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Abstract

A recent line of work has explored the use of physically uncloneable functions (PUFs) for
secure computation, with the goals of (1) achieving universal composability without additional
setup, and/or (2) obtaining unconditional security (i.e., avoiding complexity-theoretic assump-
tions). Initial work assumed that all PUFs, even those created by an attacker, are honestly
generated. Subsequently, researchers have investigated models in which an adversary can create
malicious PUFs with arbitrary behavior. Researchers have considered both malicious PUFs
that might be stateful, as well as malicious PUFs that can have arbitrary behavior but are
guaranteed to be stateless.

We settle the main open questions regarding secure computation in the malicious-PUF model:

• We prove that unconditionally secure oblivious transfer is impossible, even in the stand-
alone setting, if the adversary can construct (malicious) stateful PUFs.

• If the attacker is limited to creating (malicious) stateless PUFs, then universally compos-
able two-party computation is possible without computational assumptions.

1 Introduction

A physically uncloneable function (PUF) [17, 18, 1, 14] is a physical object generated via a process
that is intended to create “unique” objects with “random” behavior. PUFs can be probed and
their response measured, and a PUF thus defines a function. (We ignore for now the possibility
of slight variability in the response, which can be corrected using standard techniques.) At an
abstract level, this function has two important properties: it is random, and it cannot be copied
even by the entity who created the PUF. The latter implies that the PUF can only be queried by
the party currently holding the PUF, something which distinguishes a PUF from a random oracle.

Since their introduction, several cryptographic applications of PUFs have been suggested, in
particular in the area of secure computation. PUFs are especially interesting in this setting be-
cause they can potentially be used (1) to obtain universally composable (UC) protocols [5] without
additional setup, thus bypassing known impossibility results that hold for universal composition in
the “plain” model [6, 7], and (2) to construct protocols with unconditional security, i.e., without
relying on any cryptographic assumptions.
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Initial results in this setting [19, 20] showed constructions of oblivious transfer with stand-alone
security based on PUFs. Brzuska et al. [4] later formalized PUFs within the UC framework, and
showed UC constructions of bit commitment, key agreement, and oblivious transfer (and hence
secure computation of arbitrary functionalities) with unconditional security. The basic feasibility
questions related to PUFs thus seemed to have been resolved.

Ostrovsky et al. [16], however, observed that the previous results implicitly assume that all
PUFs, including those created by the attacker, are honestly generated. They point out that this
may not be a reasonable assumption: nothing forces the attacker to use the recommended process
for manufacturing PUFs and it is not clear, in general, how to “test” whether a PUF sent by some
party was generated correctly or not. (Assuming a trusted entity who creates the PUFs is not
a panacea, as one of the goals of using PUFs is to avoid reliance on trusted parties.) Address-
ing this limitation, Ostrovsky et al. defined a model in which an attacker can create malicious
PUFs with arbitrary, adversary-specified behavior. The previous protocols can be easily attacked
in this new adversarial setting, but Ostrovsky et al. showed that it is possible to construct univer-
sally composable protocols for secure computation in the malicious-PUF model under additional,
number-theoretic assumptions. They explicitly left open the question of whether unconditional
security is possible in the malicious-PUF model. Recently, Damg̊ard and Scafuro [8] have made
partial progress on this question by presenting a commitment scheme with unconditional security
in the malicious-PUF model.

Stateful vs. stateless (malicious) PUFs. Honestly generated PUFs are stateless; that is, the
output of an honestly generated PUF on some input is independent of previous inputs to the
PUF. Ostrovsky et al. noted that maliciously generated PUFs might be stateful or stateless. (The
positive results mentioned earlier remain secure even against attackers who can create malicious,
stateful PUFs.) Allowing the adversary to create stateful PUFs is obviously more general. Nev-
ertheless, assuming that the adversary is limited to producing stateless PUFs may be reasonable;
indeed, depending on the physical technology used to implement the PUFs, incorporating dynamic
state in a PUF may be infeasible.

1.1 Our Results

Spurred by the work of Ostrovsky et al. and Damg̊ard and Scafuro, we reconsider the possibility of
unconditionally secure computation based on malicious PUFs and resolve the main open questions
in this setting. Specifically, we show:

1. Unconditionally secure oblivious transfer (and thus unconditionally secure computation of
general functions) is impossible when the attacker can create malicious stateful PUFs. Our
result holds even with regard to stand-alone security, and even for indistinguishability-based
(as opposed to simulation-based) security notions.

2. If the attacker is limited to creating malicious, but stateless, PUFs, then universally compos-
able oblivious transfer (OT) and two-party computation of general functionalities are possible.
Our oblivious-transfer protocol is efficient and requires each party to create only a single PUF
for any bounded number of OT executions. The protocol is also conceptually simple, which
we view as positive in light of the heavy machinery used in [16].

Comparison to the previous version of this work. We improve on the proceedings version
of this work in several respects. First, we provide a simpler and corrected version of an ideal
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functionality corresponding to PUFs. We also provide a full proof for our impossibility result.
Finally, we show a simpler protocol for our positive result; specifically, we show how to realize OT
using a single PUF rather than two PUFs.

1.2 Other Related Work

Hardware tokens have also been proposed as a physical assumption on which to base secure com-
putation [13]. PUFs are incomparable to hardware tokens: on the one hand, hardware tokens can
implement arbitrary code whereas PUFs can only implement a “random function”; on the other
hand, since hardware tokens must be efficient, they cannot implement the functionality of a PUF.
For this reason, known results (in particular the fact that UC oblivious transfer is impossible with
stateless tokens [10]) do not directly translate from one model to the other.

Impossibility results for (malicious) PUFs are also not implied by impossibility results in the
random-oracle model (e.g., [2]). A random oracle can be queried by any party at any time, whereas
an honestly generated PUF can only be queried by the party who currently holds it. Indeed,
we show that oblivious transfer is possible when malicious PUFs are assumed to be stateless; in
contrast, oblivious transfer is impossible in the random-oracle model [11, 2].

Ostrovsky et al. [16] consider a second malicious model where the attacker can query honestly
generated PUFs in a non-prescribed manner. They show that secure computation is impossible
if both this and maliciously generated PUFs are allowed. We do not consider the possibility of
malicious queries in this work.

Rührmair and van Dijk [21] show impossibility results in a malicious-PUF model that differs
significantly from (and appears to correspond to a stronger adversary than in) the models considered
in prior work [16, 8] and here. In other work [22], van Dijk and Rührmair informally discussed the
idea of using the Impagliazzo-Rudich technique [11] to prove impossibility in the context of PUFs,
but did not give any formal proofs.

2 Formalizing Physically Uncloneable Functions

Our goal in this section is to provide ideal functionalities for PUFs that correspond to the models
used in most of the recent proofs of security for PUF-based protocols. We provide some high-level
intuition as well as justification for our specific formal model. Nevertheless, we believe that both
our impossibility result (in Section 3) and our feasibility results (in Section 4) are understandable
based only on the informal description of our model given in this section.

