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Abstract. CoinJoin is the predominant means to enhance privacy in non-private cryptocurrencies,
such as Bitcoin. The basic idea of CoinJoin is to create transactions that combine equal-valued coins of
multiple users. This mixing of coins aims to prevent linkage of the users’ transactional in- and outputs.
The cryptocurrency Dash employs a built-in CoinJoin service and, therefore, is ideal for empirically
studying CoinJoin. This paper presents the first empirical analysis of Dash, which reveals that over 40%
of all private transactions can be de-anonymized depending on underlying assumptions. The main issue
of these attacks is the coin-aggregation problem, i.e. the need to combine outputs of several CoinJoin
transactions. The coin aggregation problem is not specific to Dash and affects other cryptocurrencies
as empirical evidence in Bitcoin suggests. We show that the logical solution to the problem, namely
CoinJoin transactions with non-fixed arbitrary values, suffers from other privacy weaknesses. We propose
a novel mixing algorithm to mitigate the need for coin aggregation without introducing additional
privacy vulnerabilities. In contrast to prior mixing algorithms, our approach removes the need for fixed
values by dynamically creating equal-valued CoinJoin transactions. The mixing algorithm is not specific
to Dash, and integration into other cryptocurrencies, especially into Bitcoin, is possible.
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1 Introduction

More and more it seems as if cryptocurrencies have come to stay and are not mere hype. The most widely
used cryptocurrency Bitcoin [bit] is often perceived to provide anonymity. However, Bitcoin is not anonymous
as it is possible to link addresses that belong to the same user [RS13,AKR+13,MPJ+13]. The goal of mixing
protocols is the prevention of these linkage attacks. CoinJoin [Max13] is the most widely used protocol. It
combines inputs and outputs from multiple users and creates a random permutation that hides the correlation
between input and output addresses and, thus, between users. Even though Monero [mon] and Zcash [zca]
are two cryptocurrencies that achieve privacy by design, it is crucial to study and improve CoinJoin for
two reasons. First, Bitcoin is still the most commonly used cryptocurrency, especially in the dark web [Eur],
and supports CoinJoin to improve privacy without requiring to swap coins to a more privacy-preserving
currency. Second, Monero and Zcash are already banned in South Korea [Ike], and there is a risk that other
jurisdictions will follow. If privacy-preserving currencies are banned, CoinJoin on top of Bitcoin is among
the only possibilities for people in the corresponding jurisdictions to add privacy to their cryptocurrency
activities.

The cryptocurrency Dash [dasa] employs a built-in CoinJoin mechanism. Dash has not been researched
before, although Dash has a market capitalization of over four billion USD, is the second-largest cryptocurrency
with built-in privacy features, and the third most established privacy coin for transactions in the dark web [Eur].
By the beginning of 2021 Dash’s blockchain accounted for approximately 1.4 million blocks including over 31
million transactions.

1.1 Empirical Analysis of Anonymity

We present the first empirical analysis of anonymity in Dash that combines new and existing attacks to evaluate
Dash’s anonymity level and gain insights on CoinJoin and its privacy. We introduce a novel attack that we call
Backlink attack. In essence, Backlink attack carefully combines multi-input heuristic [RS13,AKR+13,MPJ+13]
and a newly developed heuristic to find address clusters.

We put forward the DC attack, which is a modification of the cluster-intersection attack according to
Goldfeder et al. [GKRN18]. The DC attack revealed a fundamental problem with CoinJoin, namely the
coin aggregation problem. As Dash uses fixed values in their CoinJoin transactions, users generally need
to aggregate coins of several CoinJoin transactions that fuel the attack. To ascertain whether the coin
aggregation problem is also present in other cryptocurrencies, we analyze the impact of our attacks for Bitcoin.
Results: It was found that 15.1% of non-mixing transactions that spend private coins are linkable by the
Backlink attack. In terms of address clusters, applying the newly developed heuristic reduces the number of
clusters by almost two-third compared to only applying the multi-input heuristic. By applying the DC attack,
we were able to link over 40% of Dash’s private transactions depending on the underlying assumptions of the
attack.



In Bitcoin, around 23% of all transactions which spend outputs from a CoinJoin transactions contain
backlinks. In addition, more than one-tenth of all transactions do so from CoinJoin transactions spend from at
least two different CoinJoin transactions, which indicates that coin aggregation is also a problem in Bitcoin.

1.2 Cookie Monster Mixing

Our analysis suggests that the privacy issues in Dash result from the fact that Dash only supports equal-
valued mixing with fixed values and allows users to combine their coins in a way that might de-anonymize
them. We analyze arbitrary-value CoinJoin as proposed by Maurer et al. [MNF17] and show that it has
other privacy weaknesses, which is why it is not a suitable way to solve the coin aggregation problem. To
remove the issue of only fixed values being mixed without introducing additional privacy vulnerabilities, we
propose a novel mixing algorithm that we call Cookie Monster Mixing. The algorithm is inspired by the cookie
monster problem [BK15] and removes the need to split and combine coins before and after mixing. Thus, the
information that multiple coins of different mixing transactions belong together is no longer present on-chain.
As a consequence, cluster-intersection attacks without additional off-chain information are no longer possible.
We have formalized the problem as an integer quadratic problem and propose an efficient greedy algorithm to
solve it. A prototype implementation reinforces the practical efficiency. Through experimentation, we have
validated that the greedy algorithm is nearly optimal.

