de-)registration of parties and offers a clock, modeled via a subroutine G
clock

(see Figure 11 for the formal specification formulated

in the iUC framework), that is advanced by G
ledger

depending on the output of the predictTime algorithm (and some additional

constraints).

While there are many similarities, there are also several key differences between G
ledger

and our functionality F
ledger

:

• G
ledger

requires all transactions to be arranged in “blocks” (generated via the Blockify algorithm) and then always provides the

security property of consistency for those blocks. As already explained in Section 2, these are strictly stronger requirements

than the ones from F
ledger

, which only require the existence of a global ordered list of transactions. In particular, many

distributed ledgers, such as Corda, are not designed to generate blocks or provide consistency, and hence, cannot realize G
ledger

.

• While G
ledger

already includes several parameters to customize security properties, there are no parameters for customizing

the reading operation. Hence, G
ledger

cannot capture access and privacy security properties for transactions in a blockchain (as

all honest participants can always read a full prefix of the chain).
10

• The view G
ledger

provides to higher-level protocols is lower level and closer to the envisioned realization than the one of F
ledger

.

In particular, G
ledger

includes an additional operation MaintainLedger which has to be called by a higher-level protocol in

order to allow time to advance, modeling that a higher-level protocol has to regularly and manually trigger mining operations

(or some similar security relevant tasks) for security to hold true. Similarly, the clock used by G
ledger

prevents any time advances

unless all parties have notified the clock to allow for time to advance, again forcing a higher-level protocol to manually deal

with this aspect.

• While G
ledger

includes a predictTime parameter to customize advancing time, this parameter is actually more restricted than

the one from F
ledger

: the predictTime can depend only on the set of activations from honest parties but not, e.g., the global

state or buffer list of transactions.

As can be seen from the above list, the main differences between G
ledger

and F
ledger

are due to (i) different levels of abstraction on

the I/O interface to higher-level protocols and (ii) the fact that G
ledger

is tailored towards publicly accessible blockchains. Hence,

intuitively, it should be possible to show that F
ledger

is a generalization of G
ledger

. Indeed, one can instantiate F
ledger

appropriately

to transfer security properties provided by G
ledger

to the level of F
ledger

.

Formally, we define the instantiation F Gledger
ledger

as the protocol (F
ledger

| F Gledger
init

, F Gledger
submit

, F Gledger
update

, F Gledger
read

, F Gledger
updRnd

,

F Gledger
leak

) . The general idea for the instantiated subroutines (which we formally define in Figures 14 to 20 at the end of this section)

is to run the same operations as G
ledger

, including the parameterized algorithms of G
ledger

that determine the precise security

properties provided by the global transaction list. By this, the instantiation F Gledger
ledger

, just as G
ledger

, enforces the security property

of consistency for all participants while also inheriting all further security properties provided for the global state, if any, from the

parameterized algorithms. More specifically:

• F Gledger
init

is defined to run the extendPolicy algorithm to generate the initial transaction list (that is read from the blocks output

by the algorithm). This is because extendPolicy might already generate a genesis block during the preprocessing of the first

activation of the functionality, before any transactions have even been submitted.

• F Gledger
submit

executes the validate algorithm to check validity of incoming transactions.

10
This aspect is actually one of the key differences between G

ledger
and its variant GPL for privacy in blockchains: the latter also introduces a parameter for read

operations.
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• F Gledger
update

executes the extendPolicy and Blockify algorithms to generate new blocks from the update proposed by the adversary.

These blocks are transformed into individual transactions, which are appended to the global transaction list of F
ledger

together

with a special meta transaction that indicates a block boundary. Additionally, the validate algorithm is used to decide which

transactions are removed from the transaction buffer.

• F Gledger
read

checks whether a party has already been registered for an amount of time larger than 𝛿 and then either requests

the adversary to provide a pointer to a transaction within the last windowSize blocks or lets the adversary determine the full

output of the party. We note that F Gledger
read

has to always use non-local reads: this is because a read operation in G
ledger

might

change the global state during the preprocessing phase and before generating an output, i.e., read operations are generally not

immediate (in the sense defined in Section 2).

• If the parameters of G
ledger

are such that they guarantee the property of liveness, then F Gledger
updRnd

can be defined to also encode

this property (cf. Section 2); similarly for the time dependent security property of chain-growth and other time-related security

properties.

• F Gledger
leak

does not leak (additional) information as all information is leaked during submitting and reading.

There are, however, some technical details one has to take care of in order to implement this high-level idea, mostly due to

some conceptual differences in and the higher abstraction level of F
ledger

. More specifically:

• A key technical difference between F
ledger

and G
ledger

is that updates to the global state in F
ledger

are explicitly triggered by

the adversary, whereas G
ledger

performs those updates automatically during a preprocessing phase whenever an honest party

activates the functionality, before then processing the incoming request of that party.

As a result of this formulation, both read and submit requests might change the global transaction list in G
ledger

before the

request is answered. In the case of F
ledger

, this means the simulator has to be given the option to update the global state before
a read/submit request is performed. In the case of read requests, this directly matches the properties of non-local read requests,

i.e., we simply have to define F Gledger
read

in such a way that it uses non-local reads only. Such non-local reads then enable the

simulator to first update the global state of F
ledger

before then finishing the read request, which directly matches the behavior

of G
ledger

.

In the case of submit requests, F
ledger

does not directly include a mechanism for updating the state before processing the

request. This is because, for realistic distributed ledger protocols, an incoming submit request that has not even been processed

and shared with the network yet will not cause any changes to the global state. This, however, might technically occur in G
ledger

depending on how its parameters, such as the extendPolicy and validate algorithms, are instantiated. We could address this by

limiting the set of parameters of G
ledger

to those that update the global state independently of (the content of) future submit

requests, which matches the behavior of realistic ledger protocols from practice. Nevertheless, since we want to illustrate the

generality of F
ledger

, we choose a different approach.

To model that the global transaction list might change depending on and before processing a new submit request, we define

F Gledger
submit

such that it internally first performs an update of the global state, based on some information requested from the

simulator via a restricting message, before then validating the incoming transaction. Since F Gledger
submit

cannot actually apply this

update itself (as this operation is limited to F Gledger
update

when it is triggered by update requests from the adversary), the update is

then cached in the subroutine F
update

. The adversary is forced to apply this cached update first whenever he wants to further

update the global transaction list, advance time, or perform a read request. This formulation provides the simulator with the

necessary means to update the global state before an incoming submit request, if necessary, while not weakening the security

guarantees provided by F
ledger

compared to G
ledger

. In particular, read requests will always be answered based on the most

recent update of the state, including any potentially cached updates.

• Due to a lower level of abstraction, the parameterized algorithms used in G
ledger

take some inputs that are not directly included

in F
ledger

, such as a list of all honest activations and a future block candidate (which is an arbitrary message provided by the

adversary at some point in the past). We could in principle add the same parameters to subroutines in F
ledger

, i.e., essentially

encode the full state and logic of G
ledger

within our instantiations of subroutines. Observe, however, that a higher-level protocol

generally does not care about (security guarantees provided for) technical details such as cached future block candidates or

lists of honest activations. A higher-level protocol only cares about the security properties that are provided by the global

transaction list, such as consistency, double spending protection, and liveness.
11

Such security properties can already be

defined based on the information that is included in F
ledger

by performing suitable checks on the global transaction list, buffer

list, and current time. In particular, it is not actually necessary to include further technical details such as a list of honest

activations. This is true even if a security property within a realization (of G
ledger

or F
ledger

) actually also depends on, say, the

number of honest activations. Such a realization can still realize an ideal functionality that requires, e.g., consistency to always

hold true independently of the number of honest activations: one can force the environment to always activate a sufficient

11
We consider the standard definition of liveness in distributed ledger, resp. blockchain, context [21, 37]: A transaction casted by an honest client should become part of

the ledger after some (known) upper time boundary.
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number of honest parties within each time frame, modeling a setup assumption that is required for security to holds. This

is a common technique that has already been used, e.g., for analyzing Bitcoin [5, 21], including an analysis based on G
ledger

.

Alternatively to limiting the environment, parties can simply consider themselves to be corrupted if the environment did not

activate a sufficient number of honest parties, modeling that they cannot provide any security guarantees such as consistency

once the environment violates the setup assumptions. This modeling technique is novel in the field of distributed ledgers and

blockchains. We use this technique in our modeling of Corda (cf. Section 4.2 and Appendix F).

Hence, in the spirit of abstraction and simplification, we choose not to include further technical details of G
ledger

in F Gledger
ledger

but rather use the following mechanism to deal with any additional inputs to parameterized algorithms such as the algorithm

extendPolicy: Whenever one of the parameterized algorithms from G
ledger

is run within F
ledger

, the adversary provides any

missing inputs that are not defined in F Gledger
ledger

, such as the next block candidate variable for the extendPolicy algorithm. By

this definition, the adversary can freely determine technical details that are present only in G
ledger

while F Gledger
ledger

still inherits

all properties that are enforced for the global transaction list, buffer list, and/or are related to time.

• The functionality G
ledger

is also parameterized with an algorithm predictTimewhich determines, based on the set of activations

by honest parties, whether time advances. While we could also add this algorithm into F
ledger

, more specifically into F Gledger
updRnd

,

by the same reasoning as above a higher-level protocol is typically not interested in this property: it has not implications for

the security properties of the global transaction list. Hence, we chose not to include this additional restriction of the adversary

via the predictTime in F
ledger

.

However, if the parameters of G
ledger

are such that a certain time-related security property of the global transaction/block list

is met, then F Gledger
updRnd

enforces the same properties, i.e., prevents the adversary from advancing time unless all properties are

met. We exemplify this for the common security properties of liveness and chain-growth. That is, we include parameters into

F Gledger
updRnd

that, when they are set, enforce one or both of these security properties, and then show that this can be realized as

long as G
ledger

is instantiated in such a way that it also provides these security properties. Clearly the same mechanism can

also be used for capturing arbitrary other time-related security properties.

• There are some slight differences in the format of transactions and the global state between F
ledger

and G
ledger

, with the key

difference being that the global state of G
ledger

is a list of blocks, whereas the global state in F
ledger

is a list of individual

transactions. We therefore require the existence of an efficient invertible function toMsglist that maps the output of the

Blockify algorithm to a list of transactions contained in that algorithm. Note that such an algorithm always exists: for natural

definitions of Blockify that are used by reasonable blockchains, there will always be a list of well-formed transactions encoded

into each block. For artificial definitions of Blockify that do not provide outputs which can be mapped to a reasonable definition

of a list of transactions, one can always interpret the full block as a single transaction. In addition, we store the end of each

block as a special meta transaction in the global transaction list of F
ledger

, so one can define still identify the boundaries of

individual blocks. This is necessary for lifting the security properties of consistency from G
ledger

to F
ledger

, namely, honest

users (that have already been registered for a sufficiently long time) are guaranteed obtain a prefix of the global transaction list

except for at most the last windowSize ∈ N blocks.

As already explained, we want to show that G
ledger

realizes F Gledger
ledger

. Since G
ledger

has a slightly different interface and works

on a lower abstraction level than F
ledger

, we also have to add a wrapperW
ledger

on top of G
ledger

that transforms the interface

and lifts the abstraction level to the one of F
ledger

(we provide a formal definition ofW
ledger

in Figure 12 and Figure 13 at the end

of this section. See also Figure 3 for an illustration of the static structure of the combined protocol). On a technical level,W
ledger

acts as a message forwarder between the environment and G
ledger

/G
clock

that translates message formats between those of F
ledger

and those of G
ledger

while also taking care of some low level operations that are not present on F
ledger

. More specifically:

• Incoming submit and read requests are simply forwarded by the wrapper.

• The output to read requests provided by G
ledger

is in the form of a list of blocks.W
ledger

uses the toMsglist function mentioned

above to translate these blocks to a list of transactions to match the format of outputs for read requests from F
ledger

.

• Time in G
ledger

is modeled via a separate subroutine G
clock

, whereas F
ledger

includes all time management operations in

the same functionality. Hence, the wrapper is also responsible to answering requests for the current time, which it does by

forwarding those requests to the subroutine G
clock

of G
ledger

and then returning the response.

• As mentioned, the functionality G
ledger

includes a maintainance operation MaintainLedger that can be performed by higher-

level protocol and which models, e.g., a mining operation that must be performed in a realization. In contrast, F
ledger

does

not include such an operation as higher-level protocols typically do not want to explicitly perform mining, but rather expect

such operations to be performed automatically “under the hood” of the protocol. This also matches how ideal blockchain

functionalities have been used in the literature so far: we are not aware of a higher-level protocol that uses an ideal blockchain

functionality and which manually takes care of, e.g., triggering mining operations. This is true even for [27], where a higher-

level protocol was built directly on top of G
ledger

. That protocol simply assumes that the environment takes care of triggering

MaintainLedger via a direct connection from the environment to G
ledger

.

25



The wrapper resolves this mismatch by allowing the adversary on the network to freely perform MaintainLedger operations,

also for honest parties, modeling that parties might or might not execute a mining operation. This models that parties

automatically perform mining without first waiting to receive an explicit instruction from a higher-level protocol to do so.

Since the exact set of parties which performing mining operations is determined by the network adversary, this safely over

approximates all possible cases that can occur in reality.

Note that this change actually does not alter or weaken the security statement of G
ledger

. Without a wrapper, G
ledger

already

allows the environment to perform (or not perform at all) arbitrary MaintainLedger operations for both honest and dishonest

parties. Hence switching this power from the environment to the adversary on the network provides the same overall security

statement. The only difference is that now the operation is indeed performed “under the hood” of the protocol, i.e., a higher-level

protocol need not care about manually performing this operation anymore. This also matches how G
ledger

was used by a

higher-level protocol in [27] (see above).

• Registration of both honest and corrupted parties in G
ledger

(and the clock G
clock

) must be handled manually by higher-level

protocols. In contrast, F
ledger

considers an honest party to be registered once it performs the first operation, modeling that

a party automatically registers itself before interacting with the ledger, while not including a registration mechanism for

dishonest parties. The former is because higher-level protocols typically expect registration, if even required, to be handled

“under the hood”, while the latter is because a list of registered dishonest parties generally is not necessary to define expected

security properties for the global transaction list (this follows the same reasoning given above on why we did not include

certain technical details from G
ledger

in our instantiation of F
ledger

).

To match this behavior,W
ledger

also automatically registers honest parties in both G
ledger

and G
clock

when they receive their

first request from a higher-level protocol. For dishonest parties,W
ledger

keeps the original behavior of G
ledger

and G
clock

, i.e.,

the network adversary can freely register dishonest parties.

• The subroutine G
clock

requires all registered parties to notify the clock during each time unit before time can advance, modeling

that every party must have been able to perform some computations during each time unit. Following the same reasoning as

for the MaintainLedger operation, this is a detail that higher-level protocols typically expect to be managed “under the hood”

of the protocol and generally do not want to manually take care of. For this reason, this restriction is not included in F
ledger

.
12

The wrapper uses the same mechanism as for MaintainLedger operations to map between both abstraction levels, i.e., the

adversary on the network can freely instruct parties to notify the clock G
clock

that time may advance. Again, this safely over

approximates all possible cases in reality while not giving the environment any more power than it already has.

Having explained both the ideal protocol F Gledger
ledger

and its intended realization, we can now formally state the main theorem of

this section (cf. Figure 3 for an illustration of this theorem):

Theorem D.1. Let G
ledger

be the ideal blockchain functionality with arbitrary parameters such that all parameterized algorithms

are deterministic. Let F Gledger
ledger

be the instantiation of F
ledger

as described above, where the internal subroutines use the same parameters
as G

ledger
. Furthermore, if G

ledger
is parameterized such that it provides liveness and/or chain-growth, then let the parameters of the

subroutine F Gledger
updRnd

in F Gledger
ledger

be set such that it also enforces the same properties. Then:

(W
ledger

| G
ledger

,G
clock
) ≤ F Gledger

ledger

Proof. As part of the proof, we firstly define a responsive simulator S such that the real world running the protocol R :=

(W
ledger

| G
ledger

,G
clock
) is indistinguishable from the ideal world running {S,I}, with the protocol I := F Gledger

ledger
, for every

ppt environment E.
The simulator S is defined as follows: it is a single machine that is connected to I and the environment E via their network

interfaces. In a run, there is only a single instance of the machine S that accepts and processes all incoming messages. The

simulator S internally simulates the realization R, including its behavior on the network interface connected to the environment,

and uses this simulation to compute responses to incoming messages. For ease of presentation, we will refer to this internal

simulation by R ′. More precisely, the simulation runs as follows:

Network communication from/to the environment
• Messages that S receives on the network connected to the environment (and which are hence meant for R) are forwarded to

internal simulation R ′.
• Any messages sent by R ′ on its network interface (that are hence meant for the environment) are forwarded to the environment

E.
• If the global blockchain in R ′ is updated (as a result of a request that is not already handled separately below), then the

simulator performs the same update in F
ledger

before continuing the simulation.

Corruption handling
12
We note that, if desired, this restriction could easily be added to F

ledger
via a suitable instantiation of the F

updRnd
subroutine. Our realization proof would still work

for this case. However, as explained, we expect that this is generally not needed/desired.
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• The simulator S keeps the corruption status of entities in R ′ and I synchronized. That is, whenever an entity ofW
ledger

in

R ′ starts to consider itself corrupted, the simulator first corrupts the corresponding entity of F
ledger

in I before continuing its

simulation.

• Incoming Messages from corrupted entities of F
ledger

in I are forwarded on the network to the environment in the name of

the corresponding entity ofW
ledger

in R ′. Conversely, whenever a corrupted entity ofW
ledger

wants to output a message to a

higher-level protocol, S instructs the corresponding entity of F
ledger

to output the same message to the higher-level protocol.

Transaction submission
• Whenever an honest entity entity = (pid , sid , role) receives a request (Submit,msg) to submit a new transaction msg, F

ledger

respectively the subroutine F Gledger
update

first pre-processes an update to the global transaction list. During this operation, the

simulator is asked to provide some missing information (such as a list of honest activations) via a message Preprocess that
also includes the transaction msg and F

ledger
’s current state. Upon receiving this message, S extracts all required information

from the internal simulation R ′ and returns this information, except for also extending the set of honest activations extracted

from R ′ by an additional submit request submitted by the currently active honest party of F
ledger

.

• After the submit request has been processed, F
ledger

sends the validation result of the transaction as well as a leakage to S.
Upon receiving this information, S first sends the message finalizePending to F

ledger
in order to apply the pre-processed

and cached update to the global transaction list of F
ledger

. Afterwards, S simulates a submit request (Submit,msg) to the

honest entity entity ofW
ledger

in R ′, including the resulting output to the environment.

Read requests
Whenever an honest entity entity receives a request (Read,msg) to read from the global state, F

ledger
forwards this (non-local)

read request to S and waits to receive a suggested output. Upon receiving this request, S first triggers a global state update in

F
ledger

using the information from the internally simulated R ′ (except for the set of honest activations, which is extended by

one additional read request from party pid). After this update, S simulates a read (Read,msg) for entity ofW
ledger

in R ′. The
resulting output out of the simulated read request fromW

ledger
is used to compute a response for F

ledger
:

• If the entity entity is de-synchronized, i. e., entity is registered for less than 𝛿 time units at F
ledger

, then out is forwarded to

F
ledger

as a response to the read request of entity .
• If the entity entity is synchronized,i. e., entity is registered for at least 𝛿 time units at F

ledger
then S computes a pointer ptr to

the last transaction in out. The pointer ptr is returned to F
ledger

as a response to the read request of entity .

Further details
• S keeps the clocks/rounds of R ′ and F

ledger
synchronous. That is, S sends UpdateRound to F

ledger
whenever a round update

in the simulated G
clock

is performed and before continuing the simulation.

• Whenever S is notified about the de-registration of an entity, S simulates the de-registration of the corresponding entity in R.
Afterwards S returns control to F

ledger
.

This concludes the description of the simulator. It is easy to see that (i) {S,I} is environmentally bounded
13

and (ii) S is a

responsive simulator for I, i.e., restricting messages from I are answered immediately as long as {S,I} runs with a responsive

environment. We now argue that R and {S,I} are indeed indistinguishable for any (responsive) environment E ∈ Env(R).
Now, let E ∈ Env(R) be an arbitrary but fixed environment. First, observe that F

ledger
provides S with full information about

all requests performed by higher-level protocols, such as the actual transactions submitted to the ledger, and including entity

(de-)registration in particular. Hence, the simulated protocol R ′ within S obtains the same inputs and thus performs identical to

the real world R. As a result, the network behavior simulated by S towards the environment is indistinguishable from the network

behavior of R. Observe that state changes triggered via network interface are synchronized between R ′ and I. Together with
the state synchronization during I/O interaction (see below), the simulator can keep the states of R ′ and I in synchronization.

Furthermore, it also follows that the corruption status of entities in the real and ideal world is always identical. Since the simulator

has full control over corrupted entities, which are handled via the internal simulation R ′, this implies that the I/O behavior of

corrupted entities of R/I towards higher level protocols/the environment is also identical in the real and ideal world. The only

way to potentially distinguish the real and ideal world is the I/O behavior of honest entities of R/I towards higher-level protocols.

We will now go over all possible interactions with honest entities on the I/O interface and argue, by induction, that all of those

interactions result in identical behavior towards the environment, i.e., are also indistinguishable. At the start of a run, there were

no interactions on the I/O interface with honest parties yet. In the following, assume that all I/O interactions to far have resulted

in the same behavior visible towards the environment in both the real and ideal world.

Submission requests: Submission requests do not directly result into an input to the environment, however, they might affect

the output of future read requests by changing the internal buffer and global transaction lists of F
ledger

, respectively the internal

buffer and global blockchain of R (and by this also R ′; we keep this implicit in what follows). For read requests to behave identical,

we now have to argue that these changes are “synchronized”, i.e., (i) the buffered set of transactions in F
ledger

is a subset of the

13
This is the polynomial runtime notion employed by the iUC framework.
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buffered set of transactions in R, and those transactions that are in the buffer of R but not F
ledger

are by dishonest parties, and

(ii) the blockchain of R, when transformed via the toMsglist function as executed by the wrapper, matches the global list of

transactions in F
ledger

.

Observe that, upon receiving a submission request, F
ledger

behaves just as G
ledger

: it first updates its global transaction list.

This update is performed based on the internal buffer and global transaction list variables, which (by induction assumption) are

synchronized with those of G
ledger

. Any missing information, such as transactions of dishonest parties that are not part of the

internal buffer of F
ledger

, are provided by the simulator from the internal simulation R ′, i.e., they are the same as for R. Those
inputs are then used by F

ledger
to run the same deterministic algorithms as G

ledger
in R, resulting in the same block extensions.

Hence, the cached global state stored in F Gledger
update

is synchronized with R. Afterwards, F
ledger

uses the same deterministic algorithm

as G
ledger

to validate the incoming transaction using the cached internal state from F Gledger
update

. Again, inputs to this function are

synchronized or provided by the simulator from R ′, the validation result is identical in both worlds the in particular the buffer

sets remain synchronized. Finally, observe that the simulator immediately instructs F
ledger

to apply the cached global state from

F Gledger
update

to the global state in F
ledger

. By this, at the end of a submit request both the global state and the buffer of F
ledger

remain

synchronized with R.
Read requests: Observe that, upon receiving a read request, F

ledger
gives control to the simulator who then triggers a state update

for the global transaction list in F
ledger

. This matches the behavior of G
ledger

, i.e., the global transaction and global block lists that

are used for the following read request (and any later requests) remain synchronized.

After the state update, there are two cases: if the honest entity receiving the read request has not been registered for less than 𝛿

time units, then the simulator is allowed to determine the exact output. Since this is done by forwarding the output of R ′, the
output is identical in both worlds. For parties that are already registered for at least 𝛿 time units, then the simulator may only

provide a pointer that determines the prefix of the global transaction list that is output as a result of the read request. That pointer

must be at at least as large as the previous pointer (if such a pointer exists) and must be within the last windowSize blocks of the
global transaction list (when transformed to G

ledger
’s state format via toState). Since this pointer is determined by the block that

is returned in R ′, which by definition of G
ledger

is such that it meets all the requirements enforced by I, we have that F
ledger

accepts the pointer of S and indeed outputs the same transaction list as in the real world.