We begin in Figure 1 with an ideal functionality corresponding to honest PUFs, i.e., where it is
assumed that all parties are only able to generate PUFs according to some mandated specification.
An honest PUF essentially behaves as a random oracle; in particular, the first time any input c is
queried to the PUF, a random value y is returned; if c is queried subsequently, the same value y is
returned. The key difference between a PUF and a random oracle, however, is that only one party
can access the PUF at any given time; this is meant to model the fact that only one party can
be in possession of the physical object corresponding to the PUF at any time. The functionality
handles this issue by keeping track of the current holder of the PUF. The party in possession of
the PUF has the ability to transfer the PUF to another party at any time; this is modeled in the
ideal functionality via the handover query.

Our ideal functionality for honest PUFs is inspired by the original specification given by Brzuska
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FHPUF is parameterized by security parameter 1λ and runs with parties P1, P2, and adversary Sim.
It begins with a list L initialized to ∅. It supports the following interface:

• If a party P sends init, choose uniform identifier id ∈ {0, 1}λ and set Lid = ∅. Return id to P ,
and store (id, P,Lid) in L.

• If a party P sends (eval, id, c) then check whether there is an entry (id, P,Lid) ∈ L and return
⊥ if not. Otherwise, if there is an entry (c, y) ∈ Lid, return y to P ; if not, choose uniform
y ∈ {0, 1}λ, store (c, y) in Lid, and return y to P .

• If a party P sends (handover, id, P ′) then check whether there is an entry (id, P,Lid) ∈ L and
return ⊥ if not. Otherwise, replace the tuple (id, P,Lid) in L with the tuple (id, P ′,Lid), and
send (P, handover, id, P ′) to P ′ and Sim.

Figure 1: The ideal functionality FHPUF for honestly generated PUFs.

et al. [4], though we have chosen to simplify the ideal functionality without sacrificing anything
significant. For completeness, we briefly justify the simplifications we have made:

• Physical PUFs are typically noisy ; that is, when queried on the same input twice, they
will return close—but not identical—outputs. Moreover, the output of a PUF may not be
uniform, but may instead only have high entropy. Some prior work has explicitly modeled
these features as part of the ideal functionality defining PUFs.

Brzuska et al. [4] have already shown that both these issues can be handled using fuzzy extrac-
tors [9], and therefore one can assume non-noisy, uniform outputs without loss of generality.
Looking ahead, we note that this holds also in the malicious-PUF setting.

• Prior work has allowed the adversary to directly query the PUF during the point in time
when the PUF is transferred from one party to another. In our setting, where at least one
party is corrupted by the adversary, this does not give the adversary any additional power.
For our positive results, one can verify that if no party is corrupted then our protocols remain
secure against an eavesdropping attacker even if it can query the PUF when it is transferred
between the honest parties.

Ostrovsky et al. [16] initiated the formal study of malicious PUFs. They considered two different
types of malicious behavior, the first modeling the case where the attacker can produce a PUF that
behaves arbitrarily, and the second addressing the case where the attacker can query an honest
PUF in a disallowed manner. In this work we only consider the first type of malicious behavior.
Figure 2 specifies the ideal functionality in that case. Note that honest users will not query the
functionality with the initmal query.

Our ideal functionality allows corrupted parties to create PUFs having behavior specified by
an arbitrary circuit C. (Of course, if the attacker is limited to running in polynomial time then C
must have polynomial size; we return to this point below.) Although not explicitly included in the
description of the functionality, the circuit is allowed to have oracle gates that enable queries to a
(freshly created) PUF that cannot be directly accessed by any party; this ensures that malicious
PUFs are at least as powerful as honest PUFs. The functionality encompasses both the case where
the attacker can create stateful PUFs maintaining arbitrary state (by setting ` = ∗), as well as the
case where the attacker is limited to creating stateless PUFs (by setting ` = 0).

We remark for completeness that we have corrected what appears to be a technical issue in the
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F`PUF is parameterized by security parameter 1λ and length parameter `, and runs with parties
P1, P2, and adversary Sim. It begins with a list L initialized to ∅. It supports the following interface:

• If a party P sends init, choose uniform identifier id ∈ {0, 1}λ and set Lid = ∅. Return id to P ,
and store (id, 0, P,Lid) in L.

• If a party P sends (initmal, C), where C is a circuit, choose uniform identifier id ∈ {0, 1}λ and
set state = ε. Return id to P , and store (id, 1, P, (C, state)) in L. (The circuit C may have
special oracle gates; see the text for further discussion.)

• If a party P sends (eval, id, c) then check whether there is an entry (id, b, P, ?) ∈ L and return
⊥ if not. Otherwise:

b = 0: Say there is an entry (id, 0, P,Lid) ∈ L. If there is an entry (c, y) ∈ Lid, return y to P ;
if not, choose uniform y ∈ {0, 1}λ, store (c, y) in Lid, and return y to P .

b = 1: Say there is an entry (id, 1, P, (C, state)) ∈ L. Compute (y, state′) := C(c, state) and
return y to P . If state′ ∈ {0, 1}` then replace the tuple (id, 1, P, (C, state)) in L with the
tuple (id, 1, P, (C, state′)).

• If a party P sends (handover, id, P ′) then check whether there is an entry (id, b, P,X) ∈ L and
return ⊥ if not. Otherwise, replace the tuple (id, b, P,X) in L with the tuple (id, b, P ′, X),
and send (P, handover, id, P ′) to P ′ and Sim.

Figure 2: The ideal functionality F `PUF that allows for maliciously generated PUFs. The parameter
` determines the size of the state; ` = 0 corresponds to stateless PUFs, and ` = ∗ corresponds to
stateful PUFs with unbounded state.

original formulation of malicious PUFs by Ostrovsky et al. In particular, their work allowed the
attacker to construct PUFs computing arbitrary functions, even those not computable in polynomial
time. Leaving aside the question of whether creating such PUFs is feasible, we note that allowing
such behavior may cause problems when trying to use cryptographic hardness assumptions along
with PUFs to design secure protocols. Although Ostrovsky et al. propose a patch for this issue
(namely, restricting PUFs to computing “admissible” functions that do not allow solving certain
cryptographic problems), the patch is not satisfactory because the simulator in the security proof
will be unable to simulate the behavior of the PUF.

We have also given what we believe is a more natural definition that allows the attacker to
exactly specify the behavior of the PUF. In contrast, Ostrovsky et al. assume a fixed distribution
over PUFs, and have the ideal functionality sample a malicious PUF from this distribution. Since
the attacker can simulate any such distribution on its own, the attacker in our formulation is at
least as strong as the attacker in theirs.