1.3 Responsible Disclosure

We reported our findings to the Dash Core Group, one of the organizations working for the Dash network, and
declared our willingness to support the implementation of the suggested countermeasures. With Dash Core
Release 0.16.0.1 [dasc], Dash has implemented some of our suggested countermeasures to improve privacy.

1.4 Related Work

A major concern of CoinJoin is that the users need to trust an external mixing service that creates the
transaction. Alternative approaches to mitigating this weakness have been proposed, such as CoinShuffle
[RMK14] or its more efficient successor CoinShuffle++ [RMK17]. For Ethereum, a trustless tumbler Möbius
has been presented that achieves mixing through a smart contract based on ring signatures and stealth
addresses [MM18].

While CoinJoin is a mixing service that can be used as an extension of traditional cryptocurrencies, new
privacy-preserving cryptocurrencies have also evolved, spearheaded by Monero [mon] and Zcash [zca]. Monero
is based on the CryptoNote protocol [VS13] and mainly uses ring-confidential transactions [NML16] to achieve
privacy. Conversely, Zcash is based on the Zerocash protocol [BCG+14] and mainly uses zero-knowledge,
succinct, non-interactive arguments of knowledge to achieve privacy. The anonymity of both cryptocurrencies
has since then been subject to analyses [KFTS17,MSH+18,KYMM18,Que17].

Goldfeder et al. [GKRN18] showed that CoinJoin transactions in Bitcoin are vulnerable to the so-called
cluster-intersection attack . Kalodner et al. [KGC+17] experimentally validated the applicability of the clus-
ter-intersection attack to Dash on simulated transactions. In contrast, we apply the attack to the entire Dash
blockchain data. To do so, however, we needed to refine it, as there are several underlying assumptions to
take into account.

The major services for CoinJoin in Bitcoin are Wasabi Wallet [was], Samourai Wallet [sam] and Join-
Market [joi]. All distinguish between pre- and post-mixing. However, Wasabi and Samourai require fixed
output values and thus might benefit from the flexibility Cookie Monster Mixing provides in building their
CoinJoin transactions. JoinMarket allows for flexible output values, albeit in a different setting. Its protocol
distinguishes between takers and makers where the taker pays the makers to participate in the mixing.
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2 Preliminaries

In this section, we briefly explain concepts necessary to understand our attacks and countermeasures. We
introduce transactions, the multi-input heuristic and CoinJoin followed by a high-level description of the
cluster-intersection attack .

2.1 Transaction
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(a) standard - with two in- and three outputs
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(b) CoinJoin

Fig. 1: Transaction

A transaction consists of a list of inputs and outputs. In simple terms, an output comprises an amount of a
given cryptocurrency CC and the hash hpk of a public key pk, which is also called an address. Inputs are
references to outputs of previous transactions. A transaction with two inputs and three outputs is depicted
in Figure 1a. The two inputs refer to the outputs at indices outid1

and outid2
of transactions with hashes

txhash1
and txhash2

respectively. Each output oi for i ∈ [a, b, c] of the transaction specifies an address hpki

and an amount #CCi of the cryptocurrency. To spend an output oi of this transaction in a succeeding
transaction, a public key pk must be provided whose hash equals hpki

and a signature that verifies for pk. It
is common for a transaction to have multiple in- and outputs, as the input value needs to be spent completely.
For example, if the inputs amount to 5 CC but the user only wants to spend 4 CC to hpka

and hpkb
, they

will create an output oc to send back the remaining 1 CC to an address they control (hpkc
), which is also

called change (address). Outputs that can be referenced by a transaction, but have not yet been, are called
unspent-transaction outputs.

2.2 Multi-Input Heuristic

If a transaction has multiple inputs, the following address-linking heuristic can be applied.

Heuristic 21 (multi-input heuristic [RS13,AKR+13,MPJ+13]) All addresses referred to in the inputs
of a transaction are controlled by the same entity.

The reason is that the computation of the signature of each input requires the knowledge of the secret
key. Other heuristics take advantage of the fact that coins can only be spent in their entirety with the
spending user usually sending back the remaining amount of the cryptocurrency to a change address they
control [RS13,AKR+13,MPJ+13]. Linking addresses results in sets of addresses, so-called address clusters,
which are likely controlled by the same entity.

2.3 CoinJoin

The basic idea of CoinJoin [Max13] is special CoinJoin transactions, which combine the in- and outputs of
multiple users. An example of such a transaction is shown in Figure 1b. The transaction has three inputs
and three outputs from three different users A, B and C. Here, we assume that all in- and outputs have
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the same value. By merely examining the transaction it is not possible to determine which input ix for
x ∈ [A,B,C] belongs to which output oy for y ∈ [1, 2, 3]. As the inputs are controlled by three different users,
the multi-input heuristic (Heuristic 21) cannot be applied.