Current time requests: As the simulator updates the internal clock of F
ledger

every time an update to G
clock

in R ′ occurs, both
worlds always output the same value for the current time. Note that, even if F Gledger

updRnd
enforces liveness and/or chain-growth, any

round update requests of S will indeed be accepted: by assumption, R ′ guarantees that liveness and/or chain-growth are still

preserved whenever the clock in G
clock

advances. As the global state is synchronized, the same thus also holds true for F
ledger

whenever S updates the clock.

(De-)Registration: In the ideal world, F
ledger

registers honest entities whenever they first perform a submit or read request. This

is identical to the behavior of the wrapperW
ledger

in the real world. Similarly for de-registration of honest entities. Hence, the

sets of honest registered entities are also synchronized in the real and ideal world.

Updates to the global state caused by requests on the network: Observe that these updates are also applied to F
ledger

by the

simulator. Note in particular that these updates will be accepted by F
ledger

since G
ledger

has already accepted them based on a

synchronized state and using deterministic algorithms. Hence, the global state stays synchronized even when the adversary, e.g.,

instructs the wrapper to send a MaintainLedger command in the name of an honest party and, by this, causes an update to the

global state.

Altogether, R and {S,I} behave identical in terms of behavior visible to the environment E and thus are indistinguishable. □

Remark: Though, we have not explicitly discussed the common property of chain-quality above, we emphasize that F Gledger
ledger

also

provides, resp. ensures chain-quality if G
ledger

ensures the property. If one wants to capture chain-quality explicitly, one needs to

adapt F Gledger
update

(cf. Figure 16 and 17) such that it captures chain-quality. The handling of liveness and chain-growth in F Gledger
ledger

(cf. Figure 18) can be used as blueprint for incorporating chain-quality explicitly into F Gledger
update

.
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Description of the protocol G
ledger

= (client) :

Participating roles: {client}
Corruption model: dynamic
Protocol parameters:

– validate
{Decides on the validity of a transaction with respect to the current state. Used to clean the
buffer of transactions.

– extendPolicy
{The function that specifies the ledger’s guarantees in extending the ledger state (e.g., speed,
content etc.).

– Blockify {The function to format the ledger state output.
– predictTime {The function to predict the real-world time advancement.

– delay ∈ N
{A general delay parameter for the time it takes for a newly joining (after the onset of the computation)
miner to become synchronized.

– windowSize ∈ N {The window size (number of blocks) of the sliding window.

Description of𝑀client :

Implemented role(s) : {client}
Subroutines: G

clock
: clock

Internal state:

– P ⊂ {0, 1}∗, identities = ∅ {The (dynamic) set of registered participants.
– state ⊂ {0, 1}∗, state = 𝜖 {The ledger state, i.e., a sequence of blocks containing the content.
– nxtBC ∈ {0, 1}∗, nxtBC = 𝜖 . {Stores the current adversarial suggestion for extending the ledger state.

– buffer ∈ N × {0, 1}∗ × N × {0, 1}∗, buffer = 𝜖 .

{
The buffer of submitted input values of the form (txId, txContent, submissionTime,
submittingParty) .

– 𝜏𝐿 ∈ N, 𝜏𝐿 = 0. {The current time as reported by the clock.

– 𝜏state ∈ N × N, 𝜏state = ∅. {A vector containing for each state block the time when the block added to the ledger state.

– ITH ∈ {0, 1}
∗ × {0, 1}∗ × N, ITH = ∅.

{The timed honest-input sequence with data of the form (msg, submittingParty,
submissionTime) .

– PM ⊂ P × {d,s,c} × N × N × {0, 1}∗, PM = ∅
{
Storage to manage parties. An entry contains the party id, wheter the party is d -
desynchronized, s - synchronized, or c - corrupted. he registration time, the pointer
to the current state (or the block number), and its current state.CheckID(pid , sid , role) :

Accept all messages with same sid.
Corruption behavior:

– LeakedData:
if ∃(pid, ps, 𝜏, pt, state) ∈ PM: {Record corruption in PM

PM.remove(pid, ps, 𝜏, pt, state) ;PM.add(pid, c, 𝜏, pt, state)
else:

PM.add(pid, c, 𝜏, pt, state)
return ⊥ {We do not leak addtional data during corruption

– AllowAdvMessage: A is not allowed to call subroutines on behalf of a corrupted party.

Figure 8: The ideal ledger functionality G
ledger

translated into the iUC model (Part 1).
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Description of𝑀client (continued):

MessagePreprocessing:

recv msg from I/O or NET:
send Read to (pidcur, sidcur, Gclock : clock) {Update the clock
wait for 𝑡 from G

clock
: clock; 𝜏𝐿 ← 𝑡

{
Update the current time in G

ledger

send GetRegistered to (pidcur, sidcur, Gclock : clock)
{Request which parties are properly registered
at G

clockwait for P from G
clock

: clock
for p ∈ P do: {Honest parties connected since delay rounds become “synchronized”

if p ∈ P ∧ (p, d, 𝜏, pt, state) ∈ PM ∧ 𝜏L − 𝜏 > delay:
PM.remove(p, d, 𝜏, pt, state)
PM.add( (p, s, 𝜏, pt, state))

for p ∈ P do: {Remove the “synchronized” flag from parties that are not registered to the clock.
if (p, s, 𝜏, pt, state) ∈ PM ∧ p ∉ P :

PM.remove(p, s, 𝜏, pt, state)
PM.add( (p, d, 𝜏, pt, state))

if (pid, s, _, _, _) ∈ PM ∨ (pid, d, _, _, _) ∈ PM: {Additional handling for messages received by honest parties

ITH .add(msg, pid, 𝜏𝐿) {Store transaction as honest.
N ← (N1, . . .N𝑙 ) ← extendPolicy(ITH, state, nxtBC, buffer, 𝜏state)

{
Check if the state needs to be
extended

if N ≠ 𝜖 : {Verify whether current chain extension behavior matches extendPolicy

state.add(Blockify(N1), . . . ,Blockify(Nl))
{
Add blocks that are necessary to fulfill the extendPolicy to the state.

for 𝑖 = 1 to 𝑙 do:
𝜏state .add(𝜏𝐿) {Add time stamps for each block to 𝜏𝐿

for tx ∈ buffer do: {Clean up transactions in buffer that are not valid according to state.
if validate(tx, state, buffer) = false:

buffer.remove(tx) ; nxtBC← 𝜖

if ∃(p, s, 𝜏, pt, state) ∈ PM, s.t. |state | − pt > windowSize ∨ pt < |state |:
{Update state of honest and synced participants if necessary

for (p̂, ŝ, 𝜏, p̂t, ˆstate) ∈ PM do:
{If the pointer of one party is to far away from the current head of the chain or pointer
and state are not synced, update to head (as fallback)

PM.remove( (p̂, ŝ, 𝜏, p̂t, ^state, p̂t) ; PM.add( (p̂, ŝ, 𝜏, |state |, state.current))
nxtBC← 𝜖 {Clear proposed block(s)

Main:

recv Register from I/O s.t. pid ∉ P: {Registration process for honest parties
P.add(pid) ; PM.add(pid, d, 𝜏L, 𝜖, 𝜖)
reply Register

recv (Register, pid, sid) from NET s.t. pid ∉ P: {Registration process for honest parties
P.add(pid) ; PM.add(pid, c, 𝜏L, 𝜖, 𝜖)
reply Register

recv DeRegister from I/O s.t. (pid, s ∨ d, 𝜏, pt, state) ∈ PM: {Deregistration of honest parties
P.remove(pid) ; PM.remove(pid, ps, 𝜏, pt, state)
reply DeRegister

recv (DeRegister, pid, sid) from NET s.t. (pid, c, 𝜏, pt, state) ∈ PM: {Deregistration of corrupted parties
P.remove(pid) ; PM.remove(pid, ps, 𝜏, pt, state)
reply DeRegister

recv (GetRegistered, sid) from NET: {A requests the current set of participants
reply (GetRegistered, sid, P)

recv GetRegistered from I/O: {E requests the current set of participants
reply (GetRegistered, P)

Figure 9: The ideal ledger functionality G
ledger

translated into the iUC model (Part 2).
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Description of𝑀client (continued):

Main:

recv (Submit, tx) from I/O s.t. (pidcur, s ∨ d, _, _, _) ∈ PM: {Honest parties submit a transaction
Choose a unique txId; t̂x ← (txId, tx, 𝜏L, pid)
if validate( t̂x, state, buffer) = true:

buffer.add( t̂x)
{
Record t̂x as queued for consensus

send (Submit, t̂x) to NET

recv (Submit, pid, tx) from NET s.t. (pid, c, _, _, _) ∈ PM: {corrupted parties submit a transaction
Choose a unique txId; t̂x ← (txId, tx, 𝜏L, pid)
if validate( t̂x, state, buffer) = true:

buffer.add( t̂x)
{
Record t̂x as queued for consensus

send (Submit, t̂x) to NET

recv Read from I/O s.t. (pid, ps, 𝜏, pt, state) ∈ PM, ps ∈ {s,d}: {Hanlding of read requests from honest parties
state′ ← state |

min{pt,|state|}
PM.remove(pid, ps, 𝜏, pt, state) ;PM.add(pid, ps, 𝜏, pt, state′)
reply (Read, state′)

recv (Read, pid) from NET s.t. (pid, d, 𝜏, pt, state) ∈ PM:
reply (Read, state, buffer, ITH) {A gets “full” knowledge of the status of the chain

recv MaintainLedger from I/O s.t. (pid, s ∨ d, _, pt, state) ∈ PM:
{
MaintainLedger command for honest par-
tiesif predictTime(ITH) > 𝜏𝐿 :

send (Update, sid) to (pid, sid, G
clock

: clock)
else:

send (MaintainLedger) to NET

recv (NextBlock, hFlag, txid1, . . . , txid𝑙 ) from NET: {Handling of suggested block candidates by A
nxtBC ← 𝜖

for 𝑖 = 1 to 𝑙 do:
if ∃(txid𝑖 , tx𝑖 , 𝜏𝑖 , pid𝑖 ) ∈ buffer:

nxtBC.add(txid𝑖 , tx𝑖 , 𝜏𝑖 , pid𝑖 )
nxtBC.add( (hFlag, nxtBC)
reply (NextBlock, ack)

recv (SetSlack, (p1, pt′
1
), . . . , (p𝑙 , pt′𝑙 )) from NET s.t. ∀pid ∈ {p1, . . . , p𝑙 } : (pid, s, _, _, _) ∈ PM:

{A may set the exact “state” of a synchronized party depending on windowSize
u← {(p1, pt′

1
), . . . , (p, pt′

𝑙
) }

if ∃(p𝑗 , pt′𝑗 ) ∈ u, s.t. |state | − pt′j > windowSize ∨ pt′j < |statej |:
{
In the case that windowSize is violated or a
pointer is moved backwards

for all (pid′, (𝑠), 𝜏 ′, pt′, state′) ∈ PM do: {Update all synchronized parties to “longest chain”
PM.remove(pid′, (s), 𝜏 ′, pt′, state′)
PM.add(pid′, (s), 𝜏 ′, |state |, state)

else:
for 𝑖 = 1 to 𝑙 do:

PM.remove(pi, psi, 𝜏i, pti, statei)
PM.remove(pi, psi, 𝜏i, pt′i, statei)

reply (SetSlack, ack)
recv (DesyncState, (p1, state′

1
), . . . , (p, state′

𝑙
)) from NET:

s.t. pid ∈ P ∧ ps𝑖 = d, ∀𝑖 = 1, . . . 𝑙, s.t. (p𝑖 , ps𝑖 , 𝜏𝑖 , pt𝑖 , state𝑖 )PM
{
A may set the “state” of de-
synchronized partiesfor 𝑖 = 1 to 𝑙 do:

PM.remove(pi, psi, 𝜏i, pti, statei)
PM.remove(pi, psi, 𝜏i, 𝜖, state′i)

reply (DesyncState, ack)

Figure 10: The ideal ledger functionality G
ledger

translated into the iUC model (Part 3).

31



Description of the protocol G
clock

= (clock) :
Participating roles: {clock}
Corruption model: incorruptible

Description of𝑀clock :

Implemented role(s) : {clock}
Subroutines: G

ledger
: client

Internal state:

– P ⊂ {0, 1}∗ × {0, 1}, P = ∅ {The set of registered participants of the form (pid, activated) .
– 𝜏 ∈ N, initially 𝜏 = 0 {Current time in the G

clock

– F ∈ {0, 1}, initially F = 0

{
Round update status of G

ledger
.

CheckID(pid , sid , role) :
Accept all messages for the same sid.

Main:

recv (Register, pid) : {Handling registration for parties
P.add(pid, 0)
reply (Register, pid)

recv (DeRegister, pid) : {Handling deregistration for parties
P.remove(pidcur, _)
reply DeRegister

recv GetRegistered: {Output currently registered parties
reply (GetRegistered, P)

recv (ClockUpdate, pid) : {Handling clock updates from participants
P.remove(pidcur, _)
P.add(pidcur, 1)
if activated = 1, ∀(pid, activated) ∈ P ∧ F = 1: {Update clock if all parties accepted update

𝜏 ← 𝜏 + 1
for (pid, _) ∈ P do:

P.remove(pid, _)
P.add(pid, 0)
F = 0

recv ClockUpdate from (pidcur, sidcur, Gledger) :
{
Handling clock updates G

ledger

F = 1

if activated = 1, ∀(pid, activated) ∈ P: {Update clock if all parties accepted update
𝜏 ← 𝜏 + 1
for (pid, _) ∈ P do:

P.remove(pid, _)
P.add(pid, 0)
F = 0

recv ClockRead: {Handling reads from the clock
reply (ClockRead, 𝜏)

Figure 11: The ideal clock functionality G
clock

from [3] translated into the iUC model.
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Description of the wrapperW
ledger

= (client) :

Participating roles: {client}
Corruption model: incorruptiblea

Protocol parameters:
– toMsglist

{
“Algorithm” that transforms output of extendPolicy from G

ledger
to msglist format (including metadata). extendPolicy

may include format/data transformation.
aA can directly access G

ledger
for corrupted parties via NET. Thus, we do not have to handle these cases viaW

ledger

Description of𝑀wrapper :

Implemented role(s) : {client}
Subroutines: G

ledger
: client, G

clock
: clock

CheckID(pid , sid , role) :
Accept all messages with the same sid.

Corruption behavior:
– DetermineCorrStatus(pid , sid , role) :

corrupted ← corr(pidcur, sidcur, rolecur)
{
Request corruption status at G

ledger

return corrupted
Internal state:

identities ⊂ {0, 1}∗ × N, identities = ∅ {The set of participants and the round when they occured first.
MessagePreprocessing:

recv (pidcur, sidcur, rolecur,msg) from I/O: {We ensure for all input via I/O that the entity is registered.

corrupted ← corr(pidcur, sidcur, rolecur)
{
Request corruption status at G

ledger

if corrupted ∧ command is dedicated to G
ledger

:
{
See defined commands for G

ledger
above

send msg to (pidcur, sidcur, Gledger : client)
{
For corrupted parties:W

ledger
acts as forwarder

if msg starts with Submit or Read: {Register unknown party before its first submit/read operation
send Register to (pidcur, sidcur, Gclock : clock) {Register party at G

clock

wait for (Register, sid, pid) from G
clock

: clock
send Register to (pidcur, sidcur, Gledger : client)

{
Register party at G

ledger

wait for (Register, sid, pid) from G
ledger

: client
for (pid, _) ∈ identities do:

send CorruptionStatus? to (pid, sidcur, Gledger : client)
wait for (CorruptionStatus, corrupted)
if corrupted:

identities.remove(pid, _) {Remove corrupted identities
if (pidcur, _) ∉ identities: {Record unknown parties

send ClockRead to (pidcur, sidcur, Gclock : clock)
wait for (ClockRead, round)
identities.add(pidcur, round)

recv msg from (pidcur, sidcur, Gledger) :


In case that G

ledger
sends a message via I/O, e.g., in the case that A triggers sending

a message via I/O, the message is forwarded to I/O. Note that this part is not
executed ifW

ledger
waits for an answer, e.g., during the reading process due to the

specification of iUC.send (pidcur, sidcur, rolecur,msg) to I/O
Main:

recv (Submit,msg) from I/O: {Submission of a transaction from an uncorrupted party.
send (Submit,msg) to (pidcur, sidcur, Gledger : client)

{
Forward the request to G

ledger

recv (Read,msg) from I/O: {Read from state from an uncorrupted identity.
send Read to (pidcur, sidcur, Gledger : client)

{
Forward the request to G

ledger
.

wait for (Read, state)
msglist ← toMsglist(state)

{
Translate G

ledger
’s state format to F

ledger
’s message list format

reply (Read,msglist)
recv (ClockUpdate, pid, sid) from NET: {A triggers clock updates for honest and corrupted parties

send ClockUpdate to (pid, sid, G
clock

: clock) {Trigger clock update.
recv (MaintainLedger, pid, sid) from NET: {A triggers MaintainLedger for honest and corrupted parties

send MaintainLedger to (pid, sid, G
ledger

: client)

recv (GetCurRound) from NET: {A requests GetCurRound
send ClockRead to (𝜖, sidcur, Gclock : clock)
wait for (ClockRead, round)
reply (GetCurRound, round)

Figure 12: The wrapperW
ledger

for G
ledger

and G
clock

to prove that they realize F
ledger

(Part 1).
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Description of the wrapperW
ledger

= (client) (continued):

Main:

recv GetRegistered from I/O:
send GetRegistered to (pidcur, sidcur, Gledger : ledger)
wait for (GetRegistered, sid, P) from G

ledger
: ledger

output = {(pid, round) ∈ identities |pid ∈ P }
{
F
ledger

outputs only honest parties including the round they
registeredreply (GetRegistered, output)

recv DeRegister from I/O:
{
E triggers derigstering of (pid, 𝑠𝑖𝑑, role) from G

clock
and G

ledger

send DeRegister to (pidcur, sidcur, Gclock : clock)
wait for DeRegister
send DeRegister to (pidcur, sidcur, Gledger : ledger)
wait for DeRegister
identities.remove(pidcur, _)

{
To mimic behavior of F

ledger

reply DeRegister

Figure 13: The wrapperW
ledger

for G
ledger

and G
clock

to prove that they realize F
ledger

(Part 2).

Description of the subroutine FGledger
submit

= (submit) :

Participating roles: {submit}
Corruption model: incorruptible
Protocol parameters:

– validate
{
Validation “algorithm” (from G

ledger
) that states whether a transaction is valid according to already ordered

messages.

– toBTX
{
Algorithm that transforms a input tx to the format expected in G

ledger
, i.e., (msg′, txID, 𝜏𝐿, pid) . It includes

housekeeping, e.g, txID is unique.

– toState
{
Algorithm that transforms F

ledger
’s message list format to G

ledger
’s state format. It may include house-

keeping, e.g, generating of unique block ids.

Description of𝑀
submit

:

Implemented role(s) : {submit}
Subroutines: FGledger

update
: update

CheckID(pid , sid , role) :
Accept all messages with the same sid.

Main:

recv (Submit,msg, internalStatea) from I/O:
{
See Figure 5 for definition of internalState and the local variables it includes

send (Preprocess,msg, internalState) to (pidcur, sidcur, FGledger
update

: update)
{
Trigger G

ledger
’s preprocessing at FGledger

update

wait for (Preprocess,msglist′, buffer, leakage)
{
FGledger
update

provides the up-to-date/validated data to FGledger
submit

if validate(toBTX(msg), toState(msglist′), buffer) = true:
{
Emulate G

ledger
’s validation behavior

reply (validationProcessed, true, [msg, leakage]) {A receives all details on the transaction msg
else:

reply (validationProcessed, false, [msg, leakage]) {A receives all details on msg

a
For brevity we use data from internalState with the local variant of the variable name from F

ledger
. This includes local variables such asmsglist, requestQueue, readQueue, and

round.

Figure 14: The write/submit functionality F Gledger
submit

of F Gledger
ledger
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Description of the subroutine FGledger
read

= (read) :

Participating roles: {read}
Corruption model: incorruptible
Protocol parameters:

– windowSize ∈ N {The window size (number of blocks) of the sliding window.

– 𝛿 ∈ N {The upper bound for network delay in rounds.

Description of𝑀read :

Implemented role(s) : {read}
Subroutines: FGledger

update
: update

pointer : {0, 1}∗ → N ∪ {⊥} {Mapping from identities to last transaction in their state; initially ⊥
CheckID(pid , sid , role) :

Accept all messages with same sid.
MessagePreprocessing:

recv msg from I/O:
For all parties pid that have been de-registered since the last call of FGledger

read
according to transcript (included in the incoming message, resp.

internalState), set pointer[pid ] ← ⊥.
Main:

recv (InitRead,msg, internalStatea) from I/O:
{
See Figure 5 for definition of internalState and the local variables it includes

reply (InitRead, false,msg)
{
Reads in G

ledger
may include state updates, thus we trigger A and leak the read request to

A.

recv (FinishRead,msg, outID, internalState) from I/O:
{outID is the suggestedOutput from A. For de-synced parties,
it is directly the read output, for synced parties, it is a pointer
to the output

Let (pidcur, roundRegistered) for some roundRegistered ∈ N be the unique tuple in identities.

send ProcessingOpen? to (pidcur, sidcur, FGledger
update

: update)
{
Enforce that pending updates are propagated
to F

ledger

wait for (ProcessingOpen?, response)
if response:

{
If there are pending updates, they need to be propagated to F

ledger

reply (FinishRead,⊥, 𝜖)
if roundRegistered + 𝛿 ≤ round: {Party is synced

if outID ∉ N ∨ (pointer[pidcur ] ≠ ⊥ ∧ outID < pointer[pidcur ]) : {A is supposed to send the same or later pointer
reply (FinishRead,⊥, 𝜖)

Let (outID, committingRound, tx,msg, _, _) be the unique transaction from msglist with id outID.
if (outID, committingRound, tx,msg′, _, _) does not exist in msglist:

{A is supposed to send an ex-
isting pointerreply (FinishRead,⊥, 𝜖)

Let boutID ∈ N the block number of the block that contains the transaction with id outID (according to (meta, cut) messages in

msglist starting from block 1).

Let bcurrent ∈ N the block number of the current/most recent block in msglist.
if boutID + windowSize < bcurrent :

reply (FinishRead,⊥, 𝜖)
pointer[pidcur ] ← outID {Update last pointer
Let output be the subsequence of msglist (only including the counter ctr , the submission round

submissionRound, submitting party pid′, and the message body msg′′) until (and including) message

outID.

{
Map to output from
G
ledger

.

reply (FinishRead, output, 𝜖)
else: {Party is de-synced.

reply (FinishRead, outID, 𝜖) {A decides the output. outID is suggestedOutput.

recv (CorruptedRead, pid,msg, internalState) from I/O:
reply (FinishRead, 𝜖) {A already knows the full chain

a
For brevity we use data from internalState with the local variant of the variable name from F

ledger
. This includes local variables such asmsglist, requestQueue, readQueue, and

round.

Figure 15: The read functionality F Gledger
read

of F Gledger
ledger
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Description of the subroutine FGledger
update

= (update) :

Participating roles: {update}
Corruption model: incorruptible
Protocol parameters:

– validate
{
Validation “algorithm” (from G

ledger
) that states whether a transaction is valid according to already ordered

messages.

– extendPolicy
{
extendPolicy from G

ledger
. Defines how state “evolves”.

– toMsglist
{
“Algorithm” that transforms output of extendPolicy from G

ledger
to msglist format (including metadata).

extendPolicy may include format/data transformation.