Finally, we note that the functionality allows parties to identify a PUF via its identifier id. In
particular, this ensures that if an honest P sends an honestly generated PUF to a (potentially
malicious) party P ′, and then at some later point in time P ′ is supposed to send that same PUF
back to P , then P can verify that the PUF sent by P ′ is indeed the correct one. Although a physical
PUF may not obviously have this property (since it may not have an obvious public identifier), a
trivial way to achieve the same effect (for honestly generated PUFs) is for P to “mark” a PUF by
querying it at a random point and recording the response; when the PUF is later returned, P can
verify that the same response is returned for the same challenge. The presence of these identifiers
only makes our negative result stronger; for our positive result, we implicitly assume that the honest
party generating a PUF uses the above “marking” approach.
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3 Impossibility Result for Malicious, Stateful PUFs

In this section we prove the impossibility of constructing unconditionally secure oblivious transfer
(OT) when the attacker is able to create malicious, stateful PUFs. Our impossibility result applies
even for an indistinguishability-based, stand-alone definition of security for OT. We assume perfect
correctness for simplicity, however this is not essential. For the purposes of our proof, we consider
bit OT protocols. We show:

Theorem 1. Let Π be a PUF-based OT protocol where the sender S and receiver R each make
polynomially (in security paramter λ) many PUF queries. Consider executions where the sender S
is given uniform inputs s0, s1 ∈ {0, 1}, the receiver R is given uniform input b ∈ {0, 1}, and the
receiver learns sb. Then at least one of the following holds:

1. There is an unbounded adversary S∗ that uses malicious, stateful PUFs, makes polynomially
many PUF queries, and outputs the bit b of R with probability at least 1/2 + 1/poly(λ).

2. There is an unbounded adversary R∗ that uses malicious, stateful PUFs, makes polynomially
many PUF queries, and outputs both bits s0, s1 of S with probability at least 1/2 + 1/poly(λ).

We begin with a high-level overview of our proof before giving the details in the following
sections. The starting point for our result is the impossibility of constructing OT in the random-
oracle model. Such a result is implied by the impossibility of key agreement in the random-oracle
model [11, 2], but we sketch a direct proof here.

Consider an OT protocol in the random-oracle model between a sender S and receiver R. We
show that either S or R can attack the protocol in the same sense as in Theorem 1. Imagine
that both parties run the protocol honestly and then at the end of the protocol they each run
the Eve algorithm from [2] to obtain a set Q of queries to/answers from the random oracle. This
set Q contains all “intersection queries” between S and R, namely, all queries that were made by
both parties to the random oracle. (Note that the setting here is different from the key-agreement
setting in which a third party—i.e., an eavesdropper—runs the Eve algorithm; in our setting, finding
intersection queries is trivial for S and R since all intersection queries are, by definition, already
contained in the view of each parties. The point of running the Eve algorithm is for both parties
to reconstruct the same set Q containing all intersection queries.) As in [2], conditioned on the
transcript of the protocol and this set Q, the views of S and R are independent. Then, following [2],
with high probability the distribution over R’s view conditioned on S’s view and Q is statistically
close to the distribution over R’s view conditioned only on the transcript and Q.

To use the above to obtain an attack, we first consider the distribution D over R’s view condi-
tioned on S’s view and Q. If the protocol is secure against a malicious sender, then the probability
that b = 0 (resp., b = 1) in that view must be roughly 1/2, and in particular it is possible to
sample views of R consistent with both b = 0 and b = 1. Next consider the distribution D′ over
R’s view conditioned on the transcript and Q. Since this distribution is statistically close to the
previous distribution, it must again be possible to sample views of R consistent with both b = 0
and b = 1. But since R can sample from distribution D′, this means that a malicious R∗ can
with high probability sample a view consistent with b = 0 and the protocol transcript and a view
consistent with b = 1 and the given transcript. Correctness of the protocol then implies that R
can with high probability discover both of S’s inputs.

From random oracles to PUFs. The problem with extending the above to the PUF model is
that, unlike a random oracle, a PUF can only be queried by the party who currently holds it. This
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means that the above attack, as described, will not work; in particular, since at most one party
will hold each PUF at the end of the protocol, it is not clear that both parties can compute Q.
In fact, as we show in Section 4, there does exist an unconditionally secure OT protocol in the
stateless malicious-PUF model. This means that any impossibility result must exploit the fact that
the malicious party can create stateful PUFs.

To illustrate the main ideas, consider a protocol in which four PUFs are used. PUFS and PUF′S
are created by S, with PUFS held by S at the end of the protocol and PUF′S held by R at the end
of the protocol. Similarly, PUFR,PUF

′
R are created by R, with PUFR held by R at the end of the

protocol and PUF′R held by S at the end of the protocol. Consider the set Q that contains the
following “intersection queries”:

1. All queries that both parties made to PUF′S or PUF′R (as in [2]).

2. All queries that R made to PUFS , and all queries that S made to PUFR.

The set Q of queries described above is a superset of all the “intersection queries” made by S
and R because it contains any query made by both parties to PUF′S or PUF′R, all queries R made
to PUFS (which is a superset of the queries made by both parties to PUFS), and all queries made
by S to PUFR (which is a superset of the queries made by both parties to PUFR).

We now want to provide a way for both parties to obtain Q. For queries of the first type, this can
be achieved using the Eve algorithm from [2] if we can provide a way for S to query PUF′S (resp., for
R to query PUF′R) at the end of the protocol. This, in turn, can be done if S constructs PUF′S with
known code, so that S can effectively “query” PUF′S even when PUF′S is no longer in its possession
(and analogously for PUF′R). Specifically, we have each party embed a t-wise independent function
in the PUF they create, where t is large enough so that the behavior of the PUF is indistinguishable
from a random function as far as execution of the protocol (and the attack) is concerned.

For the second type of queries above, we rely on the ability of S and R to create stateful PUFs.
Specifically, we have S create PUFS in such a way that the PUF records (in an undetectable fashion)
all the queries that R makes to PUFS ; this allows S to later recover those queries once PUFS is in
its possession. Queries that S makes to PUFR are handled in a similar fashion.

To complete the proof, we then show that the set of intersection queries as defined above is
enough for the analysis from [2] to apply. Here it is crucial for the parties to find intersection
queries immediately after each message is sent (as opposed to waiting until the end of the protocol)
in order to handle the fact that the PUFs are exchanged between the parties.

3.1 Proof Details

Let Π be a PUF-based OT protocol with ` rounds, where a round involves each party alternately
sending a message, and possibly transferring PUFs, to the other party. (So, we have 2` messages
overall.) We assume without loss of generality that S sends the first message of the protocol. and
R sends the final message. We also assume without loss of generality that Π is in normal form,
meaning that:

1. S and R each ask at most one PUF query in each round, and

2. the party receiving the final message of the protocol does not query the oracle after receiving
this message.
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Any protocol can be transformed to be in normal form without affecting its security.
Let z be (a bound on) the total number of PUFs used in the protocol, and let N be a bound

on the total number of queries made by each party to those PUFs. To simplify notation, we treat
the PUFs {PUF1, . . . ,PUFz} as being defined by a single random function H; the query q = (j, q′),
which corresponds to the query PUFj(q

′) and can only be made by the party who holds PUFj , is
answered with H(j, q′).

For i ∈ [2`] we denote by Siback the set of j ∈ [z] such that PUFj is sent back to its creator along
with the ith message. We let Siother be the set of indices j such that PUFj is not held by its creator
after the ith message is sent. (Note that there can be PUFs that are not in either set.)

We let M = m1, . . . ,m2` denote the messages exchanged in a protocol execution, and let Mi =
m1, . . . ,mi denote the first i messages sent. An augmented message m̃i consists of mi along with
a set ψi that contains all queries made (up to that point in the protocol) to {PUFj}j∈Si

back
by the

party who sent message mi. We let M̃, M̃i denote augmented transcripts, and set Ψi def
= ∪j≤i ψj .