2.4 Cluster-Intersection Attack

Goldfeder et al. [GKRN18] showed that CoinJoin transactions in Bitcoin are vulnerable to the so-called
cluster-intersection attack , which works as follows. For each output of a CoinJoin transaction, its anonymity
set is determined by inspecting the inputs of the transaction as, ideally, each input could be the origin of each
output. The anonymity set contains all possible address clusters that might be the output’s origin. Additional
information may likely reveal that the same entity controls certain outputs of different CoinJoin transactions.
In that case, the corresponding anonymity sets can be intersected, i.e. address clusters that are present in all
sets can be identified. If there is only one address cluster in the intersection, this cluster might be the origin
of those outputs. Additional information revealing that the same entity controls certain outputs of different
CoinJoin transactions can, for instance, be a single transaction spending such outputs. Then, the information
follows from the multi-input heuristic (Heuristic 21) and thus is on-chain information. Furthermore, it is also
possible that the payment recipient can derive the information off-chain, as seen in the following example.
Imagine a merchant receives two payments from the same customer, and each of the payments is the output
of a different CoinJoin transaction. If the anonymity sets of both outputs only have a single address cluster
in common, the merchant can assume that this cluster belongs to the customer.

3 Dash

In this section, we introduce Dash and explain how it addresses privacy in its PrivateSend feature as a
necessary prerequisite for our attacks in Section 4.

3.1 Overview

The cryptocurrency Dash, having forked from Bitcoin in 2014 [dasb], follows the same basic structure: the
decentralized transaction ledger is maintained in a peer-to-peer network that uses a consensus mechanism to
agree on new transactions. The transactions are organized in blocks and the ledger is often called blockchain;
the nodes in the consensus mechanism are called miners. They are rewarded for their participation through
block rewards, i.e., newly generated units of the cryptocurrency and transaction fees. Dash differs from Bitcoin
mainly by implementing a native CoinJoin feature, PrivateSend, and a feature that reduces the time it takes
until a transaction can be considered final, InstantSend. Both features are achieved by so-called masternodes ,
which are special nodes participating in the Dash network. In contrast to miners, masternodes do not directly
participate in the consensus mechanism but mainly provide PrivateSend and InstantSend as a service. They
are rewarded for their services with fees. Additionally, they also receive parts of the block rewards in so-called
CoinbaseTXs. InstantSend solves the problem of confirmation time that is present in Bitcoin. To do so, a
quorum of masternodes locks the inputs of a proposed transaction, which leads to competing transactions
being rejected [dase]. We do not consider InstantSend in the rest of the paper, as we are concentrating on
privacy.

3.2 PrivateSend

PrivateSend is a service provided by masternodes to prevent the linkage of addresses from different transaction
outputs potentially belonging to the same entity. Put in simple terms, PrivateSend implements CoinJoin (see
Section 2.3). There are several services that support the process of finding other users to group with in order
to build a CoinJoin transaction. In an ideal scenario, only these services learn the input-output mapping, i.e.,
the mapping of inputs to corresponding outputs.
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Fig. 2: PrivateSend mixing procedure

The mixing process of Dash is depicted in Figure 2 and works as follows: a user’s wallet splits the value
of some unspent-transaction outputs in a CreateDenomTX , and sends it to the network 1 . This step is a
necessary prerequisite, as mixing in Dash requires equal and fixed values. Next, the wallet reports a mixing
request to a randomly selected masternode 2 . This request includes certain unspent-transaction outputs
of the CreateDenomTX as inputs and equally as many outputs with addresses that the wallet controls. If
enough other users (dashed lines) also reported their request to the masternode, it builds a MixingTX 3 ,
consisting of all of the users’ input-output pairs. At this point, the masternode reports the MixingTX back to
each user’s wallet 4 , such that it can sign the inputs. Before doing so, the wallet ensures that the outputs
initially reported in its request are contained in the list of outputs of the MixingTX . This check is crucial in
guaranteeing that the masternode cannot steal any coins by replacing outputs with its own. If each wallet only
signs so long as the check is successful, the masternode cannot redirect money to their addresses since the sum
of the input values must exactly match the sum of the output values in MixingTXs. The reason is that the
fees required for mixing are decoupled from the MixingTXs and therefore omitted for the sake of simplicity.
After each wallet has signed their inputs and sent the signatures to the masternode 5 , the masternode can
send the MixingTX to the network 6 . Each wallet then has private unspent-transaction outputs, which can
be used as inputs for further mixing rounds or spent in PrivateSendTXs, the final transaction type used in
PrivateSend. A PrivateSendTX is a transaction, whereby the wallet implementation ensures that it only
spends private unspent-transaction outputs from MixingTXs.

4 Empirical Anonymity Analysis

In this section, we analyze the anonymity provided by CoinJoin in the context of Dash and Bitcoin. For
the analysis of Dash, we ran a Dash full node, version 0.16.1.1 [dasc] and build an analysis pipeline using
BlockSci [KML+20] with version 0.5.0. First, we retrieved the raw blockchain data up to December 31, 2020,
which corresponds to a chain of 1 397 530 blocks. Then we detected the type of transactions that are relevant
for our attacks. In the backlink attack, we linked address clusters based on the multi-input heuristic (see
Heuristic 21) and a new clustering heuristic. Finally, we refined the cluster-intersection attack by adding
false-positive rejection mechanisms and addressing uncertainty about its underlying assumptions to make the
attack applicable to Dash (DC attack). The differences of our analysis of Bitcoin are stated in Appendix A.