– toState
{
Algorithm that transforms F

ledger
’s message list format to G

ledger
’s state format. It may include house-

keeping, e.g, generating of unique block ids.

– ToBuffer
{
Algorithm that transforms F

ledger
’s requestQueue format to G

ledger
’s buffer format. It may include

housekeeping, e.g, generating of unique ids.

– toBTX
{
Algorithm that transforms a input tx to the format expected in G

ledger
, i.e., (msg′, txID, 𝜏𝐿, pid) . It includes

housekeeping, e.g, txID is unique.

Description of𝑀update :

Implemented role(s) : {update}
CheckID(pid , sid , role) :

Accept all messages with the same sid.
Internal state:

– recordedActivations : {0, 1}∗
{
Emulated honest activations of G

ledger

– msgListAppendp : {0, 1}∗ {Cache for pending update msglist

– UpdRequestQueuep : {0, 1}∗ {Cache for pending update requestQueue

Main:

recv (Update, [pending&new,msg], internalStatea) from I/O:
{
See Figure 5 for definition of internalState and the local
variables it includes

if msg ≠ (I𝑇
𝐻
, nxtBC, corrBuffer, 𝜏state) , s.t. I𝑇𝐻 , corrBuffer, 𝜏state match the format from G

ledger
, nxtBC is a sequence of

nxtBC’s in the format of G
ledger

:

{Check message format
reply (Update, ∅, ∅, 𝜖) {Processing aborted

if ∃ a transaction of an uncorrupted pid in corrBuffer:
reply (Update, ∅, ∅, 𝜖) {Processing aborted

recordedActivations.add(𝐼𝑇
𝐻
) {Update recordedActivations

ProcessUpdate()
{
See definition of ProcessUpdate() below. The procedure gets the complete internal state of FGledger

update
and all

currently used local variables as input. It may write to local and global variables or create new local variables.

msgListAppendp ← ∅;UpdRequestQueuep ← ∅ {Clear variables for pending upgrade
reply (Update,msgListAppend, updRequestQueue, leakage) {Return updates.

recv (Update, [finalizePending], internalState) from I/O: {A may finalize an update without triggering a new one

msgListAppend ← msgListAppendp; updRequestQueue← UpdRequestQueuep

leakage← (msgListAppend, updRequestQueue)
msgListAppendp ← ∅;UpdRequestQueuep ← ∅ {Clear variables for pending upgrade
reply (Update,msgListAppend, updRequestQueue, leakage) {Return updates.

a
For brevity we use data from internalState with the local variant of the variable name from F

ledger
. This includes local variables such asmsglist, requestQueue, readQueue, and

round.

Figure 16: The update functionality F Gledger
update

of F Gledger
ledger

(Part 1)
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Description of𝑀update (continued):

Main:

recv (Preprocess,msg, internalState) from I/O: {Update preprocessing for Submit
send responsively (Preprocess,msg, internalState) to NET
wait for (Preprocess, I𝑇

𝐻
, nxtBC, corrBuffer, 𝜏state)

while msg ≠ (I𝑇
𝐻
, nxtBC, corrBuffer, 𝜏state) , s.t.

1. I𝑇
𝐻
, corrBuffer, 𝜏state match the format from

G
ledger

,

2. nxtBC is a sequence of nxtBC’s in the format of

G
ledger

,

3. � a transaction of an uncorrupted pid in

corrBuffer ,

do

send responsively (Preprocess,msg, internalState) to NET {Query A regarding state update
wait for (Preprocess, I𝑇

𝐻
, nxtBC, corrBuffer, 𝜏state)

recordedActivations.add(𝐼𝑇
𝐻
) {Update recordedActivations

ProcessUpdate() {See definition of inspace procedure below
state← msglist ∪msgListAppend {Output for Fsubmit

msgListAppendp ← (msgListAppend) ;UpdRequestQueuep ← (updRequestQueue)
{Record pending
updates

reply (Preprocess, state, ToBuffer(updRequestQueue) ∪ corrBuffer, leakage) {Return data to F
submit

.

recv ProcessingOpen? from I/O:
{
I/O round can query whether there are pending state updates

if msgListAppendp ≠ ∅ ∨ UpdRequestQueuep ≠ ∅:
reply (ProcessingOpen?, true)

else:
reply (ProcessingOpen?, true)

Procedures and Functions:
procedure ProcessUpdate() :

if msgListAppendp ≠ ∅ ∨ UpdRequestQueuep ≠ ∅:
msglist .add(msgListAppendp) ; requestQueue← requestQueuec {Include pending updates in update process

updRequestQueue← ∅
N ← extendPolicy(I𝑇

𝐻
, toState(msglist), nxtBC, ToBuffer(requestQueue) ∪ corrBuffer, 𝜏𝑠𝑡𝑎𝑡𝑒 ) {

Emulate G
ledger

behavior during update
msgListAppend ← msgListAppendp; updRequestQueue← UpdRequestQueuep

if N ≠ 𝜖 : {Process update, if extendPolicy produces an update
msgListAppend .add(toMsglist(𝑁,msglist)) {Transform output of extendPolicy tomsglist format

for all tx in requestQueue do:
if ¬validate(toBTX(tx), toState(msglist), ToBuffer(updRequestQueue) ∪ corrBuffer) : {

Emulate G
ledger

’s update behavior
Remove entry of tx from requestQueue, add it to updRequestQueue

leakage← (msgListAppend, updRequestQueue)

Figure 17: The update functionality F Gledger
update

of F Gledger
ledger

(Part 2)
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Description of the subroutine FGledger
updRnd

= (updRnd) :

Participating roles: {updRnd}
Subroutines: FGledger

update
: update

Corruption model: incorruptible
Protocol parameters:

– 𝜌 ∈ N {The upper bound in rounds after which a honest tx should be in the state.

– growthWindow ∈ N {The number of rounds the growthRate is related to

– growthRate ∈ N {The number of “blocks” that should be added at in any growthWindow consecutive rounds

– ensureLiveness ∈ {true, false} {If true, liveness is ensured

– ensureGrowth ∈ {true, false} {If true, chain-growth is ensured

Description of𝑀updRnd :

Implemented role(s) : {updRnd}
Subroutines: FGledger

update
: update, Fstate : state

CheckID(pid , sid , role) :
Accept all messages with the same sid.

Main:

recv (UpdateRound,msg, internalStatea) from I/O:
{
See Figure 5 for definition of internalState and the local variables it
includes

send (ProcessingOpen?) to (pidcur, sidcur, Fupdate : update) {Check whether there are pending state updated
wait for (ProcessingOpen?, response)
if response: {Round may not perceed if there are pending updates

reply (UpdateRound, false, 𝜖)
if ensureLiveness ∧ ∃(_, r, _) ∈ requestQueue, s.t. r ∈ N ∧ r < round − 𝜌 :

reply (UpdateRound, false, 𝜖)
if ensureGrowth ∧ round ≥ growthWindow:

if #(_, _, meta, cut, _, _) in the last growthWindow committing rounds in msglist is smaller than growthRate:
reply (UpdateRound, false, 𝜖)

if ∃(pid, responseID, round,msg) ∈ readQueue ∧ (pid, _) ∈ identities:
{Check that all honest read requests in
this round are processedreply (UpdateRound, false, 𝜖)

else:
reply (UpdateRound, true, 𝜖)

a
For brevity we use data from internalState with the local variant of the variable name from F

ledger
. This includes local variables such asmsglist, requestQueue, readQueue, and

round.

Figure 18: The round update/time update functionality F Gledger
updRnd

of F Gledger
ledger

Description of the subroutine FGledger
leak

= (leak) :

Participating roles: {leak}
Corruption model: incorruptible

Description of𝑀
leak

:

Implemented role(s) : {leak}
CheckID(pid , sid , role) :

Accept all messages with the same sid.
Main:

recv (Corrupt, pid, sid, internalState) from I/O:
{
See Figure 5 for definition of internalState and the local vari-
ables it includes

reply (Corrupt, 𝜖) {A already had full overview of the state

Figure 19: The leakage subroutine F Gledger
leak

of F Gledger
ledger
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Description of the protocol FGledger
init

= (init) :

Participating roles: {init}
Corruption model: incorruptible
Protocol parameters:

– extendPolicy
{
extendPolicy from G

ledger
. Defines how state “evolves”.

– toMsglist
{
Algorithm that transferst output from extendPolicy to the format ofmsglist as specified in F

ledger
(Figure 5).

Description of𝑀init :

Implemented role(s) : {init}
CheckID(pid , sid , role) :

Accept all messages with the same sid.
Main:

recv Init from I/O:
{
FGledger
init

runs extendPolicy wich may produce a genesis block
N ← extendPolicy( ∅, ∅, 𝜖, ∅, 𝜖)
msglist ← toMsglist(N)
reply (Init, ∅,msglist, ∅,msglist) {The initial data is leaked to A

Figure 20: The initialization functionality F Gledger
init

of F Gledger
ledger
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E OTHER IDEAL BLOCKCHAIN FUNCTIONALITIES
In this section, we show that F

ledger
indeed capture so-far published ideal ledger functionalities:

The ideal blockchain functionality GPL with privacy. Kerber et al. proposed a derivative of G
ledger

, called GPL [26], to

analyze and prove security, including transaction privacy, of the proof-of-stake protocol Ouroboros Crypsinous: GPL is designed

for and tailored towards proof-of-stake blockchain protocols while also including mechanisms that allow for modeling privacy of

transactions and during block generation. Using similar techniques as used in Theorem 3.1, we can instantiate F
ledger

(denoted by

F GPL
ledger

) in such a way that it captures the same security properties as the private blockchain functionality GPL.

Theorem E.1 (informal). Let F GPL
ledger

be the instantiation of F
ledger

that encodes the security properties provided by GPL. Then we

have that GPL (plus a wrapper) realizes F GPL
ledger

.

We provide further details regarding GPL, its relation to F
ledger

, and provide a proof sketch below. Analogously to Corollary 3.2,

this theorem directly implies that Ouroboros Crypsinous realizes F GPL
ledger

.

Besides G
ledger

and GPL, there are also various other ideal functionalities for blockchains [18, 19, 29], all of which are similar to

the first ideal functionality introduced by Kiayias et al. [29]. These functionalities are relatively simple compared to G
ledger

and

GPL: They offer just a submission and read interface. Once a party submits a transaction, it is immediately added to the global

state. Furthermore, parties reading from that state always obtain the full global state. Badertscher et al. explain in [5] that “the

proposed ledger-functionality (introduced in [29]) is too strong to be implementable by Bitcoin”, which holds true also for other

blockchains from practice as well as for the closely related functionalities from [18, 19]. In other words, the main purpose of

these functionalities is to serve as idealized setup assumptions for building and analyzing higher-level protocols. Clearly, one can

instantiate F
ledger

appropriately to offer the exact same setup assumptions.

E.1 GPL Realizes Fledger (Sketch)
In this section, we sketch how F

ledger
can be instantiated such that Kerber et al.’s ideal functionality for privacy in blockchains

GPL [26] also realizes that instantiation of F
ledger

. Since GPL is a variant of Gledger, we first briefly describe the key differences

between GPL and G
ledger

and how GPL models privacy properties.
14

Then, we explain how the subroutines of F
ledger

need to be

instantiated – we call the resulting instantiation F GPL
ledger

in what follows – in order to prove that GPL realizes F GPL
ledger

.

E.1.1 The Private Ledger Functionality GPL . The functionality GPL inherits most of its construction from G
ledger

while mainly

adding two additional features: (i) GPL allows for modeling privacy properties of blockchains, and (ii) GPL includes (initial) stake

distributions. This is to enable capturing the Proof-of-Stake-based blockchain Ouroboros Crypsinous [26].

On a technical level, Kerber et al. add the following new parameters to GPL to model privacy: (i) Lkg, a leakage algorithm,

(ii) blindTx, an algorithm that blinds transaction content before this is leaked to A, and (iii) blind, a blinding algorithm that hides

private details of the state. To model privacy properties with GPL, each party gets a blind’ed response to its read requests. That

is, it cannot directly access the full global state of GPL. Similarly, A only gets access to a blind’ed version of GPL’s state and all

potential leakages, such as the leakage during transaction submission, are blinded via one of the additional parameters.

Furthermore, GPL includes an explicit (coin) ID generation interface Generate that allows to generate private IDs, e.g., private

coin IDs which is necessary for Ouroboros Crypsinous to, e. g., handle privacy during “mining”. Finally, Kerber et al. also change

the behavior of some parameters compared to G
ledger

. In particular, (i) the activation list ITH stores blinded data as it is leaked later

on to A, (ii) validate gets the states of the participants, honest participants, and the set of generate IDs (coins) as additional input.

Note that GPL does not fix a particular stake update mechanism in its definition. GPL handles stake updates – in the spirit of

G
ledger

– by suitable instantiations of parameters/algorithms that can derive the (current) stake from the global state (including

the generated coins) and store some information about the stake in the global state. GPL uses the same parameters/algorithms in

similar ways as G
ledger

.

E.1.2 GPL Realizes F GPL
ledger

. Now, we sketch the instantiation F GPL
ledger

which is realized by GPL. Since GPL use similar/the same

parameters as G
ledger

, this instantiation is very simlar to the instantiation used for G
ledger

in Appendix D and uses the same

high-level idea, namely, running the parameters of GPL inside the subroutines of F
ledger

. There is, however, one conceptual

difference between F Gledger
ledger

and F GPL
ledger

: In F Gledger
ledger

, we were able to abstract from some of the (not security relevant) technical

details of G
ledger

, such as lists of honest activations, by letting the simulator take care of these aspects. This in turn resulted in a

cleaner and simpler specification of F Gledger
ledger

. However, this is not possible for F GPL
ledger

: The information that GPL leaks strongly

depends on the exact parameters that are used, so it is not fixed which exact information would be available to a simulator.

Hence, the simulator actually cannot take over certain tasks. Instead, we use an alternative approach that we already mentioned

in the discussion of F Gledger
ledger

in Appendix D, namely, we encode the full logic of GPL with all technical details within F GPL
ledger

.

14
For a detailed presentation of GPL , we refer to the original paper [26].
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Figure 21: Example transaction submission in Corda with a transaction initiator 𝐼 , signees 𝑆1, . . . , 𝑆𝑛 , and a notary 𝑁 .

On a technical level, F GPL
ledger

differs from F Gledger
ledger

mainly in the following points: (i) F GPL
init

needs to distribute the initial stake

distribution of GPL, (ii) F GPL
read

needs a special handling for the Generate command which matches GPL, (iii) handling of leakage
needs to be enhanced by GPL’s leakage parameters, and (iv) Read needs to blind outputs before they are delivered to the requestor.

Similarly to Section 3, resp. Appendix D, we then also have to add a wrapperWPL in front of GPL and G
clock

to map interfaces

and abstraction levels.WPL mainly works asW
ledger

with the following major difference: AsWPL maps a F
ledger

commands

to G
ledger

’s, resp. GPL’s format,WPL maps generate messages of the form (Read, [Generate,msg]) (dedicated for F GPL
read

) to a

Generate for GPL.
Using the instantiation and wrapper as sketched above, we then obtain the following result:

Theorem E.2. (informal) Let GPL be the ideal blockchain functionality with arbitrary parameters such that all parameterized
algorithms are deterministic. Let F GPL

ledger
be the instantiation of F

ledger
as described above, where the internal subroutines use the same

parameters as GPL. Furthermore, if GPL is parameterized such that it provides liveness and/or chain-growth, then let the parameters
of the subroutine F GPL

updRnd
in F GPL

ledger
be set such that it also enforces the same properties. Then:

(WPL | GPL,Gclock) ≤ F GPL
ledger

We do not provide a formal proof for this theorem. Intuitively, the theorem follows from the fact that the full logic of GPL is
included in F GPL

ledger
, i.e., both functionalities behave in the same way (up to different abstraction levels which are mapped via the

wrapper).

F FULL DETAILS: CORDA REALIZES F c
ledger

In the following, we illustrate a flow between different parties in Corda using the submission of a transaction as example. This is

succeeded by full details for Theorem 4.1, including formal specifications of all machines and a formal proof of the theorem.

F.1 Corda Example Run
Figure 21 illustrates the process of submitting a transaction to Corda. The process is started by an initiator who submits, validates,

and signs the transaction, creating a so-called transaction proposal. In Step 1, this proposal is sent to all signees who also validate

the transaction and, if they agree with the transaction, also sign the proposal to signal consent. These signatures are returned to

the initiator (Step 2), who then forwards the proposal with all signatures to the responsible notary (Step 3). After performing all

of the checks mentioned above, the notary adds its own signature and returns the resulting finalized transaction to the initiator

(Step 4). After validating the signature, the initiator adds this finalized transaction (and its dependencies) to its own partial view of

the global transaction graph and forwards the finalized transaction to all signees (Step 5) who also validate all signatures and then

add the transaction (and its dependencies) to their partial views.

Corda requires by design that the initiator can validate the transaction, i. e., he knows all dependencies (all of which must also

have been validated at some point). This is achieved either by the owner of the initiating client having the dependency previously

submitted to the ledger, or by signees sending the missing dependencies proactively to the initiator (which are validated and then

added to its partial view of the global graph by the initiator) – for brevity, we say a party pushes a transaction to another party to

denote proactively sending transactions.

Unlike the initiator, signees and the notary might not be aware of the full dependencies of a new transaction yet. In order to be

able to validate the transaction between Steps 1 and 2 respectively Steps 3 and 4, they request, as depicted in Figure 22, any missing
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txFinalize or txProposaltxFinalize or txProposal

reqUnknownTxreqUnknownTx

reqAttachmentreqAttachment

replyAttachmentreplyAttachment

replyUnknownTxreplyUnknownTx

txFinalized or txAgreementtxFinalized or txAgreement

𝐼 𝑃

11

2
tx validation failed
due to missing data

3

repeat 1 until all tx & attach-
ments for tx validation are known

4

𝐼 𝑃

1

Figure 22: A notary or a client 𝑃 requests related transactions and attachments from an initiator 𝐼 if 𝑃 is not aware of
them.

dependencies from the initiator (who must know the full dependencies). This process is iterated recursively until all dependencies

have been received, validated, and added to their partial views of the global graph. If any information is missing or invalid, then

the transaction submission protocol is aborted by that party without generating a signature.

F.2 The Corda Model Pc

In this section, we provide additional details and highlights regarding our Corda model Pc
introduced in Section 4.2). We provide

the formal definitions of Pc
in Figures 23 to 34 at the end of this section.

Remark: To simplify presentation, we introduced Pc
as protocol (client | notary, Funicast, Fcert, Fro) in Section 4.2. Formally,

the Corda protocol is defined as Pc = (Pc
ledger

: client | Pc
ledger

: notary, Funicast, Fcert, Fro) (more details below).

The core of the Corda model which is mainly specified in the machines for clients and notaries consists of the resolution and

validation methods depicted in Figures 24 to 28.
15

as well as the sequence of stages a transaction passes from being first introduced

to a client until it is accepted into a party’s local state. These stages are encoded in bufferTxSig. The largest part of the protocol is
then the bookkeeping needed to implement the state machine. We discuss both the validation function and the sequence of stages

in the following.

Path to transaction validity. Clients learn about transaction proposals from three paths. They may get the transaction from the

network if a peer wishes to send it to them or from the environment via a call to submit where they are either initiator or signee of

that transaction. Depending on how a client first learned about a transaction a different sequence of stages are passed until the

transaction is finally accepted as valid.

In what follows, we describe the stages of a transaction in Corda more detailed. The simplest case concerns transactions that

are send by other protocol members. The transaction is marked as unrequested or requested depending on whether it was sent

as part of dependency resolution (when trying to validate another transaction) or pro-actively. Transactions in requested stage
directly pass to the set of valid transactions verifiedTx once successfully validated.

If a transaction is submitted to a client acting as a signee, the transaction is marked as approved and the client waits for the

initiator to ask for a signature. Once the initiator asks for the signature, the transaction is resolved, validated and – if successfully

validated – marked as sign. In this stage a signature is created and send to the initiator and the transaction proceeds to the stage

expNotarization. Finally, once a notary signature is received from the initiator, the transaction is accepted into verifiedTx.
On the side of the initiator, submitted transactions get are marked as expColSigs and validated. Once validated they enter into

reqSigs and the signees are asked for signatures. The transaction stays in this stage until all necessary signatures are received at

which point it is marked as reqNotarize and send to the notary for notarization. Once the response from the notary is received

and validated, the transaction is accepted into verifiedTx and forwarded to all signees to notify them about the notary signature.

If in the previously mentioned processes a transaction in the buffer can not be resolved but needs to for validation the status is

set to reqDeps to prevent asking for the dependencies of this particular transaction several times.

Validity testing. During the Corda protocol, clients and notaries execute several validations. As part of this process, the function

resolveTx() is responsible for collecting all information necessary to complete validation of a transaction. Concretely, to validate

a transaction all attachments need to be known and all transactions providing input and reference states need to be known and

verified. To resolve unknown data, resolveTx() creates the GetAttachment and SendTransactionFlowmessages to be forwarded

to the unicast interface.

15
Notaries have slight modifications in their validation which we describe in this section as well.
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validateAllLocal() acts as a housekeeping method. Every time new information is received this may have consequences

for other transactions: If collection of their dependencies is completed they may be validated, if the signatures have arrived a

transaction might be ready for notarization or a notary signature can settle the stage of a transaction as valid. Concretely the

function implements a fixed point iteration where all resolved transactions (those with enough verified information) are validated

and moved to verifiedTx until no more transaction can be processed. validateAllLocal() may send messages to the unicast

channel in case clients acting as initiator or signee are satisfied with their validity.

The most complex function is validate() which is responsible for assessing the validity of a specific transaction. It optionally

takes a pid in which case it will use resolveTx() to ask for missing dependencies. Alternatively, if no pid is provided, it only

assesses validity if all necessary information is present. In a first step, validate checks whether the transaction has already been

accepted (and is therefore in verifiedTx) or qualifies as double spend. In both cases no further processing is necessary. Next, all

clients mentioned in the transaction need to exist according to the network map and have the correct roles (e. g., only notaries are

allowed to be mentioned in the notary field). Further, validate checks if the correct number of signatures exists. We define𝑚 to

be the number of signees. If pidcur is signee or initiator of the transaction the number of signatures might be smaller then𝑚 + 2 as
this transaction might still be in signing process. Otherwise either there have to be signatures for every signee and the initiator or

additionally for the notary. Finally, if dependencies or attachments are missing, they are optionally requested which ends the

activation. If all checks verify, all inputs to the contract (or attachment) verification algorithm executeValidation are collected and

the contract validated. Contract validation receives all (direct) input and reference states for the current transaction as well as their

attachments but has no access to the full dependency tree or other transactions in the client’s state.

Differences for notaries. Notaries act similar to clients in that they receive transactions which pass several stages in bufferTxSig
until they get accepted into verifiedTx. However there are several noteworthy differences: Notaries never receive dependencies

pro-actively and never take the active role of an initiator but act like a signee. However notaries always “accept” transactions:

They receive transactions for notarization from the initiator instead of first receiving them as approved transactions from the

environment and forwarding them upon request by the initiator. Finally once they have signed a transaction they can directly

add them to verifiedTx whereas signees need to wait for a notary signature (e. g., to handle double spending). For this reasons

the stages for the notary are only requested and sign, which conceptually correspond to the states with the same name for the

client. Besides this a notary only needs to check in validate if there exists exactly one signature for every signee and the initiator

as otherwise the transaction is invalid for notarisation.

Note that we model Corda transactions as 𝑡𝑥 = (initiator, [signee
1
, . . . , signee𝑚], notary, formerNotary, proposal) (all of them

are bit strings). We denote in proposal input states as 𝑡𝑥inputStates = (txId, outputIndex) and output states as 𝑡𝑥outputStates . We denote

by𝑚 ∈ N the number of signees in a transaction.