We let V iS denote the view of S up to the moment after the i-th message is sent, which includes
S’s randomness rS , the partial transcript Mi, and all PUF query/answer pairs known to S so far.
V iR is defined analogously for R. We let Q(·) be an operator that extracts the set of queries from
a set of query/answer pairs or a view.

Executions and distributions. A (full) execution of protocol Π can be described by a tuple
(rS , rR, H) where rS denotes S’s randomness, rR denotes R’s randomness, and H is a random
function that determines the behavior of the PUFs used throughout the protocol. (We assume the
parties’ randomness is also used to determine their inputs to the protocol.) We denote by E the
experiment in which uniform (rS , rR, H) are chosen and then the protocol is executed.

Fix a sequence of augmented messages M̃i = [m̃1, . . . , m̃i] and a set of query/answer pairs P for
which PrE [(M̃

i,P)] > 0. We denote by V(M̃i,P) the joint distribution over (V iS ,V iR) (as generated

by E) conditioned on the augmented transcript of the first i messages being equal to M̃i as well as
H(j, q′) = a for all ((j, q′), a) ∈ P. The event Good(M̃i,P) holds in this distribution if and only if

Q(V iS)∩Q(V iR) ⊆ P+, where P+ def
= P∪Ψi, and we define GV(M̃i,P) to be the distribution V(M̃i,P)

conditioned on Good(M̃i,P). For complete transcripts M̃, the distributions V(M̃,P) and GV(M̃,P)
are defined similarly.

The Eve algorithm. We now define a deterministic algorithm Eve. We imagine Eve as running
in 2` steps, where in step i it is given the next value m̃i in the augmented transcript of a protocol
execution, and is assumed to have access to the PUFs in Siother.

Construction 1. Let ε < 1/100 be a parameter. Eve begins with a set P of query/answer pairs
initialized to ∅. In step i, given m̃i, do: as long as there is a query q = (j, q′) /∈ P+ such that

Pr
(Vi
S ,V

i
R)←GV(M̃i,P)

[q ∈ Q(V iS) ∧ j ∈ Siother] ≥
ε2

100m
or Pr

(Vi
S ,V

i
R)←GV(M̃i,P)

[q ∈ Q(V iR) ∧ j ∈ Siother] ≥
ε2

100m
,

Eve queries the lexicographically first such q = (j, q′) to H and adds (q,H(q)) to P.
The output of Eve is the final set P.

Let ∆(A,B) denote the statistical difference between distributions A,B. We show:

Lemma 2. Construction 1 satisfies the following:
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1. The expected number of PUF queries made by Eve (where the expectation is taken over uniform
choice of (rS , rR, H)) is poly(N/ε).

2. Let P be the set output by Eve. (This is a random variable that depends on M̃, which in turn
depends on (rS , rR, H).) Then with probability at least 1− ε/2,

∆(VS(M̃,P)× VR(M̃,P), V(M̃,P)) ≤ ε/2,

where VS(M̃,P) (resp., VR(M̃,P)) is the distribution of S’s view (resp., R’s view) in V(M̃,P).

The proof of this lemma is very similar to the analogous proof by Barak and Mahmoody [2],
and we have based our notation and our description of the Eve algorithm on their work. The
main difference—besides the fact that we consider augmented transcripts—is that we prove (near)
independence of S’s and R’s views, conditioned on the augmented transcript and the queries of Eve,
even though Eve can only make queries to a (different) subset of the PUFs (namely, those in Siother)
after each message mi of the protocol is sent. Briefly, this is sufficient since for any PUF not in
Siother, it must be the case that the augmented transcript contains all queries that one of the two
parties made to that PUF up to the point when mi is sent. Since Siother can change after each
message is sent, it is important that Eve proceeds in an online fashion, asking queries each time a
message is sent, rather than delaying its queries to the end of the protocol as in [2].

We give the proof of Lemma 2 in Section 3.2; readers willing to take the lemma on faith may
skip to Section 3.3, where we use the lemma to prove Theorem 1.

3.2 Analysis of the Eve Algorithm

Here, we prove Lemma 2.
Recall that H is sampled uniformly from the set of all functions from [z] × {0, 1}n → {0, 1}n.

For any partial function F with domain D = [z] × {0, 1}n, we denote by PrH [F ] the probability
(over choice of H) that H is consistent with F . We rely on the following lemma [2]:

Lemma 3. For consistent partial functions F1, F2 it holds that

PrH [F1 ∪ F2] =
PrH [F1] · PrH [F2]

PrH [F1 ∩ F2]
.

We first present a product characterization of the distribution GV(M̃i,P).

Lemma 4. For any (M̃i,P) there exists a distribution S (resp., R) over S’s (resp., R’s) views such
that the distribution GV(M̃i,P) is identical to the product distribution (S ×R) conditioned on the
event Good(M̃i,P). Namely,

GV(M̃i,P) ≡
(
(S×R) | Q(S) ∩Q(R) ⊆ P+

)
,

where P+ def
= P ∪Ψi (note that Ψi is implicit in M̃i).

Proof. Suppose (V iS ,V iR) ← V(M̃i,P) is such that Q(V iS) ∩ Q(V iR) ⊆ P+. For such (V iS ,V iR) we

show that PrGV(M̃i,P)
[(V iS ,V iR)] = α(M̃i,P) ·αS ·αR where α(M̃i,P) depends only on (M̃i,P), where

αS depends only on V iS , and where αR depends only on V iR. This means that if we let S be the
distribution over Supp(V iS) such that PrS[V iS ] is proportional to αS and let R be the distribution
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over Supp(V iR) such that PrR[V iR] is proportional to αR, then GV(M̃i,P) is proportional (and hence
equal to) the distribution ((S×R) | Q(S) ∩Q(R) ⊆ P+).

Since Q(S) ∩Q(R) ⊆ P+ we have

Pr
V(M̃i,P)

[(V iS ,V iR)] = Pr
V(M̃i,P)

[(V iS ,V iR) ∧ Good(M̃i,P)] = Pr
V(M̃i,P)

[Good(M̃i,P)] · Pr
GV(M̃i,P)

[(V iS ,V iR)]. (1)

On the other hand, by the definition of conditional probability we have

Pr
V(M̃i,P)

[(V iS ,V iR)] =
PrE [(V iS ,V iR, M̃i,P)]

PrE [(M̃i,P)]
. (2)

Therefore, by Equations (1) and (2) we have

Pr
GV(M̃i,P)

[(V iS ,V iR)] =
PrE [(V iS ,V iR, M̃i,P)]

PrE [(M̃i,P)] · PrV(M̃i,P)
[Good(M̃i,P)]

. (3)

The denominator of Equation (2) only depends on (M̃i,P) and so we can take β(M̃i,P) =
PrE [(M̃

i,P)] · PrV(M̃i,P)
[Good(M̃i,P)]. In the following we analyze the numerator.

