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Abstract

Everlasting security models the setting where hardness assumptions hold during the execu-
tion of a protocol but may get broken in the future. Due to the strength of this adversarial
model, achieving any meaningful security guarantees for composable protocols is impossible
without relying on hardware assumptions (Müller-Quade and Unruh, JoC’10). For this rea-
son, a rich line of research has tried to leverage physical assumptions to construct well-known
everlasting cryptographic primitives, such as commitment schemes. The only known everlast-
ingly UC secure commitment scheme, due to Müller-Quade and Unruh (JoC’10), assumes hon-
estly generated hardware tokens. The authors leave the possibility of constructing everlastingly
UC secure commitments from malicious hardware tokens as an open problem. Goyal et al.
(Crypto’10) constructs unconditionally UC-secure commitments and secure computation from
malicious hardware tokens, with the caveat that the honest tokens must encapsulate other to-
kens. This extra restriction rules out interesting classes of hardware tokens, such as physically
uncloneable functions (PUFs).

In this work we present the first construction of an everlastingly UC-secure commitment
scheme in the fully malicious token model without requiring honest token encapsulation. Our
scheme assumes the existence of PUFs and is secure in the common reference string model. We
also show that our results are tight by giving an impossibility proof for everlasting UC-secure
computation from non-erasable tokens (such as PUFs), even with trusted setup.

1 Introduction

The security of almost all cryptographic schemes relies on certain hardness assumptions. These as-
sumptions are believed to hold right now, and researchers are even fairly certain that they will not be
broken in the near future. It is widely believed, for example, that the computational Diffie-Hellmann
and the RSA assumptions hold in certain groups. But what about the security of these assumptions
in 10, 20, or 100 years? Can we give any formal security guarantees for current constructions that
remain valid in the distant future? This is certainly possible for information-theoretic schemes

1



and properties. However, given that many interesting functionalities are impossible to realise in an
information theoretic sense, this leaves us in a very unsatisfactory situation.

To overcome this problem, Müller-Quade and Unruh suggested a novel security notion widely
known as everlasting universal composability security [MQU07] (building on the work of Rabin on
virtual satellites [Rab03]). The basic idea of this security notion is to bound the running time
of the attacker only during the protocol execution. After the protocol run is over, the attacker
may run in super-polynomial time. This models the intuition that computational assumptions
are believed to hold right now, and therefore, during the protocol run. However, at some point
in the future, known computational assumptions may no longer hold. Everlasting UC security1

refers to a composable protocol that remains secure in these settings. The everlasting UC security
model has also been considered for quantum protocols [Unr13]. Everlasting UC security is clearly
a very desirable security notion, and since it is strictly weaker than statistical UC security, one
may hope that it is easier to achieve. However, Müller-Quade and Unruh showed that everlasting
UC commitments cannot be realised, not even in the common reference string (CRS), or with a
public-key infrastructure (PKI) [MQU10].

Everlasting UC Security From Hardware Assumptions. The stark impossibility result of
Müller-Quade and Unruh raises the question whether the notion is achievable at all. The authors
answered this question affirmatively by presenting two constructions based on hardware assump-
tions. The first construction is based on a tailored-made hardware token that embeds a random
oracle. The second construction relies on signature cards [MQU10]. However, both constructions
assume that the hardware token is honestly generated. The authors left open the question whether
it is possible to achieve everlasting security in the setting of maliciously generated hardware tokens.
Goyal et al. [GIMS10] constructs unconditionally UC-secure commitments and secure computation
(as opposed to everlasting) from malicious hardware tokens. However, the construction of [GIMS10]
requires honest tokens to encapsulate other tokens, ruling out some classes of hardware tokens such
as physically uncloneable functions (PUFs).

Physically Uncloneable Functions (PUFs). In this work, we present an everlastingly UC
secure commitment scheme assuming the existence of PUFs. Loosely speaking, PUFs are physical
objects that can be queried by mapping an input to a specific stimulus and mapping an observable
behavior to an output set. The crucial properties for a PUF are (i) that it should be hard (if not
impossible) to clone and (ii) that it should be hard to predict the output on any input without first
querying the PUF on a close enough input.