F.3 Full Details: Corda realizes Fledger instantiation for Corda
As already stated in Section 4.3, the instantiation F c

ledger
of F

ledger
is the protocol (F

ledger
| F c

init
, F c

submit
, F c

update
, F c

read
, F c

updRnd
,

F c
leak

, F c
storage

), with formal definitions of the instantiated subroutines provided in Figures 35 to 48 at the end of this section.

F.4 Final Result: Corda Realizes F c
ledger

Having explained both the ideal protocol F c
ledger

(cf. Section 4.3) and its intended realization Pc
, we can now formally state the

main result of this section (cf. Figure 4 in Section 4.3).

Before going into details, we first define different knowledge notations and the notion of synchronized states we use later on.

Jumping slightly ahead, we use following abbreviations from Theorem F.1: R denotes the real protocol, i. e., Pc
, I denotes the

ideal protocol F c
ledger

, and R ′ denotes the version of R which is simulated in the simulator.

Knowledge and state synchronization during simulation: During the upcoming proof, we often rely to the induction

hypothesis that the “states” of R ′ and I are “synchronized” or simply both are “synchronized”. The notation of synchronized

states of an honest entity expresses that – at a certain point in time during the run – the “knowledge” of every honest entity

regarding its transaction graph and attachments in R ′ is a “subset” of the entities knowledge in I.16 In detail, let entity be an

honest entity at some point during a run of {S,I} and txIDsR the transaction IDs extracted from verifiedTx, attachmentIDsR

the set of attachment IDs extracted from attachments , and txIDsRbuffered the transaction IDs extracted from bufferTxSig from the

entities state in R ′. Let txIDsI be the set of transaction IDs such that

• txIDsI is the set of transaction IDs extracted from F c
ledger

’s message list in I as follows: (i) For all transactions inmsglistwhere

entity is initiator, signee, or notary of the transaction, add the transaction ID to txIDsI . (ii) For all push operations where

entity = (pid , sid , role) is the receiver of the operation, i. e., for all message list entities that contain a message of the form

(txID, pids, pid), add txID to txIDsI . (iii) For all transactions in requestQueue where entity is initiator or signee (or notary) of

the transaction. If there exists a submit transaction of this transaction submitted by the transactions initiator in requestQueue,

16
We do not expect equality of both state as I abstracts network delay during communication and might have access to data which still needs to be delivered in R′.
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then add the transaction to txIDsI . (iv) Do recursively: for all transaction IDs in txIDsI , add their input transaction IDs from

msglist to txIDsI . (v) All leaked transactions/transactions generate by A are in txIDsI as they are not private.

• attachmentIDsI is the set of all attachment IDs extracted from F c
ledger

’s msglist and requestQueue such that (pid , sid , role)
submitted the attachment to F c

ledger
. Additionally, for all transactions in txIDsI , extract the attachment IDs the transactions

and add them to attachmentIDsI .
• txIDsIbuffered is the set of transaction IDs extracted from F c

ledger
’s requestQueue.

We say R ′ and I are synchronized (at a point in time during a run of {S,I} iff for every honest entity it holds true that:

txIDsR ⊂ txIDsI ∧
attachmentIDsR ⊂ attachmentIDsI

To allow better referencing in what follows: the following sets

• txIDsR (entity ),
• attachmentIDsR (entity ), resp.
• txIDsI (entity ),
• attachmentIDsI (entity )

are defined as above but explicitly referencing the owner entity .
We call the txIDsR (entity ) together with attachmentIDsR (entity ) the real knowledge of entity , resp. the potential knowledge of

entity in R ′, resp. I (at a point during the run of {S,I}).
We call the intersecting set of an entity ’s set of known transactions from F c

read
(knowTransactions(entity ) = {txID | (pid, txID) ∈

knownTransaction}) and the intersecting set of an entity ’s set of known attachments from F c
read

(knowAttachments(entity ) =
{id𝑎 | (pid, id𝑎) ∈ knownAttachments}) as active knowledge of entity in I.

We call the set of all transactions and attachment id that an entity had access to before and including the current activation the

current knowledge of the entity at this point during the run.

Theorem F.1. Let 𝜂 ∈ N be the security parameter and Σ = (gen(1𝜂 ), sig, ver) be an EUF-CMA secure signature scheme. Let Pc be
the Corda protocol that uses the signature scheme Σ, using parameters/further algorithms as defined in Figure 23 and further parameters
selected arbitrarily such that all parameterized algorithms are deterministic and in polynomial time. Let F c

ledger
be the instantiation of

F
ledger

as described above, where the internal subroutines use the same parameters as Pc. Then:

Pc ≤ F c
ledger

Proof. As part of the proof, we firstly define a responsive simulator S such that the real world running the protocol R := Pc
is

indistinguishable from the ideal world running {S,I}, with the protocol I := F c
ledger

, for every ppt environment E.
The simulator S is defined as follows: it is a single machine that is connected to I and the environment E via their network

interfaces. In a run, there is only a single instance of the machine S that accepts and processes all incoming messages. The

simulator S internally simulates the realization R, including its behavior on the network interface connected to the environment,

and uses this simulation to compute responses to incoming messages (see below for details as Corda’s privacy properties hide

several details from S). For ease of presentation, we will refer to this internal simulation by R ′. Before we explain the simulator in

detail, we give explain how the simulator deals with Corda’s privacy.

Design rational of S and handling of blinded data Due to Corda’s privacy properties, S does not have full access/overview regarding

submitted transactions and read operations of honest entities. Nevertheless, S follows the same approach as in Theorem D.1: S
internally simulates R. In contrast to Theorem D.1, S has to use the data leaked from F

ledger
to simulate a “blinded” version of R.

F c
ledger

leaks many details of a transaction (except the transaction’s full plain text) including (i) the transaction’s id, (ii) the length
of the transaction, (iii) initiator entity, signee entities, and (former) notary entity, (iv) transaction inputs and outputs (only ids),

and (v) used attachments (only ids). During the simulation, S replaces the original (blinded) transaction in the simulation by a

unique dummy transaction (identified by the original transaction ID) in the expected format enriched with data from F c
ledger

’s

leakage. The dummy transactions includes all the leaked data such that R ′ can directly execute format checks on the dummy

transaction. The unknown part of the dummy transaction is filled with random bit strings such that the length of the dummy

transaction matches the length of the original transaction. For attachments, F c
ledger

leaks the attachment ID and the length of

the attachment itself. Thus, S uses a unique random bit string to replace the attachment definition during the simulation and

identifies the attachment by its original ID. Instead of using the original transaction/attachment in the simulation, S usually uses

this unique dummy transaction.

There are mainly three issues/tasks, S faces due to this “blinded” simulation:

Firstly, after corruption of an entity, S has to provide the appropriate leakage to an adversaryA. This is mainly done by keeping

corruption in R ′ and I in sync (see below). When corrupting an entity entity in I, S gets full access to the entity’s internal state
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which includes (i) the attachments known by entity , (ii) transaction subgraphs in which entity is involved in (from the transaction

entity is directly involved in down to all dependencies in the subgraph in the direction of the transactions input transactions until

one reaches the initial issuance transactions), additionally (iii) all subgraphs about which entity was directly informed via a push

message from an other entity (also following the direction of the input transactions in the subgraph ).
17

As soon as F
ledger

leaks

details regarding attachments or transactions S already is aware of (as he knows the ids), he replaces the dummy transaction in R ′
by the actual transaction/attachment data.

18
Then, S extracts the leaked data for the corrupted party from R ′.

Secondly, S cannot validate blinded transactions. However, an (honest) initiator of a transaction leaks the information whether

he interpreted a transaction as valid. Thus, instead of calling the executeValidation during the simulation of R ′ (if S only has

access to blinded transaction data), S reuses the information whether the submission was accepted by F c
ledger

and replace the

execution of executeValidation with this output. If there is no appropriate leakage provided by F c
ledger

, S queries I regarding the

validity of a transaction in the context of an entity’s current state.

Thirdly, if R ′, resp. a corrupted entity, uses the random oracle Fro to generate a fresh transaction or attachment id to retrieve an

id,S checks whether the query is a transaction or an attachment. If it is one of both,S forwards the request to Fro as Update[GetID]
message to F c

ledger
. F c

ledger
will request S for a unique id if F c

ledger
is not aware of the requested bit string. Otherwise and after

setting the id, F c
ledger

will provide the id to S. The simulator forwards the id as answer of Fro to R ′ or to the corrupted entity

which queried Fro. If the request to Fro is neither a transaction nor an attachment, S generates a random and unique hash/id (not

clashing with one from the generated ids in F c
ledger

) and forwards it to the requestor.

Based on the above information, the simulation runs as follows:

Network communication from/to the environment

• Messages that S receives on the network connected to the environment (and which are hence meant for R) are forwarded to

internal simulation R ′.
• Any messages sent by R ′ on its network interface (that are hence meant for the environment) are forwarded to the environment

E.

Corruption handling

• The simulator S keeps the corruption status of entities in R ′ and I synchronized. That is, whenever an entity in R ′ starts to
consider itself corrupted, the simulator first corrupts the corresponding entity of F

ledger
in I before continuing its simulation.

• As explained above, S applies leaked attachment and transaction data to R ′ by (i) replacing dummy values by actual values

and (ii) replacing/regenerating signatures on dummy values with signatures of original values in R ′.
• If an entity is explicitly corrupted, S extracts the leakage during corruption after it applied the leakage from F c

ledger
to R ′.

• Incoming Messages from corrupted entities of F
ledger

in I are forwarded on the network to the environment in the name of

the corresponding entity in R ′. Conversely, whenever a corrupted entity of R ′ wants to output a message to a higher-level

protocol, S instructs the corresponding entity of F
ledger

to output the same message to the higher-level protocol.

• Messages from corrupted parties to Fro are mapped to Update with “flavor” GetID] commands if the corrupted party queries

Fro for transaction or attachment IDs. S forwards them to F c
ledger

. Responses of F c
ledger

are mapped to the answer format of

Fro, and returned to the corrupted party (see above). Otherwise, the requests are handled by S as explained above.

• Messages from corrupted parties to Funicast are forwarded to the simulation R ′.
Current state queries to S
F c
ledger

may frequently ask regarding the current state of an entity. In this case, S extracts the known transaction and attachment

IDs from the entities state in R ′. Additionally, S keeps a list for all entities which transaction/attachment IDs have been in their

state before. S forwards all transaction/attachment IDs that the entity has seen before to F c
ledger

.

Transaction submission Whenever an honest entity entity = (pid, sid, role) receives a request (Submit,msg) to submit a new

transaction msg, the subroutine F c
submit

processes the three possible message formats (i) a “common” transaction proposal,

(ii) submission of an attachment, and (iii) transmission of an existing transaction from one party to another party and leaks

appropriate data for S to distinguish the above operations.

Case (i): Assuming that none of the entities involved in the submitted transaction is corrupted, S receives a blinded version

of the transaction, generates a dummy version of the transaction as explained above, and forwards the dummy in a submission

request to R ′. In the case that the submit was triggered by one of the involved entities except the initiator and one of the involved

entities is corrupted F c
ledger

leaks the transaction to S.19 In the case that the submit was triggered by initiator (and one of the

involved entities is corrupted), F c
ledger

leaks the transaction graph below the submitted transaction including the used attachments

17
The leaked data is an over-approximation of the corrupted entity’s knowledge where instant delivery of dependent transactions and attachments is assumed.

18
Replacing blinded data by original data in particular includes the regeneration and replacement of all signatures in R′ which were generated based on the blinded

data.

19
As signees/notaries may need to query further knowledge at the initiator, the transaction is the only thing they have access to for sure.
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to S. Then, S replaces blinded data in R ′ with leaked data and forwards the submitted transaction (in plain) to R ′. In particular,

the input to R may trigger internal communication in R ′ via Funicast. See below for details.

Case (ii): S triggers that the attachment is stored in the submitting entities state by sending an Update[attachment] message

to F c
ledger

. When S gets reactivated after the submission, he generates a (unique) dummy version of the attachment and simulates

its input to R ′.
Case (iii): When S receives the leakage from the transaction exchange, he triggers the exchange according to the leaked data

in R ′. In particular, the input to R may trigger internal communication in R ′ via Funicast. See below for details. In the case that

F c
ledger

leaks data during Case (iii), it updates R ′ as explained above.

After simulating the (blinded) input to the honest entity entity in R ′, S outputs the result of the activation from R to the

environment.

Read requests
Whenever an honest entity entity receives a request (Read,msg) to read from the global state, F

ledger
forwards this (local) read

request to S and waits to receive a suggested output in the form of a list of transactions. S simulates the read request to R ′. Note
that the request is independent of the input within the read request. S extracts the transaction ids from the simulated read request

and forwards the suggested output to F c
ledger

.

Simulation of the internal Pc communication via Funicast and dependencies to the internal communication
In many cases, an activation of R ′ leads to messages send via Funicast in R ′. To simulate the Corda protocol properly, S does

an internal bookkeeping regarding the status of the different messages regarding the Corda protocol (already done in R ′) and
transactions depending on these transactions. If A trigger the delivery of message via Deliver, S forwards this request to the

simulated Funicast and processes it in R ′

Further details
• S keeps the clocks/rounds of R ′ and F c

ledger
synchronous. That is, S sends UpdateRound to F c

ledger
whenever a round update

in the simulated Funicast is performed and before continuing the simulation.

• If F c
ledger

queries S for id generation via GenerateID, S selects a unique id (length of the id is 𝜂) and returns it to F c
ledger

. Note

that S does internal bookkeeping for the ids to keep them unique and to prevent collisions with other Fro queries.

This concludes the description of the simulator. It is easy to see that (i) {S,I} is environmentally bounded
20

and (ii) S is a

responsive simulator for I, i.e., restricting messages from I are answered immediately as long as {S,I} runs with a responsive

environment. We now argue that R and {S,I} are indeed indistinguishable for any (responsive) environment E ∈ Env(R).
Now, let E ∈ Env(R) be an arbitrary but fixed environment. Before we argue in detail regarding the indistinguishability of R

and I, we briefly analyze the possibility to distinguish R and I based on generated IDs and signatures.

Collisions of IDs: R uses a random oracle Fro to generate IDs (in the length of the security parameter 𝜂) which may cause a

collision in the IDs whereas S generates unique IDs without collisions for I. Observe that the possibility that E distinguishes

between R and I based on an ID collision is negligible in 𝜂.

Signatures: Similarly, E could use Fcert to distinguish between R and I, e.g., by guessing transaction, singer, and signature

pairs and verifying then at Fcert. However, due to Σ’s EUF-CMA security, the possibility to guess such a triple is negligible in 𝜂.

Thus, the probability that E may distinguish between R and I based on a signatures is negligible in 𝜂 as well.

In the following, we only consider runs where the events explained above do not occur. We will go over all possible interactions

on the network and the I/O interface and argue, by induction, that all of those interactions result in identical behavior towards the

environment, i.e., are also indistinguishable. At the start of a run, there was interactions on the network, resp. I/O, interface yet.

Thus, the base case holds true. In the following, assume that all network, resp. I/O, interactions to far have resulted in the same

behavior visible towards the environment in both the real and ideal world.

Interaction with honest entities via I/O: Firstly, we show that the I/O behavior simulated by S towards the environment is

indistinguishable from the I/O behavior ofR. For brevity and readability, we often use expressions like “S pushes the attachment/the

transaction to I” although we are only aware of the leakage of the mentioned attachment. The expression usually means that the

operation regarding a blinded transaction/attachment is executed identifying the attachment/transaction by its ID.

Submission requests: By construction of R and I, submission requests do not directly result into an input to the environment but

they might influence future read requests. Thus, the main goal here is to prove that R ′ and I stay synchronized after a submission

of a transaction. Note that S can distinguish the three following cases du to the format of the leakage provided by I.
Submission of a transaction There are two basic cases to distinguish:

(i) the submitting party is the initiator of the submitted transaction or (ii) the submitting party is a signee of the transac-

tion.
21

In Case (ii), I’s leakage informs S whether the submitted transaction was added to the submitting entity’s buffer, i. e.,

20
As all algorithms are in polynomial time and executeValidation ensures that the execution of attachments finishes in polynomial time.

21S can determine the role of the submitting entity as I’s leakage includes the roles of the involved parties
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txIDsIbuffered (entity ). If the transaction was added to the entities buffer at I, the transaction will be added to the entities state in R ′

(namely to the set txIDsRbuffered (entity )) as well (as R
′
and I execute the same steps during the submission of a transaction from a

signee. Further, all necessary data to perform these checks in the simulation are included in the leakage from I to S). Note that – if

the transactions initiators submission of the transaction is already processed and accepted – this step may add the transaction, its

subgraph, and the used attachments to txIDsI (entity ), resp. attachmentIDsI (entity ). However, R ′ and I are still synchronized.

Before Case (i) occurs, i. e., if the submitting entity is the transaction’s initiator, I will query S for the initiator’s current knowledge.
S replies the query with the current knowledge of the entity (in form of IDs) as explained above. As R ′ and I were in sync before

the operation they stay synchronous after the operation as well (we will step over the different Corda flows below, which will show

that this conclusion is valid) and I accepts the current knowledge from S: observe that the current state in R ′ is monotonically

increasing and S keeps track of declined transactions and attachments: the current state delivered by S to I is always a super set

of the previous current state. Thus, I will accept S’s update. Further, the simulated entity only accepts pushed transactions from

a corrupted entity if the corrupted entity can provide the full (valid) transaction subgraph below the transaction. That is, these

transactions need to generated by corrupted parties or leaked. Thus, this check also does not fail.

As the knowledge of entity in R ′ is by induction hypothesis a subset of I knowledge before the activation we can thus conclude

that R ′ ans I are still synchronized after S pushed the current knowledge to I.
Hereafter, I leaks the submitted transaction (with entity as initiator) to S. The leakage includes whether I accepted the transaction

and triggers S.
1. In the case that I rejects the transaction: The submitted transaction is rejected during the simulation of R ′ as well due to the

replacement of executeValidation by the validation result from I. Thus, R ′ and I are still synchronized in this case (as real

knowledge and potential knowledge does not change). Observe that the entity in R ′ process may push several transactions to

other entities (via the CollectSignaturesFlow, see below). However, the information is not processed for other entities in R ′
so far - thus their knowledge does not change and R ′ and I are still synchronized at the end of the simulation in S. Observe
that the update received from S lead to the fact that real knowledge in R ′ is now equal to the active knowledge in I.

2. In the case that I accepts the transaction. Observe that the entities potential knowledge in I does not change at this point in

time. The transaction however is added to txIDsIbuffered . In the simulation of R ′ the transaction submission is accepted as well

and added to txIDsRbuffered :
As stated above, real knowledge and active knowledge are equal before the transaction is validated in I. Further, R ′ and I
execute the same checks on the same active knowledge (and S has access to the necessary data for the checks as this included

in I leakage). Only the check executeValidation in R is replaced by true (as I accepted). This concludes that R ′ and I are still

synchronized.

Observe that the entity starts the CollectSignaturesFlow in R ′ and starts to distribute the transaction to the signees. As

already explained, at this point, no further knowledge in R ′ changes as the information still waits for delivery. Thus, R ′ and I
are synchronized after the simulation of R ′.
Submission of an attachment The leakage of I indicates if a submitted attachment is valid. In case that it is valid, however it

is not directly added to attachmentsIDsI (entity ), i. e., it is not part of the entity’s knowledge so far. As R ′ and I use the same

(deterministic) algorithm to validate the attachments, R ′ will accept the attachment if I accepted it. R ′ adds the attachment

immediately to the entity’s real knowledge attachmentsIDsR (entity ). In this case, S pushes the attachment immediately via an

Update into the submitting parties knowledge attachmentsIDsI (entity ) at I. Thus, R ′ and I are synchronized after the simulation

of R ′.
An entity pushes a transaction to another entity Before the leakage of I’s indicates that entity entity𝑎 pushed a transaction

with ID txID to entity𝑏 . It queries S for the current state of entity𝑎 . Due to the same reasoning as above, I accepts S’s proposed
current state update for entity𝑎 . Thus, R and I are still synchronized and the real knowledge in R ′ is now equal to the active

knowledge in I.
Observe that I leaks indicates that it accepted the push operation, the transaction is not directly added to the entity’s potential

knowledge txIDsI (entity ).
After I leaks whether it accepted the transaction push operation of txID from entity𝑎 to entity𝑏 , the simulation R ′ outputs the
same result as the same logic and same algorithms are running in the same input (as real knowledge and active knowledge are

equal). In the case that both reject the operation, we have nothing to show. If both accept the operation, txID is added immediately

to the entity’s real knowledge in R ′. In this case, S immediately pushes the transaction (ID) via the command Update[txExchange]
to the entity’s potential knowledge in I. Observe, that this operation adds all transaction frommsglist which are in the transaction

subgraph below the transaction txId and all attachments mentioned in this subgraph to the entities potential knowledge. Thus, R ′
and I are synchronized after this operation.

Simulation of internal Corda protocol steps and Funicast: Before arguing that read operations are indistinguishable between R and I,
we prove that E cannot use S’s simulation of Pc

in connection with the simulated network operation via Funicast to distinguish

between R and I. By construction of R and I, the simulation of Funicast does not directly result into an input to the environment

via I/O but they might influence future read requests and produce output to the network. Thus, the main goal here is to prove that
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R ′ and I are still synchronized after the activation of Funicast and S can generate the “expected” output to the network, i. e., the

behavior on the network during this part of the simulation is indistinguishable.

Note that there is no interaction in I as long as S does not explicitly involve I. Thus, the potential knowledge in I stays

constant until S triggers I.
Note that Funicast does not allow to send messages on behalf of other entities, i. e., Funicast ensures an authenticated secure

channel for communication.

Note that the leakage to the network generated by simulation of Funicast is indistinguishable between R and I as S’s dummy

transactions have the same length as original transaction and all other leaked data is available to S in the simulation of R ′
Further note that honest entities in R ′ mostly process transactions/messages which are dedicated from them, i. e., , they do not

reply on invocations where they do not have the matching state or are not involved as initiator, signee, or notary in the transaction.

If a process step has error handling, we will discuss this in the following. Otherwise, there is no error handling and the entity

simply declines further processing of a transaction/message.

Observe that only the SignTransactionFlow operation is a result of a submit operation To trigger the simulation of the Corda

flow processing in R ′, S waits for the Deliver command from network. The command informs S by an Funicast message id which

message is to be delivered in R ′. Let entity𝑠 be the sender and entity𝑟 be the recipient of the message.

SignTransactionFlow : 1. The delivered message in the simulation was send by an uncorrupted entity entity𝑠 (which was the

initiator of the transaction): In this case, there exists a valid submit transaction from the initiator in txIDsRbuffered (entity𝑠 ), resp.
txIDsIbuffered (entity𝑠 ). If there exists a message from entity𝑟 in txIDsRbuffered (entity𝑟 ), resp. txIDs

I
buffered (entity𝑟 ) indicating that

entity𝑠 approve the message (and is a signee of the transaction), the simulation will continue by validating the transaction.

Otherwise, the transaction is directly declined.

In the case that the the transaction proposal is not declined: observe that S actually can simulate the steps of entity𝑟 : the blinded
transaction available in R ′ contains all necessary information for the checks and an execution of executeValidation is replaced

by true if the transaction already passed the validation by entity𝑠 (otherwise false). In every case, the set txIDsRbuffered (entity𝑠 )
does not change as either the transaction was already in the set or is declined and does not enter the set. In case of an acceptance,

there are two sub cases to consider:

a) a direct acceptance of transaction in the simulation of entity𝑟 . In this case, the simulation in R ′ signs the dummy transaction

according to the protocol and generates a Signature message that is send back to entity𝑠 .
b) due to missing dependencies, the considered entity entity𝑟 generates SendTransactionFlow, resp. GetAttachment requests

which is send via Funicast back to entity𝑟 .
In the case that entity𝑟 did not receive an approval of the transaction in advance, i. e., there is no matching transaction for

SignTransactionFlow request in txIDsRbuffered (entity𝑟 ), entity𝑟 declines the request and sends an appropriate Signature back

to entity𝑠 (again, S has access to all information that are necessary to execute the simulation).