We claim:

PrE [(V iS ,V iR, M̃i,P)] = Pr[rS = rS ] · Pr[rR = rR] · PrE [Q(V iS) ∪Q(V iR) ∪ P].

The reason is that the necessary and sufficient condition that (V iS ,V iR, M̃i,P) occurs in an execution
of the system is that when we sample a uniform (rS , rR, H) it holds that rS equals S’s randomness,
rR equals R’s randomness, and H is consistent with Q(V iS) ∪ Q(V iR) ∪ P. These conditions imply

that S and R will produce transcript M̃i as well.
By Lemma 3, the fact that Ψi ⊆ Q(V iS)∪Q(V iR), and the fact thatQ(V iS)∩Q(V iR) ⊆ P∪Ψi = P+,

we have

PrE [Q(V iS) ∪Q(V iR) ∪ P] = PrE [Q(V iS) ∪Q(V iR) ∪ P+]

= PrH [P+] · PrE [
(
Q(V iS) ∪Q(V iR)

)
\ (P+)]

= PrH [P+] ·
PrE [Q(V iS) \ P+] · PrE [Q(V iR) \ P+]

PrE [
(
Q(V iS) ∩Q(V iR)

)
\ P+]

= PrH [P+] · PrE [Q(V iS) \ P+] · PrE [Q(V iR) \ P+].

Therefore:

PrGV(M̃i,P)
[(V iS ,V iR)] = Pr[rS = rS ] · Pr[rR = rR] · PrH [P+]

×
PrE [Q(V iS) \ P+] · PrE [Q(V iR) \ P+]

β(M̃i,P)
,

and so we can take

αS = Pr[rS = rS ] · PrE [Q(V iS) \ P+], αR = Pr[rR = rR] · PrE [Q(V iR) \ P+],

and α(M̃i,P) = PrH [P+]

β(M̃i,P)
.
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In the remainder of this section, let ε1 = ε2/100.

Lemma 5. Let (M̃i,P) be the augmented partial transcript and the set of oracle query/answer pairs
made by Eve when the last message in M̃i is sent, with PrV(M̃i,P)

[Good(M̃i,P)] > 0. For every such

(M̃i,P), there is a bipartite graph G with vertex sets (US ,UR) and edges E such that:

1. Every vertex u in US has a corresponding view Su for S and a set Qu = Q(Su) \ P+. The
same holds for vertices in UR with R in place of S.

2. There is an edge between u ∈ US and v ∈ UR if and only if Qu ∩Qv = ∅.

3. Every vertex is connected to at least a (1− 2ε1)-fraction of vertices in the other component.

4. The distribution (V iS ,V iR) ← GV(M̃i,P) is identical to sampling a uniform edge (u, v) ← E
and taking (Su,Rv) (i.e., the views corresponding to u and v).

Proof. For fixed (M̃i,P), the bipartite graph G = (US ,UR, E) is defined as follows. Every node
u ∈ US will have a corresponding partial view Su of S that is in the support of the distribution
S from Lemma 4. We let the number of nodes corresponding to a view V iS be proportional to
PrS[S = V iS ], meaning that S corresponds to the uniform distribution over the vertices in US .
Similarly, every node v ∈ UR will have a corresponding partial view Rv such that R corresponds
to the uniform distribution over UR.

For u ∈ US , we define Qu = Q(Su) \
(
P ∪Ψi

)
= Q(Su) \ P+ to be the set of queries outside

P+ that were asked by S in the view Su. We define Qv = Q(Rv) \ P+ similarly. We put an edge
between nodes u and v in G (denoted by u ∼ v) if and only if Qu ∩Qv = ∅.

It can be seen that the distribution GV(M̃i,P) is equal to the distribution obtained by choosing
a uniform edge u ∼ v of G and then outputting the views (Su,Rv). It is thus immediate that
properties 1, 2, and 4 hold. It remains to show property 3. To show this, we will argue that the
graph G is dense as formalized in the next claim.

Claim 6. For every u ∈ US , d(u) ≥ |UR| · (1− 2ε1) and for every v ∈ UR, d(v) ≥ |US | · (1− 2ε1),
where d(w) is the degree of vertex w.

To prove the claim, we first show that for every w ∈ US , it holds that
∑

v∈UR,w 6∼v d(v) ≤ ε1 · |E|.
The reason is that the probability of vertex v being chosen when we choose a uniform edge is
d(v)/|E|, and if

∑
v∈UR,w 6∼v d(v)/|E| > ε1 it means that Pr(u,v)←E [Qw ∩ Qu 6= ∅] ≥ ε1. Moreover,

note that Qw ∩ Qu can only contain queries of the form q = (j, q′) where j ∈ Siback since, for any
j /∈ Siback, the set P+ contains all queries made by at least one of the parties to PUFj by the time
the ith message was sent. Hence, by the pigeonhole principle (since |Qw| ≤ m), there must exist
q = (j, q′) where j ∈ backi such that Pr(u,v)←E [q ∈ Qv] ≥ ε1/m. But this is a contradiction, because
if that holds then q should have been in P by definition of Eve (and hence q could not be in Qw).
The same argument shows that for every w ∈ UR,

∑
u∈US ,w 6∼v d(u) ≤ ε1 · |E|. Thus, for every

vertex w ∈ US ∪ UR, |E 6∼(w)| ≤ ε1|E| where E 6∼(w) denotes the set of edges that do not contain
any neighbor of w (i.e., E 6∼(w) = {(u, v) ∈ E | u 6∼ w ∧ w 6∼}).

The following claim was proved in [2]:

Claim 7. For ε1 ≤ 1/2, let G = (US ,UR, E) be a nonempty bipartite graph where |E 6∼(w)| ≤ ε1 · |E|
for all vertices w ∈ US ∪UR. Then d(u) ≥ |UR| · (1− 2ε1) for all u ∈ US and d(v) ≥ |US | · (1− 2ε1)
for all v ∈ UR.

11



This claim completes the proof of Claim 6 and therefore the proof of Lemma 5.

We say that event Fail holds if and only if for some i ∈ [2`], immediately after the ith message
is sent, S or R makes a query q that was made already by the other party but is not contained in
P+ := P ∪Ψi. If the first query that makes Fail happen is the (i+ 1)st query and i is odd, we say
event RFaili happened, and if i is even we say event SFaili happened.

We prove the following lemma:

Lemma 8. For odd i ∈ [2`] and every (V iR, M̃i,P) sampled by executing the system it holds that

Pr
GV(M̃i,P)

[RFaili | V iR] ≤ 3ε1

2m
.

A symmetric statement holds for even i ∈ [2`] and S.

Proof. Let q = (j, q′) be the (i+ 1)st query of the protocol, made by R immediately after the last
message m̃i in M̃i is sent from S to R. By Lemma 5, the distribution GV(M̃i,P) conditioned on
getting V iR as R’s view is the same as sampling a uniform edge u ∼ v in the graph G conditioned
on Rv = V iR. We prove Lemma 8 even conditioned on choosing any vertex v such that Rv = V iR.
For such fixed v, the distribution of S’s view Sv when we choose a uniform edge u ∼ v′ conditioned
on v = v′ is the same as choosing a uniform neighbor u ← N(v) of the node v and then selecting
S’s view Su corresponding to node u. Let S = {u ∈ US | q ∈ Qu}. Note that if q = (j, q′) is such
that j /∈ Siother then we have

Pr
u←N(v)

[q ∈ Qu] = 0.