1.1 Our Contributions

We initiate the study of everlasting UC security in the setting of maliciously-generated hardware
tokens, such as PUFs. Our model extends the frameworks of [BKOV17, CGS08] by introducing
fully malicious hardware tokens, whose state is not a-priori bounded, the generator of a token can
install arbitrary code inside of it, and it can encapsulate (and decapsulate) other (possibly fully
malicious) tokens within itself. Our contributions can be summarized as follows:

• Aiming at bridging the gap between hardware tokens and PUFs, we propose a unified ideal
functionality for fully malicious tokens that is general enough to capture hardware devices

1We use the terms “everlasting security” and “everlasting UC security” interchangeably in this paper to describe
protocols that are everlasting secure and exhibit a composition theorem which allows a modular design of such
protocols.
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with arbitrary functionalities such as PUFs and signature cards.
• We put forward a novel definition for unpredictability of PUFs. We argue that the formal-

ization from prior works [OSVW13,BFSK11,Mae13] is not sufficient for our setting because
it does not exclude adversaries that may indeed predict the PUF responses for values never
queried to the PUF. We demonstrate this fact in Section 4.1.1 by giving a concrete coun-
terexample.

• We show with an impossibility result that one cannot hope to achieve an everlastingly secure
oblivious transfer (OT) (therefore, secure computation) in the malicious token setting by
using non-erasable (honestly generated) tokens; non-erasable tokens can keep a state but are
not allowed to erase previous states.

• Finally, we present an everlastingly UC secure commitment scheme in the fully malicious
token model. Our protocol assumes the existence of PUFs and allows for the PUF to be
reused for polynomially many runs of the protocol. Our cryptographic building blocks can
be instantiated from standard computational assumptions, such as the learning with errors
(LWE) problem.

1.2 Related Work

Everlasting and Memory Bound Adversaries. Everlasting security was first considered in
the setting of memory-bounded adversaries [CM97, CCM98], and later extended to the UC set-
ting by Müller-Quade and Unruh [MQU10]. Rabin [Rab03] suggested a construction using dis-
tributed servers of randomness, called virtual satellites, to achieve everlasting security. The re-
sulting scheme remains secure if the attacker that accesses the communication between the parties
and the distributed servers is polynomially bounded during the key exchange. Dziembowski and
Maurer [DM08] showed that protocols in the bounded storage model do not necessarily stay secure
when composed with other protocols.

Damg̊ard [Dam00] presented a statistical zero-knowledge protocol secure under concurrent com-
position. Although counterintuitive, statistical zero-knowledge may lose its everlasting property un-
der composition. This was illustrated in [MQU10] for statistically hiding UC commitments [DN02]
which were shown to leak secrets under (even sequential) composition; they are composable and
statistically hiding, but not at the same time (i.e., the composability only holds for the computa-
tional hiding property, intuitively). Technically, the reason for this is that the common reference
string used by the simulator is not statistically indistinguishable. For the same reason, the protocol
of Damg̊ard [Dam00] does not directly translate into an everlasting commitment scheme: For this
specific case, the gap consists in extracting the witness from adversarial proofs using a common
reference string that is statistically close to the honestly sampled one.

(Malicious) Hardware Tokens. A model proposed in [Kat07] allows parties to build hardware
tokens to compute functions of their choice, such that an adversary, given a hardware token T
for a function F , can only observe the input and output behaviour of T . The motivation is that
the existence of a tamper-proof hardware can be viewed as a physical assumption, rather than a
trust assumption. The authors show how to implement UC-secure two-party computation using
stateful tokens, under the DDH assumption. Shortly after, Moran and Segev [MS08] showed that
in the hardware token model of [Kat07] even unconditionally secure UC commitments are possible
using stateful tokens. This result was later extended by [GIS+10] for unconditionally UC-secure
computation, also using stateful tokens.
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One limitation of the model of [Kat07] is the assumption that all parties (including the adver-
sary) know the code running inside the hardware token it produces; this assumption gives extra
power to the simulator, allowing it to rewind the hardware token in the proofs of [Kat07, MS08,
GIS+10]. However, this assumption rules out real scenarios where the adversary can create a new
hardware token that simply “encapsulates” a hardware token it receives from some party and that
the adversary does not know the code running inside of it.