4.1 Transaction Type Detection

We ran a transaction type detection algorithm for the identification of relevant transactions for PrivateSend.
This algorithm processes the data retrieved from our full node, and it takes advantage of the fact that the
mixing denominations in Dash are of the form 1.00001×10k for k ∈ [−3, . . . , 1]. Due to this structure, it seems
unlikely that it would not be a mixing denomination if we were to encounter such a value. As a consequence,
our detection mechanism should produce few to no false positives. By design of our detection mechanism, a
transaction can only have one type, i.e., there is no ambiguity. We consider each transaction that does not
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match any of the following types to be an OtherTX. MixingTX is a transaction with equally many inputs
and outputs, all with the same denomination. This is due to the fact that the fee is decoupled from mixing.
Thus, there is exactly one output for each input. We additionally require that there are at least three inputs
as at least three participants are required for mixing (see Dash’s whitepaper [DD]). CreateDenomTX is a
transaction that is not a MixingTX if there are at least two outputs, while one output needs to have one of
the mixing denominations . Furthermore, we allow at most two non-mixing-denominated outputs since one of
them might be the change output and thus of arbitrary value. The other might be a special output required
to pay mixing fees. PrivateSendTX is a transaction that is not a MixingTX if it has more than one input
and all the inputs are mixing denominations . However, we only consider it a PrivateSendTX if it has exactly
one output since a PrivateSendTX does not allow change [dasg].

CoinbaseTXs 4.4%

PrivateSendTXs 0.4%

MixingTXs 10.1%

CreateDenomTXs 1.5%

OtherTXs 83.6%

Fig. 3: Dash transaction types

In Figure 3 the transactions are listed by their type, where
the total number of transactions was 31 563 841. Only 0.4%
(110 846) of all transactions are PrivateSendTXs.
Bitcoin In Bitcoin, we found that out of 493 118 000 trans-
actions, 1 767 452 (0.4%) were CoinJoinTXs (the counterpart
of Dash’s MixingTXs). For the transactions entering into and
spending from CoinJoinTXs , we detected 5 865 534 (1.2%) Pre-
CoinJoinTXs and 7 228 843 (1.5%) PostCoinJoinTXs.
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mixhash, 2

mixhash, 3
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Fig. 4: Backlink analysis

4.2 Backlink Attack

We introduce the Backlink attack, which directly links addresses occurring in the output of a MixingTX , i.e.,
linking them to output addresses of a CreateDenomTX . There are transactions in Dash that spend outputs
of MixingTXs and at the same time outputs of CreateDenomTXs. We call such a transaction a BacklinkTX
and the output of the CreateDenomTX a backlink. Such a transaction is shown in Figure 4. The transaction’s
first input is a reference to the fourth output of the CreateDenomTX , which is the backlink.1 Thus, as a
direct result of the multi-input heuristic (see Heuristic 21), the addresses of the MixingTX , hpkc

and hpkd
,

are linkable, as under the assumptions of the multi-input heuristic there is a link to hpk4
, which is an output

address of the CreateDenomTX .
However, the linkable addresses can be further linked as all input and all output addresses of a Create-

DenomTX are most likely controlled by the same entity. The reason for this is that CreateDenomTXs are
generated by a user’s wallet. This leads to the following address clustering heuristic:

Heuristic 41 All in- and output addresses of a CreateDenomTX are controlled by the same entity.

1 Note that the reference says [denomhash, 3] to refer to the fourth output as indexing starts with 0.
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As a result, hpkc and hpkd
of the BacklinkTX in Figure 4 can not only be linked to hpk4 (multi-input

heuristic, dashed line) but also to hpk1 to hpk3 and to the address corresponding to the output of txhash at
index outid (Heuristic 41, dotted line). Note that reasonable clustering results are only achieved by combining
both heuristics. Applying the multi-input heuristic would allow linking to the backlink. However, without
Heuristic 41, the backlink address would, in general, be in a single cluster and not reveal any additional
information about the user’s transaction history before mixing.

To detect backlinks, we do the following. We first iterate over all transactions. Then, we check each
transaction as to whether it has inputs referencing MixingTXs as well as inputs referencing CreateDenomTXs .
To identify the corresponding clusters, we add our heuristic to the clustering module of BlockSci, which
already implements the multi-input heuristic.

We found that out of the 174 834 transactions that are not MixingTXs but spend mixing outputs, 26 402
(15.1%) have backlinks. In terms of addresses from the outputs of MixingTXs, we found that out of 6 833 911
addresses, 836 230 (12.2%) are linkable. Applying only the multi-input heuristic resulted in 23 580 clusters.
We reduced that number by almost two thirds by additionally applying our Heuristic 41, which resulted in
only 7 920 clusters.
Bitcoin The attack slightly differs in Bitcoin as there are no explicit CreateDenomTXs. Instead of Create-
DenomTXs, we consider the PreCoinJoinTXs. Thus, a BacklinkTX in Bitcoin is a PostCoinJoinTX with at
least one input from a PreCoinJoinTX . We found that out of 7 228 843 PostCoinJoinTXs, 1 674 070 (23.2%)
have backlinks. This shows that backlinks are also present and even more problematic in Bitcoin.

4.3 DC Attack

We introduce the DC attack as a modification of the cluster-intersection attack (Section 2.4). First, we give
a high-level description of the cluster-intersection attack in the context of Dash, followed by a discussion
of which modifications are necessary to apply the attack. Finally, we present the Dash cluster-intersection
attack (DC attack).