2. The delivered message in the simulation was send by a corrupted entity entity𝑠 (such that the entity is the initiator of the

transaction, because otherwise entity𝑟 directly declines the request). At this point, there is only one difference in the behavior of

entity𝑟 compared to the explained above. The execution of the validation in the simulation is done on transactions in plain – so S
executes executeValidation in the simulation. This is usually possible as the corrupted party need to provide the transactions in

plain to entity𝑠 in the execution of R ′. If the corrupted entity references transactions such that S is not aware of the transaction

content, S can query I for the output of executeValidation in the context of entity𝑟 ’s state.
22

Observe that in every case, we still have that R ′ and I are synchronized as the knowledge of the parties does not change.

Signature : 1. In the case that entity𝑟 receives the message from an uncorrupted entity entity𝑠 , entity𝑟 verifies that it is waiting
for the signature of entity𝑠 for the transaction mentioned in the message (again - note that S has access to this information due

to leaked data).

a) If the message from entity𝑠 indicates (due to the signature check) that entity𝑟 accepts the message: (i) entity𝑟 may wait for

further signatures or (ii) entity𝑠 collected all expected signatures and starts the FinalityFlow. Again, S has access to all

necessary data to perform the simulation, executeValidation is replaced by the validity information leaked by I.
b) If the message from entity𝑠 indicates that it declines the transaction, entity𝑟 removes the transaction from her internal buffer

txIDsRbuffered (entity𝑟 ).
2. In the case that entity𝑟 receives the message from a corrupted entity entity𝑠 , simulation works in the same way as explained

above. Analogously, to the explanations in SignTransactionFlow: As entity𝑠 is the initiator of the transaction, all data is

available in plain for simulation.

Observe that in every case, we still have that R ′ and I are synchronized as the knowledge of the parties does not change.

Notarise : Note that the processing of Notarise is analogously to the processing of SignTransactionFlow with additional

checks regarding the signatures of signees.

22
Note that the call at I will not fail during I validation, as the entity’s current state only increases and entity𝑟 ’s state is always a subset of the entity’s potential

knowledge.
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1. In the case that entity𝑟 (a notary in R ′) receives the message from an uncorrupted entity entity𝑠 (a is the initiator of the

transaction), it processes the messages as explained in the cases above (executeValidation is replaced by leakage from I, S has

access to all necessary data as explained above). The outcome of the simulation may trigger (i) SendTransactionFlow, resp.
GetAttachment : requests to entity𝑠 (via Funicast - see below) (ii) or entity𝑟 notarizes the transaction and NotariseRes message

to entity𝑠 (if all checks and signatures in the simulation verify).

In the latter case, the transaction is added to entity𝑟 real knowledge. According to the specification of S for this case, she trigger

an update at I that moves the notarised transaction entries from txIDsIbuffered to txIDsI . Observe that I will accept the update

as S does not violate on of I checks:

• S immediately pushes attachments or transaction push messages to I msglist.
• transactions send to notarisation from honest initiators in R ′ are checked with a subset of the rules from the update process

in I, such as format, role checks, and double spend prevention.

• If all honest parties agree on a transaction, this is already known in I due to the approval message via I/O and due to the

fact that the initiator of the transaction (entity𝑠 ) has access to all necessary information to validate, process, and distribute

the information.

• I does not require an approval for a transaction from corrupted parties.

As the update in I is not rejected, the potential knowledge of all entities involved in the notarized transaction increases: All

involved entities in I add to the transaction itself, the transaction subgraph below the transaction, and all used attachments in

the subgraph to their potential knowledge.

2. In the case that entity𝑟 (a notary in R ′) receives the message from a corrupted entity entity𝑠 - note that S has full access to all

transaction necessary to execute the notarisation or she may request the output of executeValidation at I. Thus, the simulation

works as in the case above. Note that corrupted entities cannot forge signatures of other entities. Thus, we can follow the

explanation from above. S will propose the notarised transaction to I. I will accept it according to the reasoning above.

Observe that in every case, we still have that R ′ and I are synchronized as the increase of knowledge in R ′ is always a subset of
the knowledge in I.
NotariseRes : 1. In the case that entity𝑟 (the initiator of the notarized transaction in R ′) receives the message from an

uncorrupted entity entity𝑠 (the notary): The simulation of entity𝑟 process the notarisation message. In the case that the

simulation accepts the notarisation, the FinalityFlow is triggered. (Note that S can simulate this operation as the execution of

executeValidation is replaced as above.) Observe that the transaction is added to real knowledge. As the transaction was already

before in its potential knowledge (see previous steps of honest parties), R ′ and I are still synchronized.

2. In the case that entity𝑟 receives the message from a corrupted entity entity𝑠 (and entity𝑟 is involved in the transaction notarized),

then entity𝑟 is corrupted as well. Thus, S has full access to all transaction details necessary to perfectly simulate this situation.

Observe that in every case, we still have that R ′ and I are synchronized.

RecvFinalityFlow : 1. In the case that entity𝑟 receives themessage from an uncorrupted entity entity𝑠 (the transaction initiator),
there are all information available to simulate this process. If the entity entity𝑟 accepts the RecvFinalityFlow message, it adds

the transaction to the entity’s real knowledge. As the transaction was already before in its potential knowledge (see previous

steps of honest parties), R ′ and I are still synchronized.

2. In the case that entity𝑟 receives the message from a corrupted entity entity𝑠
23

(and entity𝑟 is involved in the transaction): Note

that S has sufficient information to simulate this step. In the case that entity𝑟 accepts the incoming message: As entity𝑟 is not
corrupted, we can conclude that the notary of the transaction in R ′ is not corrupted. Thus, S already pushed the transaction

to I before this step which includes that the transaction is already part of entity𝑟 potential knowledge. In the simulation, the

transaction is added to entity𝑟 real knowledge in this step. In the case that entity𝑟 declines the RecvFinalityFlow message, we

have nothing to show.

Observe that in every case, we still have that R ′ and I are synchronized.

SendTransactionFlow & RecvTransactionFlow : According to the explanations above, S is able to simulate this in any case.

In the case that the process is executed between honest entities, we can conclude similarly to above that R ′ and I stay synchronized

as the submission of the transaction added it already to entity𝑟 potential knowledge. However, in the case that a corrupted party

sends a transaction (graph) and the entity accepts it, the entity becomes corrupted (as this includes that a notary in this subgraph

is corrupted). Thus, R ′ and I still stay synchronized (as the entity is not in the set of honest entities any longer).

GetAttachment & RecvAttachment : According to the explanations above, S is able to simulate this in any case. We emphasize

here, that S is able to call executeValidation at I in the context of the receiving parties current state.
24

to validate the transaction

in the context of the receiving party. In the case that the process is executed between honest entities, we can conclude similarly

to above that R ′ and I stay synchronized as already a submission added the transaction and its to entity𝑟 potential knowledge.
Observe that corrupted entities may push attachment to entity𝑟 although they were not requested. As entity𝑟 declines such push

message, we can conclude that R ′ and I are synchronized.

23
Note that we do not discuss the case when entity𝑟 is corrupted as it matches the case above.

24
Note that I accepts the current knowledge provided by S as the current knowledge in R is a subset of the potential knowledge.
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Read requests:Whenever a honest entity entity receives a request (Read,msg) to read from its restricted view on the global state , I,
resp. F

ledger
forwards this (local) read request to S and waits to receive a suggested output. S simulates the read request internally.

She extracts the transaction and attachment ids from the output and forwards them in the appropriate InitRead message to I. In
the next step, I requests the current knowledge of entity from S. S extracts the current knowledge from R ′ as explained above.

As already argued above: as R ′ and I are synchronized as no operation adds knowledge on one of both sides here. In particular,

S’s suggested output for the read request will not fail I’s validations:
1. The read output of an honest party simulated in R ′ is a monotonically increasing set that always contains the previous read

output as subset (due to the specification of Corda).

2. The read output is always a subset of the entities current knowledge in R ′ (due to the specification of Corda).

3. The party is uncorrupted and the output in R ′ only consists of transaction notarised by uncorrupted notaries. Thus, all

transactions from in the suggested read output are in msglist in I and can be accessed.

4. As the entity in R ′ only accepts pushed transactions (including attachments) of notarized transaction (subgraphs), potential

additional transactions added to the entity’s read output are already in leaked (see explanation during flow explanations).

5. Observe that R ′, resp. Funicast, enforces the upper bound of 𝛿 rounds for eventual message delivery. Further note that all

involved entities for the mentioned transactions are honest, we can conclude that the message delivery (initiator receives

notarization 𝛿 rounds after notarization, signees after 2𝛿 rounds) are not violated by S.
6. Honest entities in the simulation will output transactions only if they are aware of their full subgraph (and output the

subgraph as well).

7. If an honest entity shares a transaction (subgraph) with another honest entity, the operation will finish after: Let subgraph(𝑡𝑥)
the subgraph of the exchanged transaction (such that all input references are part of the graph, down to the issuance

transactions). The receiving entity queries the full subgraph of the transaction before adding the transaction to its verifiedTx
and thus outputs it during reading. As in the worst case, these are |subgraph(𝑡𝑥) | objects to query (if the graph is a chain),

the push operation will be finished at least after |subgraph(𝑡𝑥) | + 1 rounds.
Observe that entities in R ′ are considered corrupted as soon as they have transactions notarized by corrupted notaries in

verifiedTx. Thus, we do not have to consider the case, that the entity should output transactions/attachments not in txIDsI , resp.
attachmentIDsI as the entity is then corrupted.

Corrupting parties: In the following, we argue that (i) S is always able to keep corrupting in R ′ and R synchronous. As there

are no restrictions for corruption in I, we have nothing to show here. Observe that one corruption operation (of a notary in R ′)
may lead to several corruption operations in I due to our novel corruption model. Further, (ii) S is always able to generate the

appropriate (internal) state of a freshly corrupted entity such that leakage during corruption cannot be used to distinguish between

R and I. This follows from the specified leakage:

1. S get access to the complete potential knowledge of an entity as soon it is corrupted. S replaces the dummy transactions in

R ′ by the original transaction (including regeneration of signatures). In the case that there are some transactions/attachments

provided from a corrupted party to the newly corrupted party, the simulation in R ′ already contains the data in plain.

2. S gets access to transactions, transaction subgraph, and the used attachments if a corrupted party is involved in the

transaction (as initiator, signee, or notary). Again, S includes the leaked data in R ′ and regenerates signatures depending

on this data. Thus, S has access to all data in plain and can perfectly simulate the processing of the transaction including

handling of signatures.

Interaction via network: First, observe thatI providesS with sufficient information about all requests performed by higher-level

protocols, such as the blinded transactions submitted to the ledger, blinded attachments, transaction exchange operation and read

request. Thus, S is able (according to the explanations above) to simulate the Corda protocol blinded but indistinguishable from a

real execution. In particular, S has access to all necessary data in plain to provide the correct leakage via network or to provide

data in plain in case that corrupted parties are involved in a transaction or S can call I to validate transaction in the context of an

entity. As a result, the network behavior simulated by S towards the environment is indistinguishable from the network behavior

of R. As already argued above, it also follows that the corruption status of entities in the real and ideal world is always identical.

Since the simulator has full control over corrupted entities, which are handled via the internal simulation R ′, this implies that

the I/O behavior of corrupted entities of R/I towards higher level protocols/the environment is also identical in the real and

ideal world. The only way to potentially distinguish the real and ideal world is the I/O behavior of honest entities of R/I towards

higher-level protocols.

Current time requests: As the simulator updates the internal clock of F
ledger

every time an update to Funicast in R ′ occurs, both
worlds always output the same value for the current time. Observe that the S’s time update requests always passes the checks in

F c
updRnd

:

Observe that Funicast enforces that all messages are delivered in at most 𝛿 rounds in R. F c
updRnd

guarantees that a transaction tx
in requestQueue, where all involved parties are honest, are part of themsglist after at most (3+ 4 · |subgraph(tx) | ·𝛿) rounds (where
subgraph(tx) is the transaction subgraph below tx as explained above). As in the worst case scenario, the simulated notary does
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Description of parameters/algorithms used in the protocols𝑀client and𝑀notary:

executeValidation(tx, txDependencies, txAttachments) Among other things,

• it interprets attachments and checks if the transaction is valid with respect to these attachments,

• it ensures that attachments are deterministic and it enforces that the overall runtime of all attachments (and

further validations) is in polynomial time

• it checks wether the transaction is contractually valid, i. e., fulfills the requirements given by the contracts for

each state and for the transaction, but not valid signatures

• it checks whether all inputs have the same notary

• it checks whether all outputs have the same notary as the input notary or if the transaction is a notary change

transaction.

• it checks that the owner of the transaction’s input states are a subeset of the transactions participants.
• it checks that the owner of the transaction’s output states are a subeset of the transactions participants.

validateAttachment(attachment) This algorithm checks whether a single attachments is valid according to certain system

defined rules.

isResolvable(𝑡𝑥) This algorithm checks whether all dependencies and attachments for validating a transaction, i. e.,

needed by executeValidation, are present. The dependencies need to be in the internal state verifiedTx or bufferTxSig.
isValidId(pid, role) This algorithm checks whether the given pid belongs to a machine of the given 𝑟𝑜𝑙𝑒 .

isDoubleSpend(𝑡𝑥) This algorithm checks whether the given 𝑡𝑥 is a double spend compared to transactions in the

internal state verifiedTx, i. e., if there exists a transaction in verifiedTx that is either not the same transaction

without notary signature but uses one of the input states of 𝑡𝑥 as well or spends a reference state.

isNotarised(𝑡𝑥) This algorithm checks whether either 𝑡𝑥 itself is notarised or it is contained in the dependency chain

of a notarized transaction.

Figure 23: Algorithms and parameters used by𝑀client and𝑀notary

not know any dependencies of tx and the subgraph is a chain, we conclude that the bound from F c
updRnd

as follows: We assume

w.l.o.g. that the initiator was the last involved party that submitted the transaction to requestQueue (otherwise, if signees do not

add their approval to requestQueue before the initiators CollectSignaturesFlow reaches them, they will decline the transaction.

In this case, the last agreement is later than the one of the initiator but we can guarantee the bound for the initiator - so we do not

violate the bound for the actual last agreement of the transaction.)

1. It takes at most 𝛿 time units/ rounds to deliver data via the CollectSignaturesFlow messages from initiators to signees.

2. signees may request at most |subgraph(tx) | dependencies from the initiator. Thus, delivery/processing needs at most

2 · |subgraph(tx) | · 𝛿 rounds.
3. It takes at most 𝛿 rounds for the last signee to deliver her approval messages to the initiator.

4. The initiator needs at most 𝛿 rounds to deliver the notarization request to a notary

5. The notary may request at most |subgraph(tx) | dependencies from the initiator. Thus, delivery/processing needs at most

2 · |subgraph(tx) | · 𝛿 rounds. Then, S triggers the Update to I in the case that the notarization succeeded.

Overall, we conclude that S triggers the update in this case after at least (3+4 · |subgraph(tx) | ·𝛿) rounds after the last agreement

was recorded. Thus, I will accept all time updates of S.
Other security properties. As already explained in the introduction, Corda does not provide the security property of consistency

that is typically expected from blockchains. This is because consistency requires all clients to obtain (a prefix of) the full global

state of the ledger, whereas clients in Corda generally obtain only a part of that global state.

In addition to consistency, the security literature for blockchains also often considers the security properties of chain-quality
and chain-growth. These properties do not make sense for the case of Corda, which does not have the concept of blocks. For

example, chain-growth essentially collapses to the property of liveness when interpreted on the level of individual transactions

instead of blocks. Hence, we did not formalize and analyze these properties.

Altogether, R and {S,I} behave identical in terms of behavior visible to the environment E and thus are indistinguishable. □
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Description of the protocol Pc
ledger

= (client |notary) :

Participating roles: {client, notary}a
Corruption model: Dynamic corruption without secure erasures
Protocol parameters:

– executeValidation {Algorithm for verifying a transaction.
– networkmap {Set of identities in network as (𝑡𝑦𝑝𝑒, 𝑖𝑑)
– validateAttachment {Algorithm for validating attachments according to certain rules

aTo simplify presentation, we introduced Pc
as protocol (client | notary, F

unicast
, Fro) in Section 4.2. Formally, the Corda protocol is defined as Pc = (Pc

ledger
: client |

Pc
ledger

: notary, F
unicast

, Fro) .

Description of𝑀client :

Implemented role(s) : {client}
Subroutines: Fcert : cert, Funicast : unicast, Fro : randomOracle, Pc

ledger
: notary,

Internal state:
– verifiedTx ⊂ {0, 1}∗ × {0, 1}∗ × {0, 1}∗, verifiedTx = ∅ {List of verified transactions, as (txId, 𝑡𝑥, 𝜎)

– attachments ⊂ {0, 1}∗ × {0, 1}∗, attachments = ∅
{
Set of known attachments and identifiers as (attachmentId, 𝑎𝑡𝑡𝑎𝑐ℎ𝑚𝑒𝑛𝑡 )

– bufferTxSig ⊂ {0, 1}∗ × {0, 1}∗ × {0, 1}∗ × {0, 1}∗ × 𝑠𝑡𝑎𝑡𝑢𝑠, bufferTxSig = ∅

Transaction currently in process as (txId, 𝑡𝑥, Σ, pid, 𝑠𝑡𝑎𝑡𝑢𝑠) . Σ is
a set of tuples of the form (pid, 𝜎) , 𝑠𝑡𝑎𝑡𝑢𝑠 ∈ {⊥, unrequested,
requested, approved, expColSigs, reqSigs, reqDeps, sign,
expNotarization, reqNotarization}

– bufferReqValid ⊂ {0, 1}∗ × {0, 1}∗, bufferReqValid = ∅
{
Set of transaction and attachments allowed to be queried as
(txId/attachmentId, allowedRequesters) . Thereby bufferReqValid is a
ordered set.

CheckID(pid , sid , role) :
Accept all messages with the same sid.

Corruption behavior:
DetermineCorrStatus(pid , sid , role) : if corr == true: {Checks whether client itself is corrupted.

return true
corrRes← corr(pidcur, sidcur, signer) {Request corruption status at Fcert
if corrRes == true: {Checks whether Fcert instance is corrupted

return true
for all (_, 𝑡𝑥, _) ∈ verifiedTx ∪ (_, 𝑡𝑥, _, _, reqNotarization) ∈ bufferTxSig ∪ (_, 𝑡𝑥, _, _, expNotarization) ∈ bufferTxSig do:

𝑡𝑥 ← (_, _, _, formerNotary, _)
corrRes← corr(pidcur, sidcur, signer)

{
Checks if at least one of all notaries used for notarisation in a 𝑡𝑥 either for transactions in verifiedTx
or transactions expected to be notarized in bufferTxSig is corruptedif corrRes == true:

return true
See Appendix A for notation details. We expect the ITM to enforce the transaction format tx = (initiator, [signee

1
, . . . , signee𝑚 ],

notary, formerNotary, proposal) where in proposal input states as 𝑡𝑥inputStates = (txId, outputIndex) and output states as 𝑡𝑥outputStates . We denote by

𝑚 the number of signees in a transaction. For tuples, lists, etc. we start index counting at 0.

Main:

recv (Read,msg) from I/O: {Reading from Corda’s transaction graph
shortendVerifiedTx ← ∅
for all (txId, 𝑡𝑥, 𝜎) ∈ verifiedTx do:

shortenedVerifiedTx .add( (txId, 𝑡𝑥))
reply (Read, attachments, shortendVerifiedTx)

{
Output the transaction graph of pid excluding “internal” signatures

recv (Submit,msg) from I/O s.t. msg = (attachment, 𝑎𝑡𝑡𝑎𝑐ℎ𝑚𝑒𝑛𝑡 ) : {Client gets a new attachment via I/O

send 𝑎𝑡𝑡𝑎𝑐ℎ𝑚𝑒𝑛𝑡 to (pidcur, sidcur, Fro : randomOracle)
{Generates an attachment id and stores the new attachments
needed for verification of 𝑡𝑥wait for attachmentId′

if bufferReqValid .contains(ATT.add(attachmentId′)) ∧ validateAttachment(𝑎𝑡𝑡𝑎𝑐ℎ𝑚𝑒𝑛𝑡 ) == true:
attachments.add(ATT.add(attachmentId′), 𝑎𝑡𝑡𝑎𝑐ℎ𝑚𝑒𝑛𝑡 )

{
Add (labeled) attachment and attachment id
to attachments

Figure 24: The Corda model Pc
ledger

, specification of the Corda client𝑀client (Part 1)
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Description of𝑀client (cont.):

Main:

recv (Submit,msg) from I/O s.t.msg = (tx, 𝑡𝑥) :
send 𝑡𝑥 to (pidcur, sidcur, Fro : randomOracle)
wait for (txId′) {Generate tx ID

txId ← TX.add(txId′)
{
TX.add(txId′) concatenates txId′ with a label make the id identifiable as a transaction id.

if initiator == pidcur : {initiator starts Corda’s flow processing

if ∀(txId′, outputIndex′) ∈ 𝑡𝑥inputStates
verifiedTx.contains(txId, 𝑡𝑥′, _) | outputIndex′ ∈ 𝑡𝑥′outputStates :

{All direct dependencies are known

bufferTxSig .add( (txId, 𝑡𝑥, ∅, 𝜖, expColSigs))
if validate(𝑡𝑥, ∅, 𝜖) == valid: {For validate definition see below

for all (txId′, outputIndex′) ∈ 𝑡𝑥inputStates do:
bufferReqValid [txId′ ] [1] .add( {signee1, . . . , signee𝑚 , formerNotary })

for all attachmentId ∈ proposal do:
bufferReqValid [attachmentId ] [1] .add( {signee

1
, . . . , signee𝑚 , formerNotary }){

States and attachments are only marked valid for request if 𝑡𝑥 itself is valid. Rekursive defintion of objects allowed to request in
SendTransactionFlow.

msg ← CollectSignaturesFlow(𝑡𝑥) {Definition of CollectSignaturesFlow in Figure 28
send (Message,msg) to (pidcur, sidcur, Funicast : unicast)

else:
bufferTxSig .remove( (_, 𝑡𝑥, _, _, _)) {Clean up declined transaction
validateAllLocal() {Check whether there are open task, e. g., finalizing a transaction

else if ∃𝑖 ∈ [𝑚] : signee𝑖 == pidcur : {As signee: record tx as “will approve CollectSignaturesFlow”
bufferTxSig .add( (txId, 𝑡𝑥, ∅, 𝜖, approved))

recv (Submit,msg) from I/O s.t.msg = (tx, txId, pidrecv ) :
{
pidcur pushes/shares a verified transaction to/with pidrecv

msg′ ← 𝜖

if verifiedTx.contains( (txId, _, _)) :
msg′ ← (verifiedTx[txId ] [1], verifiedTx[txId ] . [2])

{
msg′ = (𝑡𝑥, Σ)

else if bufferTxSig .contains( (txId, _, _, _, 𝑠𝑡𝑎𝑡𝑢𝑠)) | 𝑠𝑡𝑎𝑡𝑢𝑠 ∉ {⊥, unrequested, requested, reqDeps}:
msg′ ← (bufferTxSig [txId ] [1], bufferTxSig [txId ] [2])

{
msg′ = (𝑡𝑥, Σ)

if msg′ ≠ 𝜖 :
send (Message,

{
(pidrecv , (RecvTransactionFlow,msg′))

}
) to (pidcur, sidcur, Funicast : unicast)

recv GetCurRound: {A and E are allowed to query the clock

send GetCurRound to (pidcur, sidcur, Funicast : unicast) {Forward requests about current round to the unicast channel
wait for (GetCurRound, round)
reply (GetCurRound, round)

recv (SignTransactionFlow,msg) from (pids, sidcur, Funicast : unicast) s.t.msg = (𝑡𝑥, 𝜎) :
On request of a transaction initiator who started a CollectSignaturesFlow, a client signs a transaction if it agrees on the tx.

if bufferTxSig [𝑡𝑥 ] .contains(_, 𝑡𝑥, ∅, 𝜖, approved) ∧ initiator == pids:
send (Verify, 𝑡𝑥, 𝜎) to (initiator, sidcur, Fcert : verifier)
wait for (VerResult, 𝑟𝑒𝑠) {Check initiators signature
if 𝑟𝑒𝑠 == valid:

bufferTxSig [𝑡𝑥 ] [3] ← initiator
{
Transaction 𝑡𝑥 is already stored in bufferTxSig . It is now marked as requested for signature and
the request (=initiator) is stored for possibly later answer

bufferTxSig [𝑡𝑥 ] [4] ← sign {Update processing status
(txId, 𝑡𝑥, Σ, pid, sign) ← bufferTxSig [𝑡𝑥 ]
if validate(𝑡𝑥, Σ, pid) == valid: {For definition of validate, see Figure 28

send (Sign, 𝑡𝑥) to (pidcur, sidcur, Fcert : signer)
wait for (Signature, 𝜎) {Generate signature for initiator
bufferTxSig [𝑡𝑥 ] [4] ← expNotarization {Update processing status
reply (Message, { (initiator, (Signature, (𝑡𝑥, 𝜎))) })

else:
reply (Message, { (initiator, (Signature, (𝑡𝑥,⊥))) })

recv (Signature,msg) from (pids, sidcur, Funicast : unicast) s.t.msg = (𝑡𝑥, 𝜎) :
Collect signed responses from the CollectSignaturesFlow. tx format needs to be as defined above

if bufferTxSig .contains(_, 𝑡𝑥, _, _, reqSigs) ∧

pids ∈ signee [𝑚] ∧ (pids, _) ∉ bufferTxSig [𝑡𝑥 ] [2]:

{
Only requested signatures, i. e., for transactions in bufferTxSig where
this client is initiator, are accepted.

send (Verify, 𝑡𝑥, 𝜎) to (pids, sidcur, Fcert : verifier)
wait for (VerResult, verified) {Check signee signature
if verified == true:

bufferTxSig [txId ] [2] .add( (𝜎, pids))
if |bufferTxSig [txId ] [2] | ==𝑚 + 1:

{Every signature is only stored once if valid, thus if numbers match all needed signatures
are present.