In this direction, Chandran et al. [CGS08] extended the model of [Kat07] to allow for the
hardware tokens produced by the adversary to be stateful, to encapsulate other tokens inside of it
and to be passed on to other parties. They constructed a computationally secure UC commitment
protocol without setup, assuming the existence of stateless hardware tokens (signature cards).
Unfortunately, the construction of [CGS08] cannot fulfil the notion of unconditional (or everlasting)
security since it requires perfectly binding, and therefore only computationally hiding, commitments
as a building block.

Goyal et al. [GIMS10], following the model of [CGS08] prove that statistically secure OT from
stateless tokens is possible if (honest) tokens can encapsulate other tokens. However, honest token
encapsulation is highly undesirable in practice, and in particular not even compatible with PUFs
as they are physical objects. Interestingly, the authors also show that statistically secure OT (and
therefore secure computation) is impossible to achieve when one considers only stateless tokens
that cannot be encapsulated. To circumvent this impossibility result, Döttling et al. [DKMQ11,
DKMN15] studied the feasibility of secure computation in the stateful token model, where the
adversary is not allowed to rewind the token arbitrarily. Although this model has a practical
significance, it does not cover certain classes of hardware tokens, such as PUFs. Later, a rich line
of research investigated on the round complexity of secure computation using stateless hardware
tokens [HPV16,MMQN16] in the computational setting. Unfortunately, it seems that the security
guarantees of these protocols cannot be lifted to the everlasting model: In Section 5 we present
an impossibility result against everlastingly UC secure computation from stateful but non-erasable
honest tokens. The result holds even in the presence of an honestly-sampled CRS.

PUFs. Brzuska et al. [BFSK11] introduced PUFs in the UC framework, and proposed UC construc-
tions of several interesting cryptographic primitives such as oblivious transfer, bit commitment, and
key agreement. Ostrovsky, Scafuro, Visconti and Wadia [OSVW13], pointed out that the previous
results implicitly assume that all PUFs, including those created by the attacker, are honestly gen-
erated. To address this limitation, they defined a model in which an attacker can create malicious
PUFs having arbitrary behaviour. Many of the previous protocols can be easily attacked in this new
adversarial setting, but Ostrovsky, Scafuro, Visconti and Wadia showed that it is possible to con-
struct universally composable protocols for secure computation in the malicious PUF model under
additional, number-theoretic assumptions. They leave open the question of whether unconditional
security is possible in the malicious PUF model. Damg̊ard and Scafuro [DS13] have made partial
progress on this question presenting a commitment scheme with unconditional security based on
PUFs. However, as shown by [BKOV17] in the form of an attack, the construction of [DS13] com-
pletely breaks when the the adversary is allowed to generate encapsulated PUFs. Dachman-Soled,
Fleischhacker, Katz, Lysyanskaya and Schröder [DFK+14] investigated the possibility of secure
two-party computation based on malicious PUFs. Badrinarayanan, Khurana, Ostrovsky, and Vis-
conti [BKOV17] introduced a model where the adversary is allowed to generate malicious PUFs
that encapsulate other PUFs inside of it; the outer PUF has oracle access to all its inner PUFs.
The security of their scheme assumes a bound on the memory of adversarially generated PUFs.
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Reference Functionality Model Honest token Fully malicious?
Katz [Kat07] 2PC computational stateful ✗