CreateDenomTX A

CreateDenomTX B

CreateDenomTX C

MixingTX 1

MixingTX 2

PrivateSendTX

Fig. 5: Cluster intersection in Dash

An overview of the cluster-intersection attack in Dash is depicted in Figure 5. The PrivateSendTX has
inputs from both MixingTX 1 and MixingTX 2. If we trace back the inputs, the set of CreateDenomTXs that
can be reached from the MixingTX 1 input contains CreateDenomTX A and CreateDenomTX B. Likewise,
the set reachable from the MixingTX 2 input contains CreateDenomTX B and CreateDenomTX C. If we
intersect the sets, CreateDenomTX B is the only CreateDenomTX remaining.

Modifications For actual transaction data, we do not know how many rounds users have been mixing for
and whether the mixing originated from a single linkable address cluster [AK18,GKRN18]. Thus, we need to
modify the attack. To compensate for not knowing how many rounds of mixing the inputs of a PrivateSendTX
took, we consider a range of mixing rounds. To address the assumption that all inputs originated from a
single cluster, we developed a two-fold approach.

First, we add a mechanism to reject a cluster if there is a subset of inputs that would result in another
cluster. This cluster can be seen as an alternative explanation for the subset of inputs. The minimum size
of the subset is adjustable via a parameter (alt). If, for example, ground-truth data indicated that clusters
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containing 90% of the inputs are common, then an alt value of 80% could be suitable for blockchain analysts
to safeguard the evidential value of their findings. In that case, the analysts would reject a cluster, if 80% or
more of the inputs could be explained by another cluster.

Second, we add a mechanism to detect some obvious false positives that are based on the following
observation. A cluster cannot have more Dash spent in its PrivateSendTXs than have been created in its
CreateDenomTXs . This is why we compute a mix balance for each cluster as follows. Firstly, we sum the value
of all outputs of CreateDenomTXs that are spent in MixingTXs . Then, we subtract the value of all inputs of
a transaction that is not a MixingTX but is spending from MixingTXs. In simple terms, we determine the
value that has been input into mixing and subtract the value that has been spent after mixing. Suppose the
attack now suggests linking two clusters, such that the sum of their mix balances is negative. In that case, we
know that we either encountered a false positive or that our clustering of pre-mix addresses was incomplete.
In either case, we must reject the result because the two cases cannot be distinguished without ground-truth
data.

Algorithm 1 DC attack
procedure DC_ATTACK(ptx , alt)

candidate = None
r = 2
maxr = DETERMINE_MAX_ROUNDS(ptx )
while r ≤ maxr do

clusts = ∅
for inp ∈ ptx.inps do

clusts[inp] = EXTRACT_CLUSTS(r, inp)
intersec =

⋂
inp∈ptx.inps

clusts[inp]

if LEN(intersec) == 1 then
if CORR_REJ(intersec, alt , clusts) then

candidate = GET(intersec)
break

if BALANCE_CONF(candidate) then
return candidate

return None

This results in the Dash cluster-inter-
section attack (DC attack), which is a mod-
ified version of the algorithm proposed
by Goldfeder et al. [GKRN18]. The al-
gorithm is stated in Algorithm 1. The
LEN method always returns the number
of elements of the passed argument. The
algorithm’s input is a PrivateSendTX ptx
and the parameter alt as described above.
We set the starting value for the number
of rounds r to 2, since 2 is the minimum
number of mixing rounds required in Dash.
The maximal possible number of rounds
changed at the beginning of 2019 from 8
to 16 with protocol version 0.13.0.0 [dasd].
Thus, to prevent the algorithm from de-
tecting obvious false positives, we deter-
mine for every PrivateSendTX , the maxi-
mal possible number of rounds maxr in DETERMINE_MAX_ROUNDS as follows. We retrieve the block in which
the transaction occurred. If the year extracted from the block’s timestamp is greater than 2018, we set maxr

to 16 and 8 otherwise. Next, the algorithm iterates over all rounds. In every round, for each input, all clusters
that are attainable within r rounds of mixing are determined (EXTRACT_CLUSTS). Then, the intersection
intersec of all found cluster sets is computed. If there is exactly one cluster in the intersection, we perform an
additional check, CORR_REJ. This checks whether there is a subset of the inputs whose size is greater than or
equal to alt of LEN(ptx.inps), which would lead to a different cluster than intersec. If this is not the case,
candidate is set to the cluster in intersec (GET). The loop is left regardless of CORR_REJ. Finally, we check
that candidate is not a false positive according to the mix balance, which is performed by BALANCE_CONF and
works as explained above.

The results of the DC attack are shown in Figure 6. Setting parameter alt to 100% corresponds to complete
certainty in the assumption that all inputs resulted from one linkable cluster. In that case, no alternative
explanation is taken into account and over 40% of the PrivateSendTXs are linkable. In the case of alt being
equal to 0%, all results would be rejected by definition.

alt (%) 10 20 30 40 50 60 70 80 90 100

linkable (%) 0.2 0.7 2.2 4.1 5.6 11.9 17.5 22.4 32.1 43.8

Fig. 6: DC attack linkable PrivateSendTXs for parameter alt ranging from 10% to 100%
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Bitcoin Goldfeder et al. already demonstrated the applicability of the cluster-intersection attack in Bit-
coin [GKRN18]. Thus, the crucial question in this work is whether there is on-chain information fueling
the attack. The special vulnerability to cluster intersection in Dash results from the fact that users need to
aggregate value in PrivateSendTXs . Thus, a PrivateSendTXs has several inputs from different MixingTXs in
general that can be seen as such on-chain information.