FinalityFlow(𝑡𝑥) {Start FinalityFlow if all signees confirmed tx
else:

bufferTxSig .remove( (txId, 𝑡𝑥, _, _)) {Remove rejected tx from buffer

Figure 25: The Corda model Pc
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Description of𝑀client (cont.):

Main:

recv (NotariseRes,msg) from (pids, sidcur, Funicast : unicast) s.t.msg = (pids, (𝑡𝑥, 𝜎)) :

Handle tx finalization from notary and distribute result among tx signees
if (bufferTxSig [𝑡𝑥 ] .contains(_, 𝑡𝑥, _, formerNotary, reqNotarization)
| pids = formerNotary) :

{
Only expected signatures from a notary are
distributed

bufferTxSig [𝑡𝑥 ] [2] .add(formerNotary, 𝜎)
res← validate(𝑡𝑥, bufferTxSig [𝑡𝑥 ] [2], 𝜖)

{This will go through as an honest client will only trigger this ifpidcur signed and therefore
validated 𝑡𝑥 . For definition of validate see Figure 28

if 𝑟𝑒𝑠 == valid:
verifiedTx.add(bufferTxSig [𝑡𝑥 ] [0], bufferTxSig [𝑡𝑥 ] [1], bufferTxSig [𝑡𝑥 ] [2])

bufferTxSig .remove(bufferTxSig [𝑡𝑥 ])
for all 𝑖 ∈ [𝑚] do:

msg.add( (signee𝑖 , (RecvFinalityFlow, (𝑡𝑥, Σ.add(formerNotary, 𝜎))))) {Distribute notarisation to signees

reply (Message,msg)
recv (RecvFinalityFlow,msg) from (pids, sidcur, Funicast : unicast) s.t.msg = (pids, (𝑡𝑥, Σ)) :
Called from initiator pids after FinalityFlow is finished. Stores 𝑡𝑥 with signing result from notary

if bufferTxSig [𝑡𝑥 ] .contains(_, 𝑡𝑥, _, pids, expNotarization) :
if |Σ | =𝑚 + 2 ∧ validate(𝑡𝑥, Σ, 𝜖) == valid: {Assure still everything is valid and enough signatures are provided

verifiedTx.add( (txId, 𝑡𝑥, Σ))
bufferTxSig .remove(bufferTxSig [txId ])

recv (SendTransactionFlow,msg) from (pids, sidcur, Funicast : unicast) s.t.msg = (txId) :
Client processes/forwards a requested transaction

if bufferReqValid [txId ] [1] .contains(pids) : {Checks whether pid is allowed to request transaction 𝑡𝑥
bufferReqValid [txId ] [1] .remove(pids) {Decline further access
if verifiedTx.contains(txId, _, _) :

𝑡𝑥 ← verifiedTx[txId ] [1] {verifiedTx[.] [1] = 𝑡𝑥 for answer
else:

𝑡𝑥 ← bufferTxSig [txId ] [1]
{
bufferTxSig [.] [1] = 𝑡𝑥 for answer

for all (txId′, outputIndex′) ∈ 𝑡𝑥inputStates do: {Grant pids access to dependencies of tx
bufferReqValid [txId′ ] .add(pids)

for all attachmentId′ ∈ 𝑡𝑥 [4] do:
bufferReqValid [attachmentId′ ] .add(pids)

msg′ = (RecvTransactionFlow, verifiedTx[txId ]) {Forward tx details to pids
send (Message, { (pids,msg′) }) to (pidcur, sidcur, Funicast : unicast)

else:
send (Message, { (pids,⊥) }) to (pidcur, sidcur, Funicast : unicast)

recv (GetAttachment,msg) from (pids, sidcur, Funicast : unicast) s.t.msg = (pids, attachmentId) :
Answers request from notary for attachment needed for verification

if bufferReqValid [attachmentId ] .contains(pids) :
msg′ = (RecvAttachment, pids, attachments[attachmentId ])
reply (Message, {pids,msg′ })

else:
reply (Message, {pids,⊥})

recv (RecvTransactionFlow, (pids, (𝑡𝑥, Σ))) from (pids, sidcur, Funicast : unicast) :
Entity processes a requested transaction

send 𝑡𝑥 to (pidcur, sidcur, Fro : randomOracle) {Get transaction id
wait for (txId′)
txId ← TX.add(txId′)
if (¬(bufferTxSig .contains( (txId, _, _, pids, _)) ∧ verifiedTx[txId ] .contains( (txId, _, _)))) :

bufferTxSig .add( (txId, 𝑡𝑥, Σ, pids, unrequested))
else if bufferTxSig .contains( (txId,⊥,⊥, pids, requested)) :

res← validate(𝑡𝑥, Σ, pids) {See definition of validate below
validateAllLocal()

recv (RecvAttachment, attachment) from (pids, sidcur, Funicast : unicast) : {Stores received attachments to attachments.
send (attachment) to (pidcur, sidcur, Fro : randomOracle) {Get attachment id
wait for (attachmentId′)
if validateAttachment(𝑎𝑡𝑡𝑎𝑐ℎ𝑚𝑒𝑛𝑡 ) :

attachments.add(ATT.add(attachmentId′), attachment) {Store attachment
validateAllLocal()

recv DeRegister from I/O: {“Dummy” interface as deregistration is not part of the Corda model
wait for ack {DeRegister always returns ack
reply DeRegister

Figure 26: The Corda model Pc
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Description of𝑀client (cont.):

Procedures and Functions:
function CollectSignaturesFlow(𝑡𝑥) (𝑡𝑥 = (_, [signee

1
, . . . , signee𝑚 ], _, _, _)):

Collects signatures for a transaction from all necessary participants

bufferTxSig [𝑡𝑥 ] [4] ← reqSigs
{Transaction is marked in buffer as CollectSignaturesFlow has been started an signatures form co-
signees are expected

send (Sign, 𝑡𝑥) to (pidcur, sidcur, Fcert : signer) {Initiator signs transaction proposal
wait for 𝜎
bufferTxSig [𝑡𝑥 ] [3] .add(pidcur, 𝜎) {Record initiator signature
msg ← 𝜖 {Prepare message to F

unicast

for all 𝑖 ∈ [𝑚] do:
msg.add( (signee𝑖 , (SignTransactionFlow, (𝑡𝑥, 𝜎))))

returnmsg
function FinalityFlow(𝑡𝑥, Σ) (𝑡𝑥 = (_, _, _, formerNotary, _)):

{Corresponds with notary to get signature and distribute signature to
participants

bufferTxSig [𝑡𝑥 ] [4] ← reqNotarization
{
Transaction is marked as waiting for notarisation in bufferTxSig

msg ← validateAllLocal()
function validate(𝑡𝑥, Σ, pid) :

{Validates a transaction and produces message for requesting transactions and attachments if nec-
essary.

if verifiedTx.contains(_, 𝑡𝑥, _, Σ′, _) :
if |Σ′ | ==𝑚 + 2:

return alreadyNotarised
else:

if isDoubleSpend(𝑡𝑥, verifiedTx) : {Checks whether one of the input states is already used in another 𝑡𝑥 in verifiedTx
return doubleSpend

if ¬
[
∀ 𝑖 ∈ [𝑚] : isValidId(signee𝑖 , client) == true ∧

isValidId(initiator, client) == true ∧
isValidId(formerNotary, notary) == true ∧
isValidId(notary, notary) == true)

]
:

{
isValidId checks whether the given pid is registered with
the particular role in networkmap.

return invalid
if ¬

[ (
|Σ | ≤𝑚 + 2 ∧ ∃𝑖 ∈ [𝑚] : signee𝑖 == pidcur∨

initiator == pidcur
)
∨
(
∀ 𝑖 ∈ [𝑚]∃1 (𝜎′, signee𝑖 ) ∈ Σ∧

( |Σ | ==𝑚 + 1 ∨ ( |Σ | ==𝑚 + 2 ∧ ∃(𝜎′, formerNotary) ∈ Σ))
) ]
:


Checks whether for all singees there exists a signature. If it is
notarized it has to be the correct notary. If less signatures are
given it is expected that this client participates and signing is
not done.

return invalid
for all (𝜎, pid𝜎 ) ∈ Σ do:

send (𝑡𝑥, 𝜎) to (pid𝜎 , sidcur, Fcert : verifier)
wait for (VerResult, 𝑟𝑒𝑠) {Checks all provided signatures
if 𝑟𝑒𝑠 == false:

return invalid
if isResolvable(𝑡𝑥) == false ∧ bufferTxSig [𝑡𝑥 ] [4]! = reqDeps:

{Checks whether all dependencies are available in
internalState of the entity

msg ← resolveTx(𝑡𝑥, pid) {If transactions or attachments are needed, request is sent to the initiator of the transaction.
send (Message,msg) to (pidcur, sidcur, Funicast : unicast)

else if isResolvable(𝑡𝑥) : {Party has all necessary information for processing the tx in internalState
txDependencies← 𝜖 {Collect dependencies for upcoming validation
for all (txId′, outputIndex′) do:

if verifiedTx.contains( (_, 𝑡𝑥, _, _, _)) :
txDependencies.add(verifiedTx[txId′ ] [1])

else:
txDependencies.add(bufferTxSig [txId′ ] [1])

for all attachmentId ∈ proposal do:
txAttachments.add(attachments[attachmentId ])

res← executeValidation(𝑡𝑥, txDependencies, txAttachments) {Validate the transaction regarding the given context
return 𝑟𝑒𝑠

function resolveTx(𝑡𝑥, pids) (msg):
bufferTxSig [𝑡𝑥 ] [4] ← reqDeps
msg ← 𝜖

for all (txId, outputIndex) ∈ 𝑡𝑥inputStates do:
{
For definition of 𝑡𝑥inputStates see above

if �(_, 𝑡𝑥′, _) ∈ verifiedTx ∧ (txId, outputIndex) ∈ 𝑡𝑥′outputStates :
{
Accumulates all transaction necessary for verification but not currently in
verifiedTx

bufferTxSig .add( (txId,⊥,⊥, pids, requested))
msg.add( (pids, (SendTransactionFlow, (txId, outputIndex))))

for all attachmentId ∈ proposal do:
if (attachmentId, _) ∉ attachments: {Accumulates all attachments necessary for verification but not cur-

rently in attachmentsmsg.add( (pids, (GetAttachment, (attachmentId))))
returnmsg

Figure 27: The Corda model Pc
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Description of𝑀client (cont.):

Procedures and Functions:
function validateAllLocal() :

{Checks for all stored transaction if the inputs and attachments can be resolved and the
transaction therefore validated.identities← 𝜖,msg ← 𝜖, resolved ← true

while resolved == true do
resolved ← false, 𝑟𝑒𝑠 ← 𝜖
for all (_, 𝑡𝑥, Σ, pid, status) ∈ bufferTxSig | status ∉ {⊥, unrequested, expNotarization, reqNotarization} do:

if isResolvable(𝑡𝑥) :
{
resolvable checks whether all dependencies are verified (i. e., in verifiedTx) and all
attachments available.res← validate(𝑡𝑥, Σ, 𝜖)

if res == valid ∧ (status == sign ∨ status == expColSigs) :
send (Sign, 𝑡𝑥) to (pidcur, sidcur, Fcert : signer)
wait for (Signature, 𝜎)

else if res == valid ∧ isNotarised(𝑡𝑥) :
verifiedTx.add( (txId, 𝑡𝑥, ∅))

if status == sign:
{
If transaction is requested for signing and transaction has been resolved
return an answer.msg.add( (pidcur, (Signature, (𝑡𝑥, 𝜎))))

else if status = expColSigs:
{
If pidcur is initiator and transaction is resolvable it should start the
CollectSignaturesFlow.

msg.add( (pidcur, CollectSignaturesFlow(𝑡𝑥)))
resolved ← true
bufferTxSig .remove(_, 𝑡𝑥, Σ, pid, _)

send (Message,msg) to (pidcur, sidcur, Funicast)

Figure 28: The Corda model Pc
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Description of the protocol𝑀notary = {notary}:
Participating roles: {notary}
Corruption model: Dynamic corruption with secure erasures
Protocol parameters:

– executeValidation {Algorithm for verifying a transaction.
– networkmap {Set of identities in network
– validateAttachment {Algorithm for validating attachments according to certain rules

Description of𝑀notary :

Implemented role(s) : {notary}
Subroutines: Fcert : cert, Funicast : unicast, Fro : randomOracle
Internal state:

– verifiedTx ⊂ {0, 1}∗ × {0, 1}∗ × {0, 1}∗, verifiedTx = ∅
{List of verified transactions, either by this notary or others,
as (txId, 𝑡𝑥, 𝜎)

– attachments ⊂ {0, 1}∗ × {0, 1}∗, attachments = ∅
{Set of known attachments and identifiers as
(attachmentId, attachment)

– bufferTxSig ⊂ {0, 1}∗ × {0, 1}∗ × {0, 1}∗ × {0, 1}∗ × 𝑠𝑡𝑎𝑡𝑢𝑠, bufferTxSig = ∅
{
Transaction currently in process as (txId, 𝑡𝑥, Σ, pid, 𝑠𝑡𝑎𝑡𝑢𝑠) .
Σ is a set of tuples of the form (pid, 𝜎) , 𝑠𝑡𝑎𝑡𝑢𝑠 =

{requested, sign}
CheckID(pid , sid , role) :

Accept all messages with the same sid.
Corruption behavior:

DetermineCorrStatus(pid , sid , role) :
if corr == true: {Checks whether notary itself is corrupted.

return true
corrRes← corr(pidcur, sidcur, signer) {Checks whether Fcert instance is corrupted.
if corrRes == true:

return true
See Appendix A for notation details. We expect the ITM to enforce the transaction format tx = (initiator, [signee

1
, . . . , signee𝑚 ],

notary, formerNotary, proposal) where in proposal input states as 𝑡𝑥inputStates = (txId, outputIndex) and output states as 𝑡𝑥outputStates . We denote by

𝑚 the number of signees in a transaction. For tuples, lists, etc. we start index counting at 0.

Main:

recv (Notarise, (𝑡𝑥, Σ)) from (pids, sidcur, Funicast : unicast) s.t. initiator = pids:
Notarises transaction 𝑡𝑥 if valid and no double spend. tx format specified above

if formerNotary ≠ pidcur:
{
Requested notary is defined in formerNotary, abort processing if wrongly addressed

send (Message, { (initiator, (NotariseRes, (𝑡𝑥, misdirected))) }) to (pidcur, sidcur, Funicast)
else if verifiedTx.contains(_, 𝑡𝑥, _) : {If 𝑡𝑥 already validated and signed, then return stored siganture
(txId, 𝑡𝑥, 𝜎) ← verifiedTx[𝑡𝑥 ]
if 𝜎 = ⊥: {Generate notary siganture if tx is already validated but siganture is missing

send (Sign, 𝑡𝑥) to (pidcur, sidcur, Fcert : signer)
wait for (Signature, 𝜎′)
verifiedTx[𝑡𝑥 ] [2] ← 𝜎′

send (Message, { (initiator, (NotariseRes, (𝑡𝑥, 𝜎))) }) to (pidcur, sidcur, Funicast : unicast)
else: {Notary only signs if specified in 𝑡𝑥 .

send 𝑡𝑥 to (pidcur, sidcur, Fro : randomOracle)
wait for (txId)
bufferTxSig .add( (TX.add(txId), 𝑡𝑥, Σ, pids, sign))

{
Record 𝑡𝑥 , processing status, and additional data in bufferTxSig

res← validate(𝑡𝑥, Σ, initiator) {See definition of function validate below
msg ← validateAllLocal()

Figure 29: The Corda model Pc
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Description𝑀notary (cont.):

Main:

recv (RecvTransactionFlow, (pids, (𝑡𝑥, Σ))) from (pids, sidcur, Funicast : unicast) :
Entity processes a requested transaction

send 𝑡𝑥 to (pidcur, sidcur, Fro : randomOracle) {Get transaction id
wait for (txId′)
txId ← TX.add(txId′)
if bufferTxSig .contains( (𝑖𝑑𝑡𝑥,⊥,⊥, pids, requested)) :

res← validate(𝑡𝑥, Σ, pids) {See definition of validate below
validateAllLocal()

recv (RecvAttachment, attachment) from (pids, sidcur, Funicast : unicast) : {Stores received attachments to attachments.
send (attachment) to (pidcur, sidcur, Fro : randomOracle) {Get attachment id
wait for (attachmentId′)
if validateAttachment(𝑎𝑡𝑡𝑎𝑐ℎ𝑚𝑒𝑛𝑡 ) :

attachments.add(ATT.add(attachmentId′), attachment) {Store attachment
validateAllLocal()

Procedures and Functions:
function validate(𝑡𝑥, Σ, pid) :

{Validates a transaction and produces message for requesting transactions and at-
tachments if necessary.

if (_, 𝑡𝑥, 𝜎) ∈ verifiedTx: {If tx already finalized, output existing signature
return 𝜎

if verifiedTx.contains(_, 𝑡𝑥, _, Σ′, _) :
if |Σ′ | ==𝑚 + 2:

return alreadyNotarised

else:
if isDoubleSpend(𝑡𝑥, verifiedTx) :

{
Checks whether one of the input states is already used in another 𝑡𝑥 in
verifiedTxreturn doubleSpend

if ¬
[
∀ 𝑖 ∈ [𝑚] : isValidId(signee𝑖 , client) == true ∧

isValidId(initiator, client) == true ∧
isValidId(formerNotary, notary) == true ∧
isValidId(notary, notary) == true)

]
:

{
isValidId checks whether the given pid is registered
with the particular role in networkmap.

return invalid
if ¬(∀ 𝑖 ∈ [𝑚]∃1 (𝜎′, signee𝑖 ) ∈ Σ) :

{Checks whether for all singees there exists a signature. If it is
notarized it has to be the correct notary.return invalid

for all (𝜎, pid𝜎 ) ∈ Σ do:
send (𝑡𝑥, 𝜎) to (pid𝜎 , sidcur, Fcert : verifier)
wait for (VerResult, 𝑟𝑒𝑠) {Checks all provided signatures
if 𝑟𝑒𝑠 == false:

return invalid
if formerNotary ≠ notary:

send (𝑡𝑥, 𝜎) to (formerNotary, sid, Fcert : verifier)
wait for (VerResult, 𝑟𝑒𝑠) {Notary change transaction have always to be signed.
if 𝑟𝑒𝑠 == false:

return invalid
if isResolvable(𝑡𝑥) == false ∧ bufferTxSig [𝑡𝑥 ] [4]! = reqDeps:

{Checks whether all dependencies are available in
internalState of the entity

msg ← resolveTx(𝑡𝑥, pid) {If transactions or attachments are needed, request is sent to the initiator of the transaction.
send (Message,msg) to (pidcur, sidcur, Funicast : unicast)

else if isResolvable(𝑡𝑥) : {Party has all necessary information for processing the tx in internalState
txDependencies← 𝜖 {Collect dependencies for upcoming validation
for all (txId′, outputIndex′) do:

if verifiedTx.contains( (_, 𝑡𝑥, _, _, _)) :
txDependencies.add(verifiedTx[txId′ ] [1])

else:
txDependencies.add(bufferTxSig [txId′ ] [1])

for all attachmentId ∈ proposal do:
txAttachments.add(attachments[attachmentId ])

res← executeValidation(𝑡𝑥, txDependencies, txAttachments) {Validate the transaction regarding the given context
return 𝑟𝑒𝑠

function resolveTx(𝑡𝑥, pids) (msg):
bufferTxSig [𝑡𝑥 ] [4] ← reqDeps
msg ← 𝜖

for all (txId, outputIndex) ∈ 𝑡𝑥inputStates do:
{
For definition of 𝑡𝑥inputStates see above

if �(_, 𝑡𝑥 ′, _) ∈ verifiedTx ∧ (txId, outputIndex) ∈ 𝑡𝑥 ′outputStates :
{Accumulates all transaction necessary for verification but not cur-
rently in verifiedTx

bufferTxSig .add( (txId,⊥,⊥, pids, requested))
msg.add( (pids, (SendTransactionFlow, (txId, outputIndex))))

for all attachmentId ∈ proposal do:
if (attachmentId, _) ∉ attachments: {Accumulates all attachments necessary for verification but

not currently in attachmentsmsg.add( (pids, (GetAttachment, (attachmentId))))
return msg

Figure 30: The Corda model Pc
ledger
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Description of𝑀notary (cont.):

Procedures and Functions (cont.):
function validateAllLocal() :

{Checks for all stored transaction if the inputs and attachments can be resolved
and the transaction therefore validated.identities← 𝜖,msg ← 𝜖, resolved ← true

while resolved == true do
resolved ← false, 𝑟𝑒𝑠 ← 𝜖

for all (_, 𝑡𝑥, Σ, pid, status) ∈ bufferTxSig | status ∉ {⊥, unrequested} do:
if isResolvable(𝑡𝑥) :

{
resolvable checks whether all dependencies are verified (i. e., in verifiedTx)
and all attachments available.res← validate(𝑡𝑥, Σ, 𝜖)

if res == valid ∧ status == sign:
send (Sign, 𝑡𝑥) to (pidcur, sidcur, Fcert : signer)
wait for (Signature, 𝜎)
verifiedTx.add(txId, 𝑡𝑥, 𝜎)

else if res == valid:
verifiedTx.add( (txId, 𝑡𝑥,⊥))

𝜎 ← res
if status == sign:

{
If transaction is requested for notarisation and transaction
has been resolved return an answer.msg.add( (pidcur, (NotariseRes, (𝑡𝑥, 𝜎))))

resolved ← true
bufferTxSig .remove(_, 𝑡𝑥, Σ, pid, _)

send (Message,msg) to (pidcur, sidcur, Funicast)

Figure 31: The Corda model Pc
ledger

, specification of the Corda notary𝑀notary (Part 3)

Description of the protocol Funicast = (unicast) :
Participating roles: {unicast}
Corruption model: incorruptible
Protocol parameters:

– 𝛿 ∈ N
{A general delay parameter for the time the adversary is allowed to prevent messages from
being delivered.