Moran and Segev [MS08] commitments unconditional stateful ✗

Chandran et al. [CGS08] commitments computational signature card ✓

Ostrovsky et al. [OSVW13] 2PC computational PUF ✗

Damg̊ard and Scafuro [DS13] commitments unconditional PUF ✗

Goyal et al. [GIS+10] 2PC computational stateless ✗

Goyal et al. [GIS+10] 2PC unconditional stateful ✗

Goyal et al. [GIMS10] 2PC unconditional stateless (with token encapsulation) ✓

Dachman-Soled et al. [DFK+14] 2PC unconditional PUF ✗

Badrinarayanan et al. [BKOV17] 2PC unconditional PUF ✗

Our scheme (section 6) commitments everlasting PUF ✓

Table 1: Comparison of UC secure schemes based on tamper-proof hardware tokens. Fully malicious tokens are
the ones whose state is not a-priori bounded, the creator of the token can install arbitrary code inside of it, and the
token can encapsulate other (possibly fully malicious) tokens within itself.

In Table 1 we show a comparison of UC schemes based on malicious hardware tokens (including
PUFs).

1.3 Technical Overview

In the following we give an informal overview of our everlasting UC commitment scheme construc-
tion, and we introduce the main ideas behind our proof strategy. Besides PUFs, our protocol
assumes the existence of the following cryptographic building blocks:

• A non-interactive statistically hiding (NI-SH) UC-secure commitment (Com).
• A 2-round statistically receiver private UC-secure oblivious transfer (OT).
• A statistical witness-indistinguishable argument of knowledge (SWIAoK).
• A strong randomness extractor H.

The message flow of our protocol is shown in Figure 1. The protocol is executed by a committer
(Alice) and a recipient (Bob). We assume that both parties have access to a uniformly sampled
common reference string that contains a random image of a one-way permutation y = f(x).

Protocol Overview. At the beginning of a commitment execution, Bob prepares a series of
random string-pairs (p0

i , p1
i ), and queries them to the PUF to obtain the corresponding pair (q0

i , q1
i );

the PUF is then transferred to Alice. Here we make the simplifying assumption that a PUF is used
only for a single run of the commitment. Note however that one can re-use the same PUF by
having Bob computing as many tuples (p0

i , p1
i ) as needed, and by querying the PUF on all of these

values before passing it to Alice.
Alice samples a random string k ∈ {0, 1}ℓ(λ) and engages Bob in many parallel OT instances,

where Alice receives pki
i , and where ki denotes the i-th bit of k. Alice queries the strings pki

i to the
PUF and sends to Bob:

• a set of NI-SH commitments (com1, . . . , comℓ(λ)) to the outputs of the PUF,
• an (NI-SH) commitment com to m, and
• the string ω := H(seed, k)⊕m∥decom.

Alice then produces a SWIAoK that certifies that either (i) all of her messages were honestly
generated, or (ii) she knows a pre-image x such that f(x) = y.

The idea here is that, if an algorithm recovers k, then it can also recompute H(seed, k) and
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extract the message m. Note that the value of k is “encoded” in the OT bits of Alice for the pki
i ,

and those values are queried by Alice to the PUF. Therefore, an extractor that sees the queries
of Alice can easily recover the message m. What is not clear at this point is how to enforce
Alice to query the PUF on the correct pki

i and not on some other random string. For this reason,
we introduce an additional authentication step where Bob publishes all the pairs (q0

i , q1
i ). In the

opening phase, Alice proves (with a SWIAoK) to Bob that the vector of commitments sent in the
previous interaction opens indeed to qk1

1 , . . . , q
kℓ(λ)
ℓ(λ) , up to small errors (or she knows the pre-image

of y). Intuitively, Alice cannot convince Bob without querying all the pki
i , since she would need to

guess some qki
i without knowing the pre-image pki

i (due to the security of the OT). In the proof,
the extractor can recover k by just looking at the queries Alice made to the PUF.