To determine whether such on-chain information is also present in Bitcoin, we did the following. We
checked for every PostCoinJoinTXs whether there are inputs from at least two different CoinJoinTXs . If this
was the case, there was on-chain information as it is possible to intersect the anonymity sets of the different
CoinJoinTXs. We found that out of the 7 228 843 PostCoinJoinTXs, 919 532 (12.7%) have inputs from at
least two different CoinJoinTXs. This indicates that the coin aggregation problem is also present in Bitcoin.

5 Enhancing Privacy of Mixing

We show how to enhance the privacy of mixing and discuss direct countermeasures to mitigate the vulnerability
to the Backlink attack. After discussing why fundamental changes to Dash seem unavoidable to prevent the
DC attack, we propose a new mixing algorithm that removes the vulnerability to the cluster-intersection
attack . This algorithm is of independent interest as it is not specific to Dash.

5.1 Preventing backlinks

The anonymity problems that come with backlinks are approachable within the design of Dash and Bitcoin.
First, not all outputs of a CreateDenomTX must be input to MixingTXs. There may be change, such as
discussed above in the example of Figure 4. Additionally, Dash allows for CoinControl, i.e. letting users in
their wallet manually select inputs of a transaction [dasf]. While this is a useful feature, in the case of a user
creating a BacklinkTX, we recommend explicitly warning them as backlinks remove the anonymity gained by
mixing. A user’s wallet should strictly separate any coins from CreateDenomTXs and those originating from
a MixingTX . This idea is incorporated in the Bitcoin fungibility framework ZeroLink [zer] that distinguishes
a pre-mix and a post-mix wallet. With version 0.16.0.1 [dasc] Dash improved its user interface following our
recommendations after we disclosed our findings to them.

5.2 Cookie Monster Mixing

The vulnerability to the cluster-intersection attack results from the coin aggregation problem, that is the
need to combine coins of different mixes. In Dash, this is a consequence of restricting the mixing to specific
values. The logical solution would be to allow arbitrary values. However, arbitrary-value mixing suffers from
privacy weaknesses caused by value analysis as discussed in Appendix B. Thus, we propose a new mixing
algorithm, Cookie Monster Mixing. The basic principle behind Cookie Monster Mixing is to create a MixingTX
where there are at least k outputs with the same value and k is the anonymity level the transaction should
provide. This is related to the cookie monster problem [BK15]. Given a set of jars filled with various numbers
of cookies, the cookie monster wants to eat all the cookies. However, the cookie monster has to proceed in
rounds, select a subset of jars, and eat the same number of cookies from each jar in this subset. The goal
is to eat the cookies in as few rounds as possible. In contrast, the objective in Cookie Monster Mixing is to
maximize the number of cookies for a fixed number of rounds under constraints instead of minimizing rounds.

In Cookie Monster Mixing, a mixing service provider takes the role of the cookie monster, while the jars are
inputs with a specific value of the cryptocurrency to be mixed. In Dash, the masternodes act as mixing service
providers. Deviating from the cookie monster problem, let the number of rounds r be fixed. In each round
j ∈ {1, . . . , r}, the mixing service provider may choose a target value tj and a subset of the input values from
which tj is subtracted. The subtracted value is added to the output set, while the objective is to maximize the
total output value. Intuitively that relates to maximizing the total value of anonymous coins. Additionally,
there are two constraints. First, the size of the subset of inputs selected per round needs to be at least k.
Second, each selected input needs to have a value at least as large as tj . Together the constraints ensure that
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the outputs determined via tj have at least an anonymity set size of k as they have the same value and thus
might have originated from any of the inputs selected in that round.

Integer Quadratic Problem The problem can be formulated as the following integer quadratic problem
(IQP).

Constants
– v1, . . . , vn: non-negative integers (values of n inputs)
– k: positive integer (minimum number of values to select per round)

Variables
– x1, . . . , xn: 0− 1 vectors of length r (where xi denotes the rounds in which value vi has been selected)
– t: non-negative integer vector of length r (target values to be subtracted)

maximise

n∑
i=1

⟨xi, t⟩ (1)

s. t. ⟨xi, t⟩ ≤ vi, for each i ∈ {1, . . . , n} (2)
n∑

i=1

xi,j ≥ k, for each j ∈ {1, . . . , r} (3)

The Objective (1) is to maximize the total anonymized value, while Constraints (2) and (3) ensure that it
is actually possible to subtract tj from the selected inputs and that at least k inputs are selected per round j
respectively.

Algorithm 2 Greedy solver
procedure SOLVER(in_vals, k, r)

if LEN(in_vals) < k || r == 0 then
return ∅

target_vals = ∅
tmp_vals = ∅
rval = EXTRACT_K_LARGEST(k, in_vals)
target_vals.add(rval)
for val ∈ in_vals do

if val > r_val then
tmp_vals.add(val − rval)

else if val < r_val then
tmp_vals.add(val)

return target_vals.concat(SOLVER(
tmp_vals, k, r − 1))

Greedy Algorithm We propose a greedy algo-
rithm that approximates the integer quadratic
problem. It is stated in Algorithm 2. The in-
put to the algorithm is a list of input values
in_vals, as well as k and r as defined above.
in_vals can be obtained from the multiset
of inputs I by replacing each input with its
value. LEN returns the number of elements in a
list and EXTRACT_K_LARGEST extracts the kth

largest element of a list. The algorithm returns
target_vals, which is a list of values referring
to the target values tj of the integer quadratic
problem.