Description of𝑀unicast :

Implemented role(s) : {unicast}
Subroutines: Pc

ledger
: client, Pc

ledger
: notary

{Funicast can access the corruption status in Pc
ledger

Internal state:

– buffermsg ⊂ N × N × {0, 1}∗ × {0, 1}∗ × {0, 1}∗, buffermsg = ∅
{Buffer for messages consisting of tuples (label,
round, sender, receiver, 𝑐𝑜𝑛𝑡𝑒𝑛𝑡 )

– labels ∈ N, labels = ∅ {Already used identifiers
– round ∈ N, round = 0 {Current round/time unit

CheckID(pid , sid , role) :
Accept all messages with the same sid.

Main:

recv (Message,msg) from I/O s.t. msg ⊂ {(𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑟, 𝑐𝑜𝑛𝑡𝑒𝑛𝑡 ) |𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑟, 𝑐𝑜𝑛𝑡𝑒𝑛𝑡 ∈ {0, 1}∗ }:
{Request to deliver a several different messages
to different receiversleakage← 𝜖

for all (𝑟,𝑚) ∈ msg do:

label
$← N s.t. label ∉ labels {Generate an unique lable per message that needs to be delivered

labels.add(label)
leakage.add(label, pidcur, 𝑟 , |𝑚 |) {Record receiver, round, and content length as leakage
buffermsg .add(label, round, pidcur, r,m) {Queue message for delivery

send (MultiMessage, leakage) to NET {Forward leakage to A
recv (Deliver, label) from NET: {A triggers delivery of messages

parse (label, 𝑠, 𝑟,𝑚) from buffermsg [label ] {Fetch data from message queue
parse (Command, 𝑐𝑜𝑛𝑡𝑒𝑛𝑡 ) from𝑚

buffermsg .remove(label, 𝑠, 𝑟,𝑚) {Remove message from delivery queue
send (Command, (𝑠, 𝑐𝑜𝑛𝑡𝑒𝑛𝑡 )) to (𝑟, sid, I/O) {Deliver message to receiver

recv (UpdateRound) from NET: {A triggers round update if all messages older than 𝛿 rounds are delivered
if ∃(_, 𝑟 ′, _, _, _) ∈ buffermsg : 𝑟 ′ < round − 𝛿 : {Ensure all messages are delivered within 𝛿 rounds

reply (UpdateRound, false, 𝜖)
else: {Round update accepted

round← round + 1
reply (UpdateRound, true, 𝜖)

recv (GetCurRound) : {A and E are allowed to query the current round.
reply (GetCurRound, round)

Figure 32: The unicast functionality Funicast that models an ideal network for the Corda model Pc
ledger
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Description of the protocol Fcert = (signer, verifier) :
Participating roles: {signer, verifier}
Corruption model: incorruptible {See text below
Protocol parameters:

– p ∈ Z[𝑥 ].
{Polynomial that bounds the runtime of the algorithms provided by the ad-
versary.

– 𝜂 ∈ N {The security parameter.

– sig
{
Signing algorithm, outputs a signature 𝜎 on input (msg, sk) . The generated singature has a length of 𝜂
bits

– ver {Signature verifying algorithm, outputs verification result on input (msg, 𝜎, pk)
– gen {Key generation algorithm, outputs (pk, sk) on input 1𝜂

Description of𝑀signer,verifier :

Implemented role(s) : {signer, verifier}
Internal state:

– (pk, sk) ∈ ( {0, 1}∗ ∪ {⊥})2 = (⊥,⊥) . {Key pair.
– pidowner ∈ {0, 1}∗ ∪ {⊥} = ⊥. {Party ID of the key owner.
– msglist ⊂ {0, 1}∗ = ∅. {Set of recorded messages.
– corr ∈ {true, false} = false. {Is signature key corrupted?

CheckID(pid , sid , role) :
Check that sid = (pid′, sid′) :
If this check fails, output reject.
Otherwise, accept all entities with the same SID.

{A single instance manages all parties and roles in a single
session. A session models one signature key pair belonging to
party pid′.Corruption behavior:

– DetermineCorrStatus(pid , sid , role) : Return corr.
Initialization:

(pk, sk) $← Gen(1𝜂 ) {Generate public/secret key pair
Parse sidcur as (pid, sid) .
pidowner← pid.

Main:

recv (Sign,msg) from I/O to (pidowner, _, signer) :
𝜎 ← sig(p) (msg, sk) .
add msg tomsglist.
reply (Signature, 𝜎) . {Record msg for verification and return signature.

recv (Verify,msg, 𝜎) from I/O to (_, _, verifier) :
𝑏 ← ver(p) (msg, 𝜎, pk) . {Verify signature.
if 𝑏 = true ∧msg ∉ msglist ∧ corr = false:

reply (VerResult, false) . {Prevent forgery.
else:

reply (VerResult, 𝑏) . {Return verification result.

recv corruptSigKey from NET: {Allow network attacker to corrupt signature keys.
corr← true.
reply (corruptSigKey, ok) .

Figure 33: The ideal signature functionality Fcert.

Description of the protocol Fro = (randomOracle) :
Participating roles: {randomOracle}
Corruption model: incorruptible
Protocol parameters:

– 𝜂 ∈ N {Security parameter, length of the hash

Description of𝑀randomOracle :

Implemented role(s) : {randomOracle}
Internal state:

– hashHistory ⊆ {0, 1}∗ × {0, 1}𝜂 , initially hashHistory = ∅ {The set of recorded value/hash pairs
CheckID(pid , sid , role) :

Accept all messages with the same sid.
Main:

recv (pid, 𝑥) : {Requesting the Fro for “hashes”
if ∃ℎ ∈ {0, 1}𝜂 s.t. (𝑥,ℎ) ∈ hashHistory: {Extract existing value from hashHistory

reply (pid, ℎ)
else:

ℎ
$← {0, 1}𝜂 {Generate “hash value” uniformly at random

hashHistory← hashHistory.add( (x, h)) {Store generated key, value pair in hashHistory
reply (pid, ℎ)

Figure 34: The random oracle Fro (cf. [14])
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Description of the subroutine Fc
submit

= (submit) :

Participating roles: {submit}
Corruption model: incorruptible
Protocol parameters:

– executeValidation {Validation algorithm that verfies whether it is ok to add a transaction to the current corda state

– validateAttachment {Algorithm that validates attachments

Description of𝑀c
submit

:

Implemented role(s) : {submit}
Subroutines: Fc

storage
: storage, Fc

read
: read

CheckID(pid , sid , role) :
Accept all messages with the same sid.

In the following, we will use the abberivation (1) for the expressionmsg = [tx, (initiator, [signee
1
, . . . , signee𝑚 ], notary, formerNotary, proposal) ],

(2) for msg = (attachment, 𝑎𝑡𝑡𝑎𝑐ℎ𝑚𝑒𝑛𝑡 ) , and (3) for msg = (tx, txId, pidrecv ) .
Main:

recv (Submit,msg, internalState) from I/O:
{
See Figure 5 for definition of internalState and the local variables it includes

if ¬[(1) ∨ (2) ∨ (3) ]:
reply (validationProcessed, false, 𝜖)

{Submitted transactions/attachments need to have the expected
data format

if (1) ∧ pidcur ∉ {initiator, signee1, . . . , signee𝑚 }:

reply (validationProcessed, false, 𝜖) {Clients can only submit transactions they are involved in

if (1) ∧ ¬[initiator, signee
1
, . . . , signee𝑚 are clients (role = client, pid prefixed by client)∧notary, formerNotary are notaries (role =

notary, pid prefixed by notary) ∧
∀pid ∈ {initiator, signee

1
, . . . , signee𝑚, notary, formerNotary } : pid ∈ identities]

:

{Check correct identities and roles
reply (validationProcessed, false, 𝜖) {Clients can submit transactions they are involved in transaction, all parties need to be registered

Figure 35: The write/submit functionality F c
submit

of F c
ledger

(Part 1)
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Description of𝑀c
submit

(continued):

Main:
if (1) : {In case that a transaction was submitted

send (GetID, tx, (initiator, [signee
1
, . . . , signee𝑚 ], notary, formerNotary, proposal)) to (pidcur, sidcur, Fc

storage
) {Request txID

wait for (GetID, tx, id)
{Fc

storage
returns an id or false

attachments← 𝜖

parse (id𝑎
1
, . . . , id𝑎

𝑙
) from msg.remove(tx) {We leak the ids of the attachment ids involved in a transaction

for all id𝑎 ∈ {id𝑎
1
, . . . , id𝑎

𝑙
} do: {Connect attachments to transactions

send (GetContent, attachment, id𝑎) to (pidcur, sidcur, Fc
storage

: storage)
{
Get attachment from Fc

storage

wait for (GetContent, attachment, attachment)
attachments.add(id𝑎, attachment)

parse [ (inTxId1, idx1), . . . , (inTxIdℎ, idxℎ) ] (out1, . . . , out𝑒 ) from proposal{
Extract input tx ids and input index and output index from proposal. This needs to be leaked. If there are no inputs, this
returns ⊥

leakage← [(id𝑎
1
, . . . , id𝑎

𝑙
), ( (inTxId1, idx1), . . . , (inTxIdℎ, idxℎ) ] (out1, . . . , out𝑒 )) ]

if initiator = pidcur: {Initiators need to know dependend tx and used attachments
send getCurrentKnowledge to (pidcur, sidcur, Fread : read) {Query pidcur’s current knowledge
wait for (getCurrentKnowledge, transactions𝑐pidcur , attachments𝑐pidcur )
send getKnowledge to (pidcur, sidcur, Fc

storage
: storage)

{
Requests pidcur’s current (maxi-
mal) knowledge at Fc

storage

wait for (getKnowledge, txGraphpidcur , attachmentspidcur )
if missingDependency(msg, transactions𝑐pidcur , attachments𝑐pidcur ) :

missingDependency(msg, transactions𝑐pidcur , attachments𝑐pidcur ) returns false if all input transactions tomsg and their dependencies
down to the issuance transactions are available in transactions𝑐pidcur as well as all attachments used in the subgraph(s) below msg are
available in attachments𝑐pidcur , otherwise true

reply (validationProcessed, false, 𝜖) {Decline submission if pidcur has no access to data to validate msg

if ¬executeValidation(msg, transactions𝑐pidcur [inTxId1, . . . , inTxIdℎ ], attachments𝑐pidcur [id
𝑎
1
, . . . , id𝑎

𝑙
) :
{Check validity of transaction regarding its di-
rect inputs

reply (validationProcessed, false, 𝜖)
if isDoubleSpendmsg: {Check double spending

reply (validationProcessed, false, 𝜖) {Decline submission

leakage.add[id, initiator, signee
1
, . . . , signee𝑚, formerNotary ])

{A receives all party expected notary that are
involved in transaction id

if one of the parties initiator, signee
1
, . . . , signee𝑚, formerNotary is in CorruptionSet:

leakage.add(proposal)
{If an involved party is corrupted, A gets all details of the tx and the connected
subgraph as he is allowed to query the subgraph for verification

if pidcur = initiator:
{
If the initiator has access to all necessary transactions, the full subgraph
below the tx leakes

txGraphpidcur .addToTxGraph(id,msg.remove(tx), ∅)
{
addToTxGraph adds the tx extracted from tx to
txGraph − pidcur

txSubGraph← getConnectedSubGraph(tx, txGraphpidcur )
getConnectedSubGraph(msg, txGraphpidcur ) outputs the (maximal) connected subgraph of txGraphpidcur such that
msg’s outputs are all edges of this subgraph (“maximal” means � a connected subgraph txGraph containing msg’s output
and that is a superset of getConnectedSubGraph(msg, txGraph𝑠))

for all clients (txID, tx, attachmentstx ) in txSubGraph s.t. txId is an input to msg do:
leakage.add(txID, tx, attachmentstx ) {Leak tx id, content, and connected attachments

else:
leakage.add( |proposal |) {If all involved party are honest, A gets only length of the proposal data

reply (validationProcessed, true, leakage)

Figure 36: The write/submit functionality F c
submit

of F c
ledger

(Part 2)
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Description of𝑀c
submit

(continued):

Main:
if (2) : {In case that an attachment was submitted

send (GetID, attachment, 𝑎𝑡𝑡𝑎𝑐ℎ𝑚𝑒𝑛𝑡 ) to (pidcur, sidcur, Fc
storage

) {Request id of the attachment

wait for (GetID, attachmentid)
{Fc

storage
returns an id or false

leakage.add(id, |attachment |)
{A receives the length of the attach-
ment as leakagereply (validationProcessed, validateAttachment(attachment), leakage)

if (3) ∧ pidcur is a client (role = client and pidcur prefixed by client):
{A client pushes a transaction
to another entity

send getCurrentKnowledge to (pidcur, sidcur, Fread : read) {Query pidcur’s current knowledge
wait for (getCurrentKnowledge, transactions𝑐pidcur , attachments𝑐pidcur )
send (GetContent, tx, txID) to {Request tx content
wait for (GetContent, tx, tx)

{Fc
storage

returns an id or false
send getKnowledge to (pidcur, sidcur, Fc

storage
: storage)

wait for (getKnowledge, txGraphpidcur , attachmentspidcur )
if tx ∈ transactions𝑐pidcur ∧ ¬missingDependency(tx, transactions

𝑐
pidcur

, attachments𝑐pidcur ) : {pidcur has access to tx and can forward it
if pidrecv in CorruptionSet: {tx is pushed to a corrupted party

send (getTxGraph, internalState, incBuffer) to (pidcur, sidcur, Fc
storage

: storage){
Generate transaction graph including tx from requestQueue, located in Fc

storage

wait for (getTxGraph, txGraph)
txSubGraph← getConnectedSubGraph(tx, txGraph){

getConnectedSubGraph(msg, txGraph) outputs the (maximal) connected subgraph of txGraph such thatmsg’s outputs
are all edges of this subgraph (“maximal” means � a connected subgraph txGraph containing msg’s output and that is a
superset of getConnectedSubGraph(msg, txGraph𝑠))

for all clients (txID, tx, attachmentstx ) in txSubGraph s.t. txId is an input to msg do:
leakage.add(txID, tx, attachmentstx ) {Leak tx id, content, and connected attachments

else:
leakage← (txId, pidcur, pidrecv )

{A is informed that party pushed tx to
entityreply (validationProcessed, true, leakage)

else:
reply (validationProcessed, false, 𝜖) {Input rejected

reply (validationProcessed, false, 𝜖) {Input rejected

Figure 37: The write/submit functionality F c
submit

of F c
ledger

(Part 3)

Description of the subroutine Fc
read

= (read) :

Participating roles: {read}
Corruption model: incorruptible

Description of𝑀c
read :

Implemented role(s) : {read}
Subroutines: Fc

storage
: storage

Internal state:

– knownTransactions : {0, 1}∗ × {0, 1}∗
{
The set of known transactions for a party. Entries of form (pid, txID)

– knownAttachments : {0, 1}∗ × {0, 1}∗
{
The set of known attachments for a party. Entries of form (pid, id𝑎)

– knownTransactionsr : {0, 1}∗ × {0, 1}∗
{The set of known transactions for a party outputted during reading. Entries
of form (pid, txID)

– knownAttachmentsr : {0, 1}∗ × {0, 1}∗
{The set of known attachments for a party outputted during reading. Entries
of form (pid, id𝑎)

CheckID(pid , sid , role) :
Accept all messages with same sid.

In the following, we will use the abberivation (1) for the expression tx = [tx, (initiator, [signee
1
, . . . , signee𝑚 ], notary, formerNotary, proposal) ].

Main:

recv (InitRead,msg, internalState) from I/O:
{
See Figure 5 for definition of internalState and the local variables it includes

reply (InitRead, true, 𝜖) {Reads in Corda are always local, we do not leak anything to A.

Figure 38: The read functionality F c
read

of F c
ledger

(Part 1)
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Description of𝑀c
read (continued):

Main:

recv (FinishRead,msg, input, internalState) from I/O:
s.t. input = ( [txID1, . . . , txIDh ], [id𝑎1 , . . . , id𝑎𝑜 ]) {Read outputs the tx subgraph pidcur is aware of
Execute code from getCurrentKnowledge here. Write the output into txGraphpidcur and attachmentspidcur .
knownTX𝑟 ← {txID′ | (pidcur, txID′) ∈ knownTransactionsr }
knownTX ← {txID′ | (pidcur, txID′) ∈ knownTransactions}
knownAtt𝑟 ← {id′ | (pidcur, id′) ∈ knownAttachmentsr }
knownAtt ← {id′ | (pidcur, id′) ∈ knownAttachments}
if knownTX𝑟 ⊂ {txID1, . . . , txIDh } ⊂ knownTX ∨ knownAtt𝑟 ⊂ {id𝑎

1
, . . . , id𝑎𝑜 ⊂ knownAtt }:

send getKnowledge to (pidcur, sidcur, Fc
storage

: storage)
wait for (getKnowledge, transactions𝑝pidcur , attachments𝑝pidcur )
hasAccess← true
for all txID′ ∈ knownTX𝑟 do:

if txID′ ∉ transactions𝑝pidcur : {Check that the adversary only distributes knowledge she has access to

send (GetContent, tx, txID′)to
wait for (GetContent, tx, tx′)from
if � corrupted party in tx:

hasAccess← false
for all id′ ∈ {id𝑎

1
, . . . , id𝑎𝑜 } do:

if id′ ∉ attachments𝑝pidcur : {Check that the adversary only distributes knowledge she has access to

send (GetContent, attachment, id′)to
wait for (GetContent, attachment, attachment′)from
if attachment′ in requestQueue or msglist ∧ � a leakage of attachment in transcript:

hasAccess← false
if hasAccess:

for all txID′ ∈ {txID1, . . . , txIDh } \ knownTX𝑟 do:
knownTransactions.add(pidcur, txID′)

for all id′ ∈ {id𝑎
1
, . . . , id𝑎𝑜 } \ knownAtt𝑟 do:

knownAttachments.add(pidcur, id′)
else:

reply (FinishRead,⊥, 𝜖) {pidcur does not have access to suggested state
else:

reply (FinishRead,⊥, 𝜖) {pidcur does not have access to suggested state
verifiedTx ← msglist
for all (txID′, tx′, _) ∈ verifiedTx s.t. txID′ ∉ {txID1, . . . , txIDh } do:

{Remove entries that are not in
the suggested state from AverfiedTx .remove(txID′, tx′, _)

if ∃tx′ in msglist, s.t. tx′ is not in verifiedTx ∧ pidcur is initiator of tx′∧ all parties involved in tx′ are not corrupted ∧round is greater than

committing round of tx′ + 𝛿
:

reply (FinishRead,⊥)
{
Initiators of “honest” tx have it after at most 𝛿 rounds after notarization in their states

if ∃tx′ in msglist s.t. tx′ not in verifiedTx ∧ pidcur is signee of tx′∧ all parties involved in tx′ are not corrupted ∧round is greater than

committing round of tx′ + 2𝛿
:

reply (FinishRead,⊥)
{
Signees of “honest” tx have it after at most 2𝛿 rounds after notarization in their states

if ∃tx′ as push operation to pidcur in msglist s.t. tx′ not in verifiedTx∧ all parties involved in tx′ are not corrupted ∧round is greater than

committing round of tx′ + |subGraph | (tx′)𝛿 + 1 s.t. subGraph(tx′) is the subgraph below tx′
:

reply (FinishRead,⊥) {Push of transaction should be finished after 𝛿 rounds
cleanedVerifiedTx ← ∅, attachments← ∅ {Separate attachment data from tx data
for all (txID, tx, _) ∈ verifiedTx do:

cleanedVerifiedTx .add(txID, tx)
for all id𝑎 ∈ {id𝑎

1
, . . . , id𝑎𝑜 } do: {Output suggested attachments

Let attachment s.t. (id𝑎, attachment) ∈ attachmentspidcur }
attachments.add(id𝑎, attachment)

if
there is a transaction in cleanedVerifiedTx such parts of its transaction inputs or the transaction subgraph

below the transaction are not in cleanedVerifiedTx)
:

reply (FinishRead,⊥) {Decline input
Add all new entries of newly read transactions/attachments to knownTransactionsr , resp. knownAttachmentsr

reply (FinishRead, (attachments, cleanedVerifiedTx), 𝜖)

Figure 39: The read functionality F c
read

of F c
ledger

(Part 2)

64



Description of𝑀c
read (continued):

Main:

recv (CorruptedRead, pid,msg, internalState) from I/O: {A receives all information via leakage
reply (FinishRead, 𝜖)

recv getCurrentKnowledge from I/O:
{
Other subroutines may ask Fc

read
for an entities current state

send getKnowledge to (pidcur, sidcur, Fc
storage

: storage)
{
Request pidcur’s knowledge at Fc

storage

wait for (getKnowledge, txGraphpidcur , attachmentspidcur )
send responsively (getKnowledge, pidcur) to NET {Query current state of pidcur at A
wait for (getKnowledge, pidcur, (txID1, . . . , txIDℎ), (id𝑎1 , . . . , id𝑎𝑜 ))
knownTX𝑟 ← {txID′ | (pidcur, txID′) ∈ knownTransactions} {Extract previous state of pidcur
knownAtt𝑟 ← {id′ | (pidcur, id′) ∈ knownAttachments} {

Update pidcur’s knowledge if this is compliant with the view of Fc
ledger

if knownTX𝑟 ⊂ {txID1, . . . , txIDh } ∨ knownAtt𝑟 ⊂ {id𝑎
1
, . . . , id𝑎𝑜 }:

if �txID′ ∈ {txID1, . . . , txIDh } s.t. txID′ ∉ txGraphpidcur ∧ �id
′ ∈ {id𝑎

1
, . . . , id𝑎𝑜 } s.t. id′ ∉ attachmentspidcur :

send getKnowledge to (pidcur, sidcur, Fc
storage

: storage)
wait for (getKnowledge, transactions𝑝pidcur , attachments𝑝pidcur )
hasAccess← true
for all txID′ ∈ knownTX𝑟 do:

if txID′ ∉ transactions𝑝pidcur : {Check that the adversary only distributes knowledge she has access to

send (GetContent, tx, txID′)to
wait for (GetContent, tx, tx′)from
if � corrupted party in tx:

hasAccess← false
for all id′ ∈ {id𝑎

1
, . . . , id𝑎𝑜 } do:

if id′ ∉ attachments𝑝pidcur : {Check that the adversary only distributes knowledge she has access to

send (GetContent, attachment, id′)to
wait for (GetContent, attachment, attachment′)from
if attachment′ in requestQueue or msglist ∧ � a leakage of attachment in transcript:

hasAccess← false
if hasAccess:

for all txID′ ∈ {txID1, . . . , txIDh } \ knownTX𝑟 do:
knownTransactions.add(pidcur, txID′)

for all id′ ∈ {id𝑎
1
, . . . , id𝑎𝑜 } \ knownAtt𝑟 do:

knownAttachments.add(pidcur, id′)
knownTransactionspidcur ← {txID | (pidcur, txID) ∈ knownTransactions}

{
Extract previous state of pidcur

knownAttachmentspidcur ← {id′ | (pidcur, id′) ∈ knownAttachments}
reply (getCurrentKnowledge, transactionspidcur , attachmentspidcur )

Figure 40: The read functionality F c
read

for F
ledger

to represent Corda (Part 3).
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Description of the subroutine Fc
update

= (update) :

Participating roles: {update}
Corruption model: incorruptible
Protocol parameters:

– executeValidation
{
Validation algorithm that verfies whether it is ok to add a transaction to the
current corda state

– validateAttachment {Algorithm that validates attachments

Description of𝑀c
update :

Implemented role(s) : {update}
Subroutines: Fc

storage
: storage

CheckID(pid , sid , role) :
Accept all messages with the same sid.