To see why the commitment is hiding, it is sufficient to observe that k hides the message in an
information theoretic sense, under the assumption that the OT and SWIAoK protocols are secure.
One subtlety that we need to address is that some bits of k might be revealed by the aborts of
Alice. For this reason, we one-time-pad the message m with H(seed, k): The strong randomness
extractor guarantees that the value H(seed, k) is still uniformly distributed even if some bits of k
are leaked.
Proof Sketch (Hiding). We show that our commitment scheme is hiding through a series of
hybrids where at the last step Alice can equivocate the commitment to any message of her choice.
Note that every step is information-theoretic.
H1: Alice uses x, the pre-image of y, as a witness to compute the SWIAoK. Since the AoK is
statistically witness indistinguishable, this hybrid is statistically close to the original protocol.
H2: Alice uses the simulator for the OT protocols and extracts both values (p0

i , p1
i ). Since the OT

is statistically receiver-private, this hybrid is statistically close to the previous. In the full proof
this is shown via a hybrid argument.
H3: Alice computes comi as commitment to a random string. A hybrid argument can be used
to bound the distance of this hybrid with the previous by the statistically-hiding property of the
commitment scheme.
H4: Alice chooses the value of k for all sessions upfront. Here the change is only syntactical.
H5: Alice no longer queries the PUF token but instead checks that the output pairs (q0

i , q1
i ) sent

by Bob correspond to the correct outputs of the PUF on input (p0
i , p1

i ). Note that the state of the
PUF is fixed once the PUF is sent to Alice and therefore the consistency of all pairs (q0

i , q1
i ) is well

defined. Note that the relation is not efficiently computable by Alice, but for information-theoretic
security the fact that it is defined is enough. Since Alice retains the ownership of the PUF, this
hybrid is identical to the previous.
H5: Alice samples ω uniformly at random. Note that in H4 the leakage of Alice of k is bounded by
whether she aborts or not. Since Alice aborts at most once and since there are at most polynomially-
many sessions, we can bound the leakage of k to O(log λ) bits. Leveraging the randomness extractor
H, we can argue that H4 and H5 are statistically indistinguishable.
H6: Alice opens the commitment to a message of her choice. Note that in H5 the original message
m is information-theoretically hidden.
Proof Sketch (Binding). To argue that the scheme is binding we define the following extractor:
The algorithm examines the list of queries made by Alice to the PUF and, for each i, it checks
whether some query q is equal to pb

i (for b ∈ {0, 1}), if this is the case then it sets ki = b. Once
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Alice(m, y = f(x)) Commitment Bob(y = f(x))

(com, decom)← Com(m) PUF← SamplePUF
seed← {0, 1}d

{
pz

i ← {0, 1}λ

qz
i ← PUF(pz

i )

}
i∈[ℓ(λ)],z∈{0,1}k ← {0, 1}ℓ(λ)

PUF←−−−−−−−−−−−−−−−−−−
seed−−−−−−−−−−−−−−−−−−→

OT


βi ← PUF(αi)
if βi is invalid set βi = 0ℓ(λ)

(comi, decomi)← Com(βi)


i∈ℓ(λ)

ω := H(seed, k)⊕m∥decom
com, ω, {comi}i∈[ℓ(λ)]−−−−−−−−−−−−−−−−−−→

SWIAoK (P1,V1)

if b = 0 abort all instances

{(q0
i , q1

i )}i∈[ℓ(λ)]←−−−−−−−−−−−−−−−−−−
output (commited, id)

Opening

m−−−−−−−−−−−−−−−−−−→

SWIAoK (P2,V2)

if b′ = 1 then (unveiled, id, m)

ki (p0
i , p1

i )

αi := pki
i

{βi, decomi}i∈[ℓ(λ)] {comi}i∈[ℓ(λ)]

b ∈ {0, 1}

k, decom, {decomi}i∈[ℓ(λ)] m, com, ω, {comi, q0
i , q1

i }i∈[ℓ(λ)]

b′ ∈ {0, 1}

Figure 1: Message flow diagram between Alice and Bob for the commitment and opening phases
of our protocol in Section 6.
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the full k is reconstructed, the extractor computes ω ⊕H(seed, k) = m∥decom and outputs m. To
show that the extractor always succeeds we need to argue that:

1. The value of k is always well-defined: If some q = p0
i and some other query q′ = p1

i , then the
bit ki is not well defined. However, this means that Alice learned both p0

i and p1
i from the

OT protocol, which is computationally infeasible.
2. The string k is always fully reconstructed: If no query q is equal to p0

i or p1
i , then the i-th

bit of k is not defined. This implies that Alice never queried p0
i or p1

i to the PUF. However
note that Alice should produce a commitment comi to either PUF(p0

i ) or PUF(p0
i ) and prove

consistency. This is clearly not possible without querying the PUF unless Alice breaks the
binding of the commitment or proves a false statement in the SWIAoK. To establish the latter,
we also need to rule out the case where Alice computes the SWIAoK using the knowledge of
x, the pre-image of y. In the full proof we show this via a reduction against the one-wayness
of the one-way permutation f .

We are now in the position to show that the extracted message m is identical to the one that
Alice decommits to. Recall that Alice proves that she committed to the values PUF(pki

i ) such that
ω ⊕ H(seed, k) = m∥decom. It follows that, if k is uniquely defined, then the extractor always
returns the correct m, unless Alice can break the soundness of the SWIAoK (or inverts the one-way
permutation). By the above conditions, this happens with all but negligible probability.

On the Common Reference String. Our protocol needs to assume the existence of a common
reference string to equivocate commitments in the security proof: Having access to the generation
of the crs, the simulator can craft proofs for false statements, simulate the OT, and extract the
commitments. Note that the simulation has to be “straight-line”, since we cannot rewind the
adversary in the UC framework. A previous work [OOR+14] circumvented this issue by leveraging
some computationally hard problem. Unfortunately this class of techniques does not seem to apply
to the everlasting setting since the environment can distinguish a simulated trace once it becomes
unbounded. The work of [DS13] builds unconditionally secure commitments from PUFs without
a CRS, but as shown by [BKOV17], the construction breaks down in our model where the the
adversary is allowed to generate encapsulated PUFs. It is not clear if the techniques of [DS13] can
be adapted to our setting. We leave the question of removing the necessity of a common reference
string from our protocol as a fascinating open problem.

2 Preliminaries

In the following we introduce the notation and the building blocks necessary for our results.

2.1 Notations

An algorithm A is probabilistic polynomial-time (PPT) if A is randomized and for any input x, r ∈
{0, 1}∗ the computation of A(x; r) terminates in at most poly(|x|) steps. We denote with λ ∈ N the
security parameter. A function negl is negligible, if for any positive polynomial p and sufficiently
large k, negl(k) < 1/p(k). A relation R ∈ {0, 1}∗×{0, 1}∗ is an NP relation if there is a polynomial-
time algorithm that decides (x, w) ∈ R. If (x, w) ∈ R, then we call x the statement and x
witness for x. We denote by hd(x, x′) the Hamming distance between two bitstrings x and x′.
Given two ensembles X = {Xλ}λ∈N and Y = {Yλ}λ∈N, we write X ≈ Y to denote that the two
ensembles are statistically indistinguishable, and X ≈c Y to denote that they are computationally
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indistinguishable. We denote the set {1, . . . , n} by [n]. We recall the definition of statistical
distance.

Definition 1 (Statistical Distance). Let X and Y be two random variables over a finite set U .
The statistical distance between X and Y is defined as

SD [X, Y ] = 1
2
∑
u∈U
|Pr[ X = u]− Pr[ Y = u]| .

2.2 Cryptographic Building Blocks

One Way Function. A one-way function is a function that is easy to compute and hard to invert.
It is the building block of almost all known cryptographic primitives.