This is becauseR can only query a PUF that it holds at the point right after the ith message is sent.
However, if PUFj is such that R currently holds it, and PUFj /∈ Siother, then PUFj must have been

created by R. Thus, by definition of the augmented transcript M̃i, all queries made by S to PUFj
up to this point in the protocol are included in Ψi ⊆ P+ and thus cannot be in Qu = Q(Su) \ P+.

We can therefore focus our attention on queries q = (j, q′) such that j ∈ Si. We have

Pr
u←N(v)

[q ∈ Qu] ≤ |S|
d(v)

≤ |S|
(1− 2ε1) · US

≤ |S| · |UR|
(1− 2ε1) · |E|

≤
∑

u∈S d(u)

(1− 2ε1)2 · |E|
≤ ε1

(1− 2ε1)2 ·m
≤ 3ε1

2m
.

The second and fourth inequalities are by Lemma 5. The third inequality is because |E| ≤ |US |·|UR|,
and the sixth inequality is because ε1 < ε < 1/100. The fifth inequality is by definition of Eve,
who asks high-probability queries (j, q′), for j ∈ Si, as long as such queries exist. Namely, when we
choose a uniform edge u ∼ v (which by Lemma 5 is the same as sampling (V iS ,V iR)← GV(M̃i,P)),
it holds that u ∈ S with probability

∑
u∈S d(u)/|E|. But for all u ∈ S it holds that q ∈ Qu, and so

if
∑

u∈S d(u)/|E| > ε1/m the query q would have been made by Eve already, and by property 2 of
Lemma 5 it cannot be the case that q is in any set Qu.

Given Lemma 8, Lemma 2 holds via the same analysis as in [2].
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3.3 Attacking the Protocol

We now show how to use the Eve algorithm from Construction 1 to derive an attack on protocol Π.
First note that although Eve, as defined, makes an expected polynomial number of queries to the
PUFs, we can modify Eve in the standard way so that it makes at most t = poly(N/ε) queries to
the PUFs and such that with probability at least 1 − ε over the augmented transcript M̃ and the
output P of Eve it holds that

∆(VS(M̃,P)× VR(M̃,P), V(M̃,P)) ≤ ε. (4)

We assume this Eve is used in all that follows.
A second, crucial observation is that both a malicious S and a malicious R can create PUFs

so that they can run Eve during an execution of Π. Here, we rely critically on the fact that the
parties can create malicious, stateful PUFs. We describe how a malicious S can run Eve, but note
that the situation is symmetric from the point of view of a malicious R.

• Let t∗
def
= t + 2N . All PUFs created by S will be modified in the following two ways: first,

instead of being created (honestly) as a random function, each PUF will be defined by choosing
an independent key k for a t∗-wise independent function h. Second, each PUF will use its
state to keep track1 of the queries made to it by R.

• S otherwise runs the protocol honestly, running Eve after each message of the protocol is sent.
We describe how this is done both when S sends and when it receives a message:

– Consider the case after S sends the ith message mi. Observe that S knows ψi because
it knows Siback and it certainly knows the queries it made to those PUFs. Moreover, we
show that it can access the PUFs in Siother. The PUFs in Siother are of two types: those
created by R but currently held by S, and those created by S but currently held by R.
PUFs of the first type can be directly accessed by S. PUFs of the second type can
still be computed by S because they are defined by a t∗-wise independent hash function
whose key is known by S. We conclude that S is able to run Eve in this case.

– Consider the case when S receives the ith message mi. Along with that message, S
receives a set of PUFs Siback from R. Since (by definition) all those PUFs were created
by S, it can extract all the queries made by R to those PUFs and hence compute ψi.
Exactly as before, S can also access all the PUFs in Siother. We conclude that S is able
to run Eve in this case as well.

The total number of queries made to any PUF throughout the entire experiment, whether by S,R
as part of the protocol or by Eve, is at most t+2N = t∗. This means that the resulting distribution
is identical to the one analyzed in Lemma 2 (with the exception that we bound the number of
queries made by Eve, as discussed above).

With the above in place, we show that either S or R can carry out a successful attack by
running Eve. We let Π̃ denote the experiment in which S and R run an honest execution of the
protocol and Eve is additionally run with ε < 1/400. We let VR(M̃,P,VS) denote the distribution

1This is easy to do by having S choose a random “trapdoor” td, and then create a circuit with the following
behavior: on input x 6= td, return hk(x) and concatenate x to the state; on input td, return the current state. Note
that creating PUFs in this way will have only a negligible effect on the output of an honest execution of any PUF-based
protocol, since the probability that the PUF is queried with td during execution of the protocol is negligible.
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on the view of R in Π̃ conditioned on the augmented transcript of the first i messages being equal
to M̃i, the view of S being equal to VS , and H(j, q′) = a for all ((j, q′), a) ∈ P. Given a view VR
of R, we let in(VR) denote the input bit of R in that view, and let out(VR) be the output bit of R
implicit in that view (i.e., as dictated by Π). We define in(VR) analogously for S.

Let p(·) be a sufficiently large polynomial. Clearly, one of the following must hold:

Case 1: For infinitely many λ, with probability at least 1/p(λ) over (M̃,P,VS) generated by a run
of Π̃ either

Pr
VR(M̃,P,VS)

[in(VR) = 0] < 0.45 or Pr
VR(M̃,P,VS)

[in(VR) = 1] < 0.45.

Case 2: For infinitely many λ, with probability at least 1− 1/p(λ) over (M̃,P,VS) generated by a
run of Π̃

Pr
VR(M̃,P,VS)

[in(VR) = 0] ≥ 0.45 and Pr
VR(M̃,P,VS)

[in(VR) = 1] ≥ 0.45.

We show that if case 1 holds then a malicious sender can successfully attack the protocol,
whereas if case 2 holds then a malicious receiver can successfully attack the protocol.

3.3.1 Attack by a Malicious Sender

Assume case 1 holds. The attack by a malicious sender S∗ proceeds as follows. It runs the
protocol with the honest receiver, additionally running Eve after each message is sent (as described
previously). At the end of the execution, it has an augmented transcript M̃, the set of queries P
output by Eve, and its own view VS . It then computes the probabilities

p0
def
= Pr
VR(M̃,P,VS)

[in(VR) = 0] and p1
def
= Pr
VR(M̃,P,VS)

[in(VR) = 1].

Finally, if p0 < 0.45 it outputs 1; if p1 < 0.45 it outputs 0; and otherwise it outputs a random bit.
(Note that p0 + p1 = 1. Therefore, if p0 < 0.45 we must have p1 ≥ 0.55 and vice versa.)