Main:

recv (Update, [normal,msg], internalState) from I/O: {See Figure 5 for definition of internalState and the local variables it includes

executeBasicChecks()
{
Definition of executeBasicChecks() below. The procedure gets all local and global variables of
𝑀c

update as input and may update them and create new variables

msgListAppend ← ∅, updRequestQueue← ∅, ctr ← max{𝑖 | (𝑖, _, _, _, _, _) ∈ msglist }
{Build extension ofmsglist. Ifmsglist = ∅ then max defaults to −1

for all (id𝑎, attachment, pid′) ∈ {(id𝑎
1
, attachment1, pid1), . . . , (id𝑎𝑚, attachment𝑚, pid𝑚) } do:

if ¬validateAttachment(attachment) : {Reject invalid attachments from A
reply (Update, ∅, ∅, 𝜖) {Processing aborted

ctr ← ctr + 1
msgListAppend .add(ctr, round, tx, attachment, round, pid′) {Add attachments from𝐴𝑑𝑣

for all (id′, pid′) ∈ {(id𝑎
1
, pid𝑎𝑖 ), . . . , (id𝑎1 , pid𝑎𝑖 ) } do: {Add attachments from honest parties

send (GetContent, attachment, id′) to (_, sidcur, Fc
storage

: storage)
{
Get attachment content from Fc

storage

wait for (GetContent, attachment, attachment′)
ctr ← ctr + 1
msgListAppend .add(ctr, round, tx, attachment′, round, pid′) {Add attachments from𝐴𝑑𝑣

Let (ctr tmp, (attachment, attachment′), 𝑟 , pid′) the matching entry in requestQueue
updRequestQueue.add(ctr tmp, (attachment, attachment′), 𝑟 , pid′)

if ∃txID ∈ {txID1, . . . , txID𝑙 } s.t. txID is not in reqQueue or {txID𝑖
1
, . . . , txID𝑖ℎ

}: {Check that input data exists
reply (Update, ∅, ∅, 𝜖) {Processing aborted

msglist′ ← msglist {Used for processing update
for all txID ∈ {txID1, . . . , txID𝑙 } do: {Check that all involved honest parties agreed on the tx

send (GetContent, tx, txID) to (_, sidcur, Fc
storage

: storage)
{
Get tx content from Fc

storage

wait for (GetContent, tx, tx)
parse (initiator, signee

1
, . . . , signeeℎ) from tx

txAgreed ← checkAgreements(tx, requestQueue,CorruptionSet)


checkAgreements outputs true if
for all honest signees, resp. honest ini-
tiator there exists a submit request of
tx in requestQueueif ¬txAgreed:

reply (Update, ∅, ∅, 𝜖) {Processing aborted
id = |msglist′ | + 1 {Start preparing the update
Let r be the highest round in reqQueue and {(txID𝑖

1
, tx𝑖

1
, pid𝑖

1

, r𝑖
1
), . . . , (txID𝑖ℎ

, tx𝑖ℎ , pid𝑖ℎ , r𝑖ℎ ) } for txID
msglist′.add(id, round, tx, [tx, tx, true], r, initiator)
if isDoubleSpend(tx) : {Prevention of double-spending

reply (Update, ∅, ∅, 𝜖) {Processing aborted
for all txID in msg do: {Remove “processed” tx from requestQueue

for all (ctr temp,msg′, round′, pid′) identitied by txID is in requestQueue do:
updRequestQueue.add(ctr temp,msg′, round′, pid′)

for txID ∈ {txID1, . . . , txID𝑙 } do: {In the order of the input msg
ctr ← ctr + 1
Let (ctr temp,msg′, round′, initiator′) be the first message in requestQueue identified by txID such that initiator′ is the initiator in
msg′
msgListAppend .add(ctr, round, tx,msg′, sRound, initiator′)

if there is a transaction in msglist ∪msgListAppend such parts of its transaction inputs or the transaction subgraph below the transaction are

not in msglist) ∪msgListAppend
:

reply (Update, ∅, ∅, 𝜖) {Processing aborted
if there is a attachment in requestQueue such that it is not part of updRequestQueue:

reply (Update, ∅, ∅, 𝜖) {Processing aborted
reply (Update,msgListAppend, updRequestQueue, 𝜖) {Return list extension and updated queue.

Figure 41: The update functionality F c
update

of F c
ledger

(Part 1)
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Description of𝑀c
update (continued):

Main:

recv (Update, [txExchange], internalState) from (_, sidcur, Fledger : client) :
{
Record shared transactions in msglist

updRequestQueue← ∅,msgListAppend ← ∅
ctr ← max{𝑖 | (𝑖, _, _, _, _, _) ∈ msglist } |
for all (ctr temp, [tx, txID, pidrecv ], r, pid) ∈ requestQueue do:

{
If tx exchange is done, we add it to the message
listctr ← ctr + 1

msgListAppend .add(ctr, round, tx, [tx, txID, pidrecv ], r, pid)
updRequestQueue.add(ctr temp, [tx, txID, pidrecv ], r, pid) }

reply (Update,msgListAppend, updRequestQueue, 𝜖)
{
Send update to F

ledger

recv (Update, [Validate, txID, pid, txID1, . . . , txID𝑙 , id𝑎1 , . . . , id
𝑎
𝑜 ], internalState) from I/O:

{A is allowed to access validation information of tx for every party involved in the tx and in appropriate context

send getCurrentKnowledge to (pidcur, sidcur, Fc
storage

: storage) {Get current knowledge of pidcur
wait for (getCurrentKnowledge, txGraphpidcur , attachmentspidcur )
send (GetContent, tx, txID) to (pidcur, sidcur, Fc

storage
: storage) {Get transaction details.

wait for (GetContent, tx, tx)
if {txID1, . . . , txID𝑙 } not part of txGraphpidcur ∨ {id

𝑎
1
, . . . , id𝑎𝑜 } not part of attachmentspidcur :

{
Check that A provides a valid
context

reply (Update, 𝜖, 𝜖, 𝜖) {Validation declined
Remove all entries from txGraphpidcur that are not in {txID1, . . . , txID𝑙 }
Remove all entries from attachmentspidcur that are not in {id𝑎1 , . . . , id𝑎𝑜 }
leakage← executeValidation(tx, txGraphpidcur , attachmentspidcur ) ∧ ¬isDoubleSpend(tx))

{Validity check for tx in the provided context
parse [ (inputTx

1
, idx1), . . . , (inputTx𝑙 , idx𝑙 ) ] from tx

reply (Update, 𝜖, 𝜖, leakage) {Return the validity of the transaction to A
recv (Update, (GetID, type,msg), internalState) from I/O:

{A may query Fc
ledger

for ids
send (GetID, type,msg) to _, sidcur, Fc

storage
: storage)

{
Request Id at Fc

storage

wait for (GetID, type, id)
leakage← id
reply (Update, 𝜖, 𝜖, leakage) {Return the id of the requested object to A

Figure 42: The update functionality F c
update

of F c
ledger

(Part 2)
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Description of𝑀c
update (continued):

Procedures and Functions:
function executeBasicChecks :

if ∃ a tx push msg in requestQueue:
{Valid transactions pushed between entities need to be in the state before
further updates

reply (Update, ∅, ∅, 𝜖) {Processing aborted
reqQueue← ∅
for all [ (type,msg′), sRound, pid′ ] ∈ requestQueue do: {Generate a copy of requestQueue including txID’s

parse tx or attachment from msg′ and store result in content
send (GetID, type, content to (pidcur, sidcur, Fc

storage
: storage)

{
Get IDs from Fc

storage

wait for (GetID, id)
reqQueue.add( [id,msg′ ], sRound, pid′)

if msg ≠ [ (txID1, . . . , txID𝑙 ), [ (id𝑎1 , pid𝑎𝑖 ), . . . , (id𝑎1 , pid𝑎𝑖 ) ],
(txID𝑖

1
, tx𝑖

1
, pid𝑖

1

, r𝑖
1
), . . . , (txID𝑖ℎ

, tx𝑖ℎ , pid𝑖ℎ , r𝑖ℎ ),
(id𝑎

1
, attachment1, pid1), . . . , (id𝑎𝑚, attachment𝑚, pid𝑚) ]:

{Check message format

reply (Update, ∅, ∅, 𝜖) {Processing aborted
if ∃txID𝑖 , txID 𝑗 , 𝑖, 𝑗 ∈ [𝑙 ], 𝑖 ≠ 𝑗 in (txID1, . . . , txID𝑙 ), s.t. txID𝑖 = txID 𝑗 : {Check that no txID is inserted twice

reply (Update, ∅, ∅, 𝜖) {Processing aborted
for all (txID, tx, pid′, r) from [𝑑1, . . . , 𝑑ℎ ] in msg do:

{
Register txIDs for A’s inputs, 𝑑 𝑗 of form (txID𝑖 𝑗

, tx𝑖 𝑗 , pid𝑖 𝑗 , r𝑖 𝑗 )
send (SetID, tx, txID, tx) to (pidcur, sidcur, Fc

storage
: storage)

wait for (SetID, accepted)
if accepted = false: {Abort processing

reply (Update, ∅, ∅, 𝜖)
for all (txID, tx, pid′, r) from [𝑑1, . . . , 𝑑ℎ] in msg do:

{
Check correct format/identies/roles, 𝑑 𝑗 of form (txID𝑖 𝑗

, tx𝑖 𝑗 , pid𝑖 𝑗 , r𝑖 𝑗 )
if tx ≠ [tx, (initiator, [signee

1
, . . . , signee𝑚 ], notary, formerNotary, proposal) ]: {Check correct format

reply (Update, ∅, ∅, 𝜖)
if ¬[initiator, signee

1
, . . . , signee𝑚 are clients (role = client, pid prefixed by client)∧

notary, formerNotary are notaries (role = notary, pid prefixed by notary) ∧
∀pid ∈ {initiator, signee

1
, . . . , signee𝑚, notary, formerNotary } : pid ∈ identities]:: {Check correct identities and roles

reply (Update, ∅, ∅, 𝜖)
if accepted = false: {Abort processing

reply (Update, ∅, ∅, 𝜖)
for all (id𝑎, attachment, pid′) in (𝑑1, . . . , 𝑑𝑚) in msg do:

{
Register attachment IDs for A’s inputs, 𝑑 𝑗 are of form (id𝑎𝑗 , attachment 𝑗 , pid 𝑗 )

send (SetID, attachment, id𝑎, attachment) to (pidcur, sidcur, Fc
storage

: storage)
wait for (SetID, accepted)
if accepted = false:

reply (Update, ∅, ∅, 𝜖) {Processing aborted
for all (id′, pid′) ∈ {(id𝑎

1
, pid𝑎𝑖 ), . . . , (id𝑎1 , pid𝑎𝑖 ) } do:

send (GetContent, attachment, id′) to (_, sidcur, Fc
storage

: storage)
{
Get attachment content from Fc

storage

wait for (GetContent, attachment, attachment′)
if (_, (attachment′, attachment′), _, pid′) ∉ requestQueue:

reply (Update, ∅, ∅, 𝜖) {Processing aborted

Figure 43: The update functionality F c
update

of F c
ledger

(Part 3)
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Description of the subroutine Fc
storage

= (storage) :

Participating roles: {storage}
Corruption model: incorruptible
Protocol parameters:

– 𝜂 ∈ N {The security parameter, defining the length of a “hash-value”

Description of𝑀c
storage

:

Implemented role(s) : {storage}
Internal state:

– labels ⊂ {0, 1}∗ × {tx, attachment} × {0, 1}∗ . {Storage for IDs of transactions and attachments
– hasAccess{tx, attachment} × {0, 1}∗ {Bookkeeping for data directly known by A

CheckID(pid , sid , role) :
Accept all messages with the same sid.

Main:

recv (GetID, type,msg) from I/O s.t. type ∈ {tx, attachment}: {Request for IDs
if ∃(id, _,msg) ∈ labels for some id ∈ {0, 1}∗:

reply (GetID, type, id) {If ID exists, return it
else:

send responsively (SetID, type) to NET
wait for (SetID, type, id)
while [ |id | ≠ 𝜂 ] ∨ [∃(id, _, _) ∈ labels] do {Ensure correct length of the id and its uniqueness

send responsively (SetID, type) to NET
wait for (SetID, type, id)

reply (GetID, type, id) {Return newly generated id

recv (SetCorrID, type, idProposal,msg) from NET s.t. type ∈ {tx, attachment}: {Store IDs

if [∃(idProposal, type′,msg′) ∈ labels, s.t. msg′ ≠ msg] ∨ |idProposal | ≠ 𝜂:
{If id is already used for something else or length of the id is not 𝜂, reject it

reply (SetCorrID, false)
else: {Otherwise: store Id and return approved Id

labels.add(type, idProposal,msg) {Store id
reply (SetCorrID, true)

recv (GetContent, type, id) from I/O s.t. type ∈ {tx, attachment}: {Request for content
if ∃(id, type, content) ∈ labels: {Check whether requested object exists

reply (GetContent, type, content)
else: {Otherwise: return 𝜖

reply (GetContent, type, 𝜖)
recv (getTxGraph, internalState,mode) from I/O:

msglistID← ∅
if mode = incBuffer: {In incBuffer mode, include buffer to graph generation

transactions← {tx | (_, _, tx,msg, _, _) ∈ msglist∨ (_, tx, _, _) ∈ requestQueue∧ tx is of form [tx, (initiator, [signee
1
, . . . , signee𝑚 ],

notary, formerNotary, proposal) ]
else: {Only “finalized” messages are in the graph

transactions ← {tx | (_, _, tx,msg, _, _) ∈ msglist ∧ tx is of form [tx, (initiator, [signee
1
, . . . , signee𝑚 ], notary, formerNotary,

proposal) ]
for all tx ∈ transactions do:

Let txID s.t. (txID, tx,msg) ∈ labels {Extract tx ids
txAttachments← ∅
parse (id𝑎

1
, . . . , id𝑎

𝑙
) from msg {Extract used attachments

for all id𝑎 ∈ {id𝑎
1
, . . . , id𝑎

𝑙
} do: {Connect attachments to transactions

Let attachment s.t. (id𝑎, attachment, attachment) ∈ labels {Extract attachment content
txAttachments.add(id𝑎, attachment)

msglistID.add(txID,msg, txAttachments)

txGraph← buildTxGraph(msglistID)


Generate a (most likely disconnected) directed graph over all tx in the state. Clients are
transactionsmsg (including the full attachment information they need), identified by
txID and edges are from a transaction that consume a tx to its input, i.e., (txID′, txID) ,
s.t. (txID′, outputID) is a consumed input in (txID)

reply (getTxGraph, txGraph) {Return full (notarised) tx graph

Figure 44: Shared storage F c
storage

for subroutines in F c
ledger

(Part 1)
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Description of𝑀c
storage (continued):

Main:

recv getKnowledge from I/O:
{Fc

ledger
subroutine may ask for the possible knowledge of pidcur

transactions← ∅, attachments← ∅
Execute getTxGraph call above in normal mode and store output in txGraph
for all (_, _, tx,msg, _, _) ∈ msglist do: {Collect knowledge from msglist

parse (initiator, signee
1
, . . . , signee𝑚, notary, formerNotary) from msg

Let id s.t. (id, tx,msg) ∈ labels {Get txID
if pidcur ∈ {initiator, signee1, . . . , signee𝑚, notary, formerNotary }:

txSubGraph← getConnectedSubGraph(msg, txGraph){
getConnectedSubGraph(msg, txGraph) outputs the (maximal) connected subgraph of txGraph such that msg’s outputs are all
edges of this subgraph (“maximal” means � a connected subgraph txGraph containing msg’s output and that is a superset of
getConnectedSubGraph(msg, txGraph))

for all (txID, tx, attachmentstx ) in txSubGraph s.t. txId is an input to msg do:
transactions.add(txId, tx) ; attachments.add(attachmentstx ) {Leak txId, content, and connected attachments

Execute getTxGraph call above in incBuffer mode and store output in txGraph
for all (_,msg, _, pidcur) ∈ requestQueue do: {Collect knowledge from requestQueue

parse (initiator, signee
1
, . . . , signee𝑚, notary, formerNotary) from msg

Let id s.t. (id, tx,msg) ∈ labels {Get txID
if pidcur = initiator: {tx initiator has access to the full subgraph “below” a transaction

txSubGraph← getConnectedSubGraph(msg, txGraph){
getConnectedSubGraph(msg, txGraph) outputs the (maximal) connected subgraph of txGraph such thatmsg’s outputs
are all edges of this subgraph (“maximal” means � a connected subgraph txGraph containing msg’s output and that is a
superset of getConnectedSubGraph(msg, txGraph))

for all (txID, tx, attachmentstx ) in txSubGraph s.t. txId is an input to msg do:
transactions.add(txId, tx) ; attachments.add(attachmentstx )

else if pidcur ∈ {signee1, . . . , signee𝑚, notary, formerNotary }:


Signees and notaries only have ac-
cess to the full subgraph “below” a
transaction if the initiator has the
right to dispatch the data

transaction.add(id′,msg) {Add tx pidcur is involved in to knowledge
if ∃(_,msg, _, initiator) ∈ 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑄𝑢𝑒𝑢𝑒 ∨ ∃(_, _, tx,msg, _, initiator) ∈ msglist:

txSubGraph← getConnectedSubGraph(msg, txGraph){
getConnectedSubGraph(msg, txGraph) outputs the (maximal) connected subgraph of txGraph such thatmsg’s outputs
are all edges of this subgraph (“maximal” means � a connected subgraph txGraph containing msg’s output and that is a
superset of getConnectedSubGraph(msg, txGraph))

for all (txID, tx, attachmentstx ) in txSubGraph s.t. txId is an input to msg do:
transactions.add(txId, tx) ; attachments.add(attachmentstx )

for all (ctr temp, attachment, r, pid) ∈ msglist do:
send (GetID, attachment, 𝑎𝑡𝑡𝑎𝑐ℎ𝑚𝑒𝑛𝑡 ) to (pidcur, sidcur, Fc

storage
) {Request id of the attachment

wait for (GetID, attachmentid)
{Fc

storage
returns an id or false

attachments.add(id, attachment)
Add all transaction/attachments from hasAccess and all transactions leaked (according to transcript) to transactions, resp. attachments
reply (getKnowledge, transactions, attachments) {Return knowledge

recv (hasAccess, type, id,mode) from I/O: {Check whether A knows this object
if mode ≠ subgraph:

if type, id ∈ hasAccess ∨ type, id was leaked according to transcript:
reply (hasAccess, true)

else:
reply (hasAccess, false)

else if mode = subgraph ∧ type = tx:
if type, id ∈ hasAccess ∨ type, id was leaked according to transcript and all dependent tx/attachments in the id’s subgraph are in

hasAccess or leaked:
reply (hasAccess, true)

else:
reply (hasAccess, false)

else:
reply (hasAccess, false)

Figure 45: Shared storage F c
storage

for subroutines in F c
ledger
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Description of the subroutine Fc
updRnd

= (updRnd) :

Participating roles: {updRnd}
Corruption model: incorruptible
Protocol parameters:

– 𝛿 ∈ N {The upper bound in rounds after which a honest tx should be in the state.

Description of𝑀c
updRnd :

Implemented role(s) : {updRnd}
Subroutines: Fc

storage
: storage

CheckID(pid , sid , role) :
Accept all messages with the same sid.

Main:

recv (UpdateRound,msg, internalState) from I/O:
{
See Figure 5 for definition of internalState and the local variables it includes

send (getTxGraph, internalState, 𝜖) to (pidcur, sidcur, Fc
storage

: storage)
{
Generate transaction graph, located in Fc

storage

wait for (getTxGraph, txGraph)
for all (ctr temp, tx′, submissionRound, pid′) ∈ requestQueue) do:

send (GetID, tx, tx′) to (pidcur, sidcur, Fc
storage

: storage) {Get tx id
wait for (GetID, txID′)
attachments′ ← 𝜖

parse (id𝑎
1
, . . . , id𝑎

𝑙
) from tx′ {Extract used attachments

for all id𝑎 ∈ {id𝑎
1
, . . . , id𝑎

𝑙
} do: {Connect attachments to transactions

send (GetContent, attachment, id𝑎) to (pidcur, sidcur, Fc
storage

: storage)
{
Get attachment from Fc

storage

wait for (GetContent, attachment, attachment)
attachments′.add(id𝑎, attachment)

if pid′ ∉ CorruptionSet: {Liveness can only be guaranteed for uncorrupted participants
txGraph′ ← txGraph
txGraph′.addToTxGraph(txID′, tx′, attachments′)

{
addToTxGraph adds the tx extracted from tx to txGraph′
according to the explanation above

txSubGraph← getConnectedSubGraph(tx, txGraph′)



getConnectedSubGraph(msg, txGraph) outputs
the (maximal) connected subgraph of txGraph such
that msg’s outputs are all edges of this subgraph
(“maximal” means � a connected subgraph txGraph
containing msg’s output and that is a superset of
getConnectedSubGraph(msg, txGraph𝑠))

lastAgreement ← findLastAgreement(tx, requestQueue)
{
findLastAgreement(tx, requestQueue)
outputs the round of the last agreement to tx
in requestQueue.

if participantsAgreed(tx) ∧ lastAgreement + (3 + 4 · |txSubGraph |) · 𝛿 > round:{
If initiator and all signees agree on a transaction, it should be part of the state after (1 + |txSubGraph |) · 𝛿 rounds.
participantsAgreed(tx) outputs true if all signees and the initiator are not corrupted and for all signees and the initiator
theres exist a submit request for the tx in requestQueue.

reply (UpdateRound, false, 𝜖)
reply (UpdateRound, true, 𝜖)

Figure 46: The round update/time update functionality F c
updRnd

of F c
ledger

Description of the subroutine Fc
leak

= (leak) :

Participating roles: {leak}
Corruption model: incorruptible

Description of𝑀c
leak

:

Implemented role(s) : {leak}
CheckID(pid , sid , role) :

Accept all messages with the same sid.
Subroutines: Fc

storage
: storage

Main:

recv (Corrupt, pid, internalState) from I/O:
{
See Figure 5 for definition of internalState and the local variables it includes

send getKnowledge to (pidcur, sidcur, Fc
storage

: storage)
{
Query pidcur’s “state” at Fc

storage

wait for (getKnowledge, transaction, attachments) from
leakage← (transaction, attachments)
reply (Corrupt, leakage)

{
A receives all transactions frommsglist, requestQueue, and readQueue, the newly cor-
rupted party send/is involved in

Figure 47: The leakage subroutine F c
leak

of F c
ledger
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Description of the protocol Fc
init

= (Init) :

Participating roles: {init}
Corruption model: uncorruptable

Protocol parameters:
– networkmap ⊂ {0, 1}∗ × {client, notary}

{Map of identities exisiting in the network containing tuples of
(𝑖𝑑𝑒𝑛𝑡 𝑓 𝑖𝑒𝑟, 𝑡𝑦𝑝𝑒) . We expect that the role prefixes the pid in networkmap

Description of𝑀c
init :

Implemented role(s) : {init}
CheckID(pid , sid , role) :

Accept all messages with the same sid.
Main:

recv Init:
{
We allow A to query Fc

init
as well

identities← ∅,msglist ← ∅, ctr ← 0

for all (pid, protocolRole) ∈ networkmap do:
identities.add(pid, 0) {Finit provides the network map to requestors
msglist .add(ctr, 0, meta, (pid, protocolRole),⊥,⊥)
ctr ← ctr + 1

reply (Init, identities, 𝜖, 𝜖, 𝜖)

Figure 48: The initialization functionality F c
init

of F c
ledger
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