Definition 2. A function f : {0, 1}∗ → {0, 1}∗ is one way if and only if it can be computed in
polynomial time but for all PPT algorithms A, there exists a negligible function negl such that

Pr
[

x′ ← A(1λ, f(x)) : f(x′) = f(x)
]
≤ negl(λ),

where the probability is taken over the random choice of x. Moreover, we say that f is a one-way
permutation whenever the domain and range of f are of the same size.

Non-interactive Commitment Scheme. A commitment scheme (in the CRS model) consists
of a pair of efficient algorithms C = (Com, Open) where: Com takes as input m ∈ {0, 1}λ and
outputs (decom, com)← Com(m), where decom and com are both of length {0, 1}λ; the algorithm
Open(decom, com) outputs a message m or ⊥ if c is not a valid commitment to any message.
It is assumed that the commitment scheme is complete, i.e., for any message m ∈ {0, 1}λ and
(decom, com) ← Com(ck, m), we have Open(ck, decom, Com(ck, m)) = m with overwhelming prob-
ability in λ ∈ N. For convenience, we assume that the verification is deterministic and canonical
(i.e., it takes as input the random coins used in the commitment phase and checks whether the
commitment was correctly computed).

We require commitments to be (stand-alone) statistically hiding. Let A be a non-uniform
adversary against C and define its hiding-advantage as

Advhid
C,A(λ) = 2 · Pr

[
b = b′

∣∣∣∣∣ (m0, m1, st)← A(1λ); b← {0, 1};
(decom, com)← Com(mb); b′ ← A(com, st)

]
− 1 .

Definition 3 (Statistically Hiding). C is statistically hiding if the advantage function Advhid
C,A is a

negligible function for all unbounded adversaries A.

Furthermore, we require the commitments to be UC-secure: Roughly speaking, an equivocator
(with the help of a trapdoor in the CRS) can open the commitments arbitrarily. On the other
hand, we require the existence of a computationally indistinguishable CRS (in extraction mode)
where commitments are statistically binding and can be efficiently extracted via the knowledge of
a trapdoor. Such commitments can be constructed in the CRS model from a variety of assump-
tions [PW08], including the learning with errors (LWE) problem. For a precise functionality we
refer the reader to Section 3.3.
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Oblivious Transfer. A
(2

1
)
-Oblivious transfer (OT) is a protocol executed between two parties

called sender S (i.e. Alice) with input bits (s0, s1) and receiver R (i.e. Bob) with input bit b. Bob
wishes to retrieve sb from Alice in such a way that Alice does not learn anything about Bob’s choice
b and Bob learns nothing about Alice’s remaining input s1−b. In this work, we require a 2-round
protocol (SenderOT, ReceiverOT) secure in the CRS model, which satisfies (stand-alone) statistical
receiver-privacy. We define the sender Alice’s advantage of breaking the security of Bob to be

AdvOT
S =

∣∣∣∣Pr[ b← A (ReceiverOT(b))]− 1
2

∣∣∣∣ .
Definition 4 (Statistical Receiver Privacy). (SenderOT, ReceiverOT) is statistically receiver-private
if the advantage function AdvOT

S is a negligible function for all unbounded adversaries A.

In addition, we require our OT to be UC-secure: For a well-formed CRS, there exists an efficient
equivocator that can (non-interactively) recover both messages of the sender. Furthermore, there
exists an alternative CRS distribution (which is computationally indistinguishable from the original
one) and an efficient non-interactive extractor that is able to uniquely recover the message of the
receiver using the knowledge of a trapdoor. Such 2-round OT can be constructed from a variety of
assumptions [PVW08], including LWE [Qua20]. For a precise description of the ideal functionality,
we refer the reader to Section 3.3.

Statistical Witness-Indistinguishable Argument of Knowledge (SWIAoK). A witness-
indistinguishable argument is a proof system for languages inNP that does not leak any information
about which witness the prover used, not even to a malicious verifier. If the prover is a PPT
algorithm, then we call such a system an argument system, and if it is unbounded, we call it a proof
system. For witness-indistinguishable arguments of knowledge we formally introduce the following
notation to represent interactive executions between algorithms P and V. By ⟨P(y),V(z)⟩ (x) we
denote the view (i.e., inputs, internal coin tosses, incoming messages) of V when interacting with
P on common input x, when P has auxiliary input y and V has auxiliary input z. Some of the
following definitions are based on [OOR+14].