We now analyze the probability with which the output of S∗ is equal to R’s input bit. Since
case 1 holds, we know that for infinitely many λ the probability that p0 < 0.45 or p1 < 0.45 is at
least 1/p(λ). When that happens, S∗ correctly predicts R’s output with probability at least 0.55;
otherwise, S∗ guesses R’s output with probability 0.5. Overall, then, S∗ outputs R’s input with
probability at least

0.55 · 1

p(λ)
+ 0.5 ·

(
1− 1

p(λ)

)
=

1

2
+

1

20 · p(λ)

for infinitely many λ.

3.3.2 Attack by a Malicious Receiver

Assume case 2 holds. The attack by a malicious receiver R∗ proceeds as follows. It runs the
protocol with the honest sender, additionally running Eve after each message is sent (as described
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previously). At the end of the execution, it has an augmented transcript M̃ and the set of queries
P output by Eve. It then computes the probabilities

p′0
def
= Pr
VR(M̃,P)

[in(VR) = 0] and p′1
def
= Pr
VR(M̃,P)

[in(VR) = 1].

If p′0 = 0 or p′1 = 0 then it outputs ⊥ and terminates. Otherwise, it samples views V0
R and V1

R from

VR(M̃,P, in(VR) = 0) and VR(M̃,P, in(VR) = 1), respectively (where VR(M̃,P, in(VR) = b) denotes
that the distribution is additionally conditioned on in(VR) = b). Finally, it outputs s′0 = out(V0

R)
and s′1 = out(V1

R).
We are interested in the probability with which s′0, s

′
1 correspond to the inputs bits of S. Toward

this, we first prove the following lemma:.

Lemma 9. With probability at least 1−
√
ε− ε > 1− 2

√
ε over (M̃,P,VS) generated in Π̃:

∆
(
VR(M̃,P), VR(M̃,P,VS)

)
≤
√
ε.

Proof. Note that for any fixed (M̃,P),

∆
(
VS(M̃,P)× VR(M̃,P), V(M̃,P)

)
= ExpVS∼VS(M̃,P)

[
∆
(
VR(M̃,P), VR(M̃,P,VS)

)]
.

Moreover, from Equation (4) we know that with probability at least 1− ε over (M̃,P)

∆
(
VS(M̃,P)× VR(M̃,P), V(M̃,P)

)
≤ ε.

The lemma follows using Markov’s inequality.

Since case 2 holds, we know that for infinitely many λ the probability that both

Pr
VR(M̃,P,VS)

[in(VR) = 0] ≥ 0.45 and Pr
VR(M̃,P,VS)

[in(VR) = 1] ≥ 0.45

is at least 1− 1/p(λ). By perfect correctness, we also have

Pr
VR(M̃,P,VS)

[in(VR) = 0 ∧ out(VR) 6= s0] = 0 and Pr
VR(M̃,P,VS)

[in(VR) = 1 ∧ out(VR) 6= s1] = 0.

Thus, using Lemma 9 and the fact that ε ≤ 1/400 (so 2
√
ε ≤ 0.1), and taking p large enough so that

1/p(λ) ≤ 0.1, we have that (for infinitely many λ) with probability at least 1− 2
√
ε− 1/p(λ) ≥ 0.8

over (M̃,P,VS) generated in Π̃ all the following hold:

• PrVR(M̃,P)
[in(VR) = 0] ≥ 0.4 and PrVR(M̃,P)

[in(VR) = 1] ≥ 0.4.

• PrVR(M̃,P)
[in(VR) = 0 ∧ out(VR) 6= s0] ≤ 0.05.

• PrVR(M̃,P)
[in(VR) = 1 ∧ out(VR) 6= s1] ≤ 0.05.

Returning to our analysis of R∗, we thus see that, for infinitely many λ, with probability at
least 0.8 it holds that p′0 6= 0, p′1 6= 0, and

Pr
VR(M̃,P)

[out(VR) 6= s0 | in(VR) = 0] ≤ 1/8 and Pr
VR(M̃,P)

[out(VR) 6= s1 | in(VR) = 1] ≤ 1/8.

So with probability at least 0.8 ·
(
1− 1

8 −
1
8

)
= 0.6, the output of R∗ is equal to the input of S.
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4 Feasibility Results for Malicious, Stateless PUFs

We show that universally composable two-party computation is possible if the adversary is limited to
creating stateless malicious PUFs. The core of our result is an unconditionally secure construction
of a universally composable OT protocol in this model, described in Section 4.1. In Section 4.2 we
briefly discuss how this protocol can be used to obtain the claimed result.

Sender S Receiver R
create PUF

PUF−−−−−−−−−→
i = 1, . . . , N :

ci←{0, 1}λ

ri := PUF(i, ci)

store (c1, r1), . . . , (cN , rN )
PUF←−−−−−−−−−

For i = 1, . . . , N do:

Input: s0, s1 ∈ {0, 1}λ Input: b ∈ {0, 1}
x← {0, 1}λ x−−−−−−−−−−−→

v := ci ⊕ (b · x)
v←−−−−−−−−−−−

r̂0 := PUF (i, v)

r̂1 := PUF (i, (v ⊕ x))

S0 := s0 ⊕ r̂0

S1 := s1 ⊕ r̂1

S0, S1−−−−−−−−−−−→
Output: sb := Sb ⊕ ri

Figure 3: Our OT protocol. Following a preprocessing phase, the parties can execute N instances
of oblivious transfer.

4.1 Universally Composable Oblivious Transfer

Our OT protocol adapts the protocol of Brzuska et al. [4], which was proven secure against attackers
limited to honestly generated PUFs. It is easy to see that their protocol is not secure against
attackers who can create malicious stateless PUFs. We show that having the sender create the
PUF instead of the receiver is sufficient to obtain security in that case.

The protocol, described in Figure 3, consists of a preprocessing phase run by the sender S and
receiver R, followed by a pre-determined number N of oblivious transfers. In the preprocessing
phase, S first creates a PUF PUF and sends it to the receiver. The receiver then chooses N uniform

16



values c1, . . . , cN and, for each one, computes ri := PUF(i, ci). It then sends PUF back to S. (Recall
from Section 2 that we assume S can verify that R sent back the same PUF that S created.)

When the parties want to execute the ith oblivious transfer, they proceed as follows. S begins
by sending a uniform value x. Then R, with choice bit b, computes v := ci ⊕ (b · x) and sends v
back to S. The sender then computes r̂0 := PUF(i, v) and r̂1 := PUF(i, v⊕x), and uses these values
to “mask” its inputs s0, s1. Since R knows PUF(i, v ⊕ (b · x)) = PUF(i, ci), it can recover sb.

We prove that this protocol is secure even if a malicious S can create a malicious (but state-
less) PUF. Our proof of security is unconditional, but assumes that the malicious party is limited
to querying a PUF on polynomially many points. (As usual, we also assume an authenticated
communication channel between S and R, but omit explicit mention of it.)

Theorem 10. The protocol in Figure 3 securely realizes FOT in the F0
PUF-hybrid model.

Proof. For simplicity we assume N = 1, but the proof extends in a straightforward way for N > 1.
The case where both S and R are honest is trivial, and so we focus on the case where one of the
parties is corrupted.