As long as the abort criterion (i.e.,
LEN(in_vals) < k || r == 0) is not fulfilled,
the algorithm extracts the kth largest element
of in_vals , which is assigned to rval. Since this element can be seen as the target value of the greedy algorithm
in that round, it is added to target_vals. Then, the input values are updated as follows. In case a value is
greater than rval, their difference is added to tmp_vals . Otherwise, if the value is smaller than rval, the value
itself is added to tmp_val . If they are equal, the value is omitted. This behavior corresponds to inherently
selecting all possible inputs per round in terms of the integer quadratic problem. The algorithm runs in
polynomial time. There are at most r recursive calls and the runtime of each call is mainly determined by the
time it takes to extract the kth largest element of a list. If this is implemented by sorting, the algorithm runs
in O(r · n log n).

Our greedy algorithm is not optimal, which can be seen by the following example. Let in_vals =
[2, 2, 1], k = 2 and r = 2. In the first round, the algorithm extracts 2 as the second largest element and adds
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it to target_vals , while 1 is added to tmp_vals . In the recursive call, ∅ is returned, as the length in_vals is 1
and thus smaller than k which satisfies the abort criteria. Consequently, the output value achieved in terms
of Objective (1) is only 4, as target_vals = [2] and the greedy algorithm inherently selects all possible inputs
per round, which are the first two of in_vals in the first round. The optimum 5, however, is achieved by
setting a1 = a2 = x1,1 = x2,1 = x3,1 = x1,2 = x2,2 to 1 and x3,2 to 0.

Evaluation of Algorithm 2 To measure the quality of our greedy algorithm in terms of maximizing
Objective (1), we evaluated it against the optimal solution. Therefore we modelled the integer quadratic
problem as given by Objective (1) and Constraints (2) and (3) in IBM’s Optimization Programming Language
(OPL) and used the mixed integer optimizer from IBM LOG CPLEX Optimization Studio V12.10.0 [ibm].

For the values of the inputs (in_vals), we first considered all clusters of CreateDenomTXs retrieved by
applying the multi-input heuristic and Heuristic 41 as discussed in Section 4.2. For each cluster, we summed
up the values of all outputs that were referenced by MixingTXs. This results in a distribution of Dash that
users were mixing in the past. It is therefore better suited for evaluation than purely random values. We
varied both, r and the number of inputs that we chose randomly from the distribution. We set k to 3 following
the Dash whitepaper, which suggests at least three participants per mixing round [DD].The results are shown
in Figure 7a averaged over 100 runs indicating that Algorithm 2 is nearly as good as the optimal solution.
The average wall-clock time of the solver is reported in Figure 7b. In contrast, Algorithm 2 took less than a
second for each choice of parameters. Therefore, particularly for multiple inputs and rounds, using a solver is
infeasible, which is why Algorithm 2 should be used instead.

r

|in_vals| 3 4 5

5 98.8% 98.5% 98.1%

10 98.2% 98.4% 98.3%

15 97.0% 97.2% 98.3%

20 96.1% 95.8% 97.7%

(a) Avg. performance of Algorithm 2 w.r.t Ob-
jective (1)

r

|in_vals| 3 4 5

5 0.02 0.02 0.28

10 0.03 0.27 7.80

15 0.07 7.51 68.71

20 0.15 5.98 180.14

(b) Avg. wall-clock time of optimizer in
minutes

Fig. 7: Evaluation of Algorithm 2 against optimizer

Using Cookie Monster Mixing removes the need for splitting and aggregating coins before and after mixing.
Thus, the on-chain information that multiple coins of different mixes belong together is no longer present,
preventing the DC attack. To prevent cluster-intersection attacks from off-chain information as well, Cookie
Monster Mixing needs to be combined with privacy-aware wallets and browsers.
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A Differences in the Analysis in Bitcoin

This section highlights the general differences in the analysis of Bitcoin and Dash. For Bitcoin, we ran a full
node, version 0.20.0 [btc] and used BlockSci [KML+20] with version 0.7.0. We retrieved the raw blockchain
data corresponding to a chain of 612 793 blocks with 493 118 000 transactions.

The main difference occurs in the transaction type detection as Bitcoin neither knows CreateDenomTXs nor
PrivateSendTXs . Thus, besides the CoinJoinTXs , we also consider PreCoinJoinTXs and PostCoinJoinTXs . A
PreCoinJoinTX is any transaction that has at least one output being referenced by a CoinJoinTX . Likewise,
a PostCoinJoinTX is any transaction referencing at least one output of a CoinJoinTX . We further exclude
all CoinJoinTXs from PreCoinJoinTXs and PostCoinJoinTXs. In comparison with Dash, the CoinJoinTXs
would correspond to MixingTXs, the PreCoinJoinTXs to the CreateDenomTXs, and the PostCoinJoinTXs
to the PrivateSendTXs. Detecting PostCoinJoinTXs and PreCoinJoinTXs is straightforward once Coin-
JoinTXs are detected. However, the detection of CoinJoinTXs is difficult as there are multiple different
CoinJoin services in Bitcoin (e.g. [joi,was,sam]) that neither require the number of inputs and outputs to
be the same nor restrict their inputs to specific denominations as is the case in Dash. BlockSci already
implements a CoinJoin detection mechanism which, however, is tailored to JoinMarket [joi] transactions
and therefore does not recognize the transactions of other CoinJoin services such as Wasabi Wallet [was]
or Samurai Wallet [sam]. For this reason, we adapted the CoinJoin detection mechanism of the open-
source Blockstream Bitcoin explorer [Blob] as it is capable of detecting CoinJoinTXs of several services.
However, we also adopted the elements of BlockSci’s algorithm [bloa] that were not specific to JoinMarket.

Algorithm 3 CoinJoin detection
procedure COJO_DETECTION(tx )

if LEN(tx.inps) < 2 || LEN(tx.outs) < 3 then
return False

target = MIN(MAX(LEN(tx.outs)/2, 2), 5)
found = False
for out ∈ tx.outs do

if out.val == 546 || out.val == 2730 then
return False

if OCC(val , tx.outs) >= target) then
found = True

if OCC_MOST(tx.outs) < OCC_UNIQ(tx.outs) then
return False

return found

Our algorithm is stated in Algo-
rithm 3. The algorithm returns True
if the provided transaction tx is (most
likely) a CoinJoin transaction. The
LEN method returns the number of
elements of the passed argument, MIN
and MAX work as expected. OCC com-
putes the number of occurrences of
the value val in the provided out-
puts. OCC_MOST returns the number of
occurrences of the value that occurs
the most while OCC_UNIQ returns the
number of unique output values. The
first thing the algorithm does is check
whether the transaction has at least
two inputs and three outputs. The reason for this is that mixing requires at least two participants. At least
one participant generally receives some change, which is why there is always at least one additional output
aside from the two mixed ones. Next, a target between two and five is computed. This is used to check whether
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there are at least target many outputs with the same value, where target corresponds to half the number
of outputs but is kept between two and five as done by Blockstream [Blob]. As suggested by BlockSci, a
transaction with so-called dust outputs is unlikely a CoinJoin transaction, which is why output values should
not be equal to 546 or 2 730 [bloa]. These values are the smallest possible output values allowed by Bitcoin
Core depending on the version. The last check is to prevent false positives as there needs to be at least as
many equal-valued outputs as there are unique ones. The reason is that in a CoinJoinTX unique outputs
should only be change outputs.

B Limitations to Arbitrary-Value Mixing

TX

In

i1 = 21

i2 = 12

i3 = 36

i4 = 28

Out

o1 = 25

o2 = 8

o3 = 50

o4 = 14

(a) original

TX

In

i1 = 21

i2 = 12

i3 = 36

i4 = 28

Out

o1 = 25

o2 = 8

o3.1 = 31

o3.2 = 19

o4 = 14

(b) with output splitting

Fig. 8: CoinJoin transaction

We proposed Cookie Monster Mixing (see Section 5.2) as arbitrary-value mixing is not a suitable solution for
the coin aggregation problem due to privacy weaknesses based on value analysis. When mixing coins with
an arbitrary value, outputs can usually be linked to the corresponding inputs by inspecting the values, as
discussed by Maurer et al. [MNF17]. Considering the CoinJoin transaction in Figure 8a taken from Maurer
et al. [MNF17], the transaction can only consist of the two sub-transactions (dotted line and dashed line), such
that it is possible to link inputs i1 and i2 to outputs o1 and o2, as well as i3 and i4 to o3 and o4, respectively.
To prevent this linkage, Maurer et al. [MNF17] propose output-splitting algorithms. Given two transactions,
their basic splitting algorithm works by calculating the difference between the sums of the corresponding
output lists. Next, one of the outputs of the list with the larger sum is split to produce this difference [MNF17].
Thus, multiple input-output relations are possible. Applied to the two sub-transactions in Figure 8a, the
algorithm results in the transaction depicted in Figure 8b. Output o3 in Figure 8a has been split in o3.1 and
o3.2 such that i1 and i2 belong to either o1 and o2 or o3.2 and o4. The reason is that the sum of the values of
i1 and i2 equals 33, as do the sums of o1 and o2 as well as o3.2 and o4.

However, even if output-splitting results in multiple potential input-output relations, it is still possible to
determine the actual input-output relation by inspecting the values. In Figure 8b, i1 and i2 are far more
likely to result in o1 and o2 than in o3.1 and o4. The reason is that under the assumption that one of the
outputs is change, input i2 would not have been required as i1 is larger than 19 (o3.1) and 14 (o4).

As their basic output-splitting algorithm does not affect the input linkability, that is i1 and i2 as well
as i3 and i4 are linkable, Maurer et al. [MNF17] propose a version of the algorithm that implements input
shuffling. Instead of using the difference between the sums of the corresponding output lists, the sum of a
random subset of inputs is used to split the outputs. Thereby, the number of inputs is a parameter of the
algorithm. In terms of Figure 8a, the input shuffling algorithm might employ the sum of i1, i2 and i4. While
this seems to be an improvement over the basic algorithm, it is especially dangerous if the inputs are linkable
by heuristics. Intuitively, the gained privacy relies on an ambiguity on the input side, which is introduced by
using the sum of a random subset in output splitting. However, if it is known which inputs belong together,
there is no gain in privacy at all.
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