Receiver is corrupted. We take the corrupted receiver R∗ to be the dummy adversary who
simply forwards messages to/from the environment Z. We describe an ideal-world simulator Sim
that plays the role of the receiver in an interaction with the ideal-world OT functionality FOT. We
then argue that no environment Z can distinguish an interaction between an honest S and Sim in
the ideal world from an execution of our protocol between S and R∗ in the F0

PUF-hybrid world.
Sim is defined as follows:

• Sim simulates a copy of an honestly generated PUF PUF sent by S. When Z requests to
make a query PUF(i, c), a fresh random value is chosen and returned to Z. At some point,
Z indicates that PUF should be returned to S. (Recall from Section 2 that we assume S can
verify that its PUF is returned, and the protocol does not proceed until this is done.) Let Q
denote the set of queries of the form PUF(1, ?) made in this step.

• When the second phase of the protocol is initiated, Sim chooses a uniform value x and sends
it to Z (as if sent by S). Next, Z specifies a message v to be sent to S. Then:

– If v ∈ Q and v ⊕ x ∈ Q then Sim aborts.

– If v ∈ Q but v ⊕ x 6∈ Q then Sim sets b = 0 and r̂ = PUF(1, v) (i.e., r̂ is the value
returned previously in response to the same query).

– If v 6∈ Q but v ⊕ x ∈ Q then Sim sets b = 1 and r̂ = PUF(1, v ⊕ x).

– If v 6∈ Q and v ⊕ x 6∈ Q then Sim sets b = 1 and chooses uniform r̂.

Sim sends b to FOT and receives in return a bit sb. It then sets Sb := sb ⊕ r̂ and chooses
uniform Sb̄. Finally, it sends S0, S1 to Z.

It is not hard to see that the simulation is perfect unless v ∈ Q and v ⊕ x ∈ Q. We show that
this event, which we call Bad, occurs with negligible probability. Let p = p(λ) be a bound on the
number of queries to PUF made by Z, so |Q| ≤ p. Event Bad can only possibly occur if there exist
q1, q2 ∈ Q such that q1 ⊕ q2 = x. Since there are at most p2 pairs q1, q2 ∈ Q and x is uniform, this
means that the probability of Bad is at most p2/2λ, which is negligible.
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Sender is corrupted. We take the corrupted sender S∗ to be the dummy adversary who simply
forwards messages to/from the environment Z. We describe an ideal-world simulator Sim that
plays the role of the sender in an interaction with the ideal-world OT functionality FOT. We then
argue that no environment Z can distinguish an interaction between an honest R and Sim in the
ideal world from an execution of our protocol between R and S∗ in the F0

PUF-hybrid world.
Sim is defined as follows:

• We assume without loss of generality that Z requests creation of a malicious PUF PUF∗,
defined via a circuit C. Any queries by Z to PUF∗, whether in this phase or the next phase,
are answered in the obvious way by Sim. (Note that C may require oracle access to an
honestly generated PUF, but that can be handled by Sim in the natural way.)

Sim simulates the sending of PUF∗ to R as well as its return.

• Z specifies a message x (to be sent to R), and in response Sim chooses a uniform v and
sends it to Z. Next, Z specifies messages S0, S1 (to be sent to R). At this point, Sim locally
computes r̂0 := PUF∗(1, v) and r̂1 := PUF∗(1, v ⊕ x), sets sb = Sb ⊕ r̂b for b ∈ {0, 1}, and
sends (s0, s1) to FOT.

It is immediate that the simulation is perfect. (Here we crucially rely on the fact that PUF∗ is
stateless, so it always returns the same response to the same challenge, and contains no information
about R’s queries.)

4.2 From UC Oblivious Transfer to UC Two-Party Computation

We observe that our UC oblivious-transfer protocol can be used to obtain UC two-party computa-
tion of any functionality. The main idea is to first construct a protocol with semi-honest security
based on Yao’s garbled-circuit protocol (using a PUF to implement a pseudorandom function), and
then to apply the compiler of Ishai, Prabhakaran, and Sahai [12].

Semi-honest secure two-party computation. Lindell and Pinkas presented a proof for Yao’s
two-party secure-computation protocol [15]. They show how to instantiate the garbling part of the
protocol with a private-key encryption scheme having certain properties. In addition, they show
that any pseudorandom function is sufficient to instantiate such a private-key encryption scheme.

Our main observation is that we can replace the pseudorandom function with a PUF. Specifi-
cally, the circuit-generator in Yao’s protocol will create a PUF PUF and define Fk(x) = PUF(k, x).
If the circuit generator is honest, then this defines a good pseudorandom function; if the circuit
generator is malicious (and in particular if the PUF is malicious), it cannot violate privacy of the
other party. (We remark that Brzuska et al. [4] also observed that PUFs can be used to implement
a pseudorandom function, though in a different context and assuming honest PUFs.)

Since we showed in the previous section that FOT can be realized in the F0
PUF-hybrid model,

we thus have (we continue to omit explicit mention of an authenticated channel):

Theorem 11. Let f be any functionality. There is a (constant-round) protocol that securely com-
putes f for semi-honest adversaries in the F0

PUF-hybrid model.

Universally composable two-party computation. In the next step we apply the IPS com-
piler [12]. This is a black-box compiler that relies on protocols of the following types:
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1. An “outer” multi-party computation protocol Π with security against a constant fraction of
malicious parties.

2. An “inner” two-party protocol ρ, in the FOT-hybrid model, secure against semi-honest parties.

The result of the IPS compiler is a two-party protocol, in the FOT-hybrid model, that is universally
composable for malicious adversaries.

In our setting, we instantiate the “outer” protocol with the BGW protocol [3], which is un-
conditionally secure in the presence of a malicious minority. We instantiate the “inner” protocol
with the protocol from Theorem 11. Using Theorems 10 and 11, along with the UC composition
theorem, we thus obtain the following result:

Theorem 12. Let f be any functionality. There is a protocol that securely computes f for malicious
adversaries in the F0

PUF-hybrid model.

Acknowledgments
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award #1223623. Work of Dominique Schröder was also supported by an Intel Early Career Faculty
Honor Program Award. Work of Jonathan Katz was supported in part by NSF award #1223623.
Work of Anna Lysyanskaya was supported by NSF awards #0964379 and #1012060.

References

[1] Frederik Armknecht, Roel Maes, Ahmad-Reza Sadeghi, François-Xavier Standaert, and Chris-
tian Wachsmann. A formalization of the security features of physical functions. In IEEE
Symposium on Security and Privacy, pages 397–412. IEEE, 2011.

[2] Boaz Barak and Mohammad Mahmoody-Ghidary. Merkle puzzles are optimal—an O(n2)-
query attack on any key exchange from a random oracle. J. Cryptology, 30(3):699–734, 2017.

[3] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems for noncrypto-
graphic fault-tolerant distributed computations. In 20th Annual ACM Symposium on Theory
of Computing (STOC), pages 1–10. ACM Press, 1988.

[4] Christina Brzuska, Marc Fischlin, Heike Schröder, and Stefan Katzenbeisser. Physically un-
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[21] Ulrich Rührmair and Marten van Dijk. PUFs in security protocols: Attack models and security
evaluations. In IEEE Symposium on Security and Privacy, pages 286–300. IEEE, 2013.
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