Definition 5 (Witness Relation). A witness relation for a NP language L is a binary relation
R that is polynomially bounded, polynomial time recognizable, and characterizes L by L = {x :
∃w s.t. (x, w) ∈ R}. We say that w is a witness for x ∈ L if (x, w) ∈ R.

Definition 6 (Interactive Argument System). A two-party game ⟨P,V⟩ is called an Interactive
Argument System for a language L if P, V are PPT algorithms and the following two conditions
hold:

• Completeness: For every x ∈ L, Pr[ ⟨P,V⟩ (x) = 1] = 1.
• Soundness: For every x /∈ L and every PPT algorithm P∗, there exists a negligible function

negl(·), such that, Pr[ ⟨P∗,V⟩ (x) = 1] ≤ negl(|x|).

Definition 7 (Witness Indistinguishability). Let L ∈ NP and (P,V) be an interactive argument
system for L with perfect completeness. The proof system (P,V) is witness indistinguishable (WI) if
for every PPT algorithm V∗, and every two sequences {w1

x}x∈L and {w2
x}x∈L such that w1

x, w2
x ∈ R,

the following sequences are witness indistinguishable:
1. {

〈
P(w1

x),V(z)
〉

(x)}x∈L,z∈{0,1}∗

2. {
〈
P(w2

x),V(z)
〉

(x)}x∈L,z∈{0,1}∗
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Next, we define the notion of extractability for SWIAoKs.

Definition 8 (Argument of Knowledge). Let L ∈ NP and (P,V) be an interactive argument
system for L with perfect completeness. The proof system (P,V) is an argument of knowledge
(AoK) if there exists a PPT algorithm Ext, called the extractor, a polynomial p, and a constant c
such that, for every PPT machine P∗, every x ∈ L, auxiliary input z, and random coins r, there
exists a negligible function negl such that

Pr
[

ExtP∗(z,r)(x) = w : (x, w) ∈ R
]
≥ 1

p
· Pr[ ⟨P∗(z; r),V(x)⟩ = 1]c − negl(λ).

Strong Randomness Extractor. A strong randomness extractor is a function that, applied to
some input with high min-entropy, returns some uniformly distributed element in the range.

Definition 9 (Strong Randomness Extractor). A function H : {0, 1}d × {0, 1}ℓ → {0, 1}c is called
a (t, ε)-strong randomness extractor if for all X ∈ {0, 1}ℓ s.t H∞(X) ≥ t, we have that,

SD ((Ud, H(Ud, X)), (Ud, Uc)) ≤ ε

and L = t− c is called the entropy loss of H.

3 Universal Composability Framework

In this section we recall the basics of the Universal Composability (UC) framework of Canetti [Can01],
and later we discuss the Everlasting Universal Composability framework2 following [MQU10] closely.
We refer the reader to [Can01,MQU10] for a more comprehensive description.

3.1 Basics of the UC Framework

Our description of the UC framework follows [MQU10] closely. The composition of two provably
secure protocols does not necessarily preserve the security of each protocol and the result may
also be no longer secure. A framework that analyses the security of composed protocols and
which is able to provide security guarantees is the Universal Composability framework (UC) due
to Canetti [Can01].

The main idea of this security notion is to compare a real protocol π with some ideal protocol ρ.
In most cases, this ideal protocol ρ will consist of a single machine, a so-called ideal functionality.
Such a functionality can be seen as a trusted machine that implements the intended behaviour of
the protocol. For example, a functionality F for commitment would expect a value m from a party
C. Upon receipt of that value, the recipient R would be notified by F that C has committed to
some value (but F would not reveal that value). When C sends an unveil request to F , the value
m will be sent to R (but F will not allow C to unveil a different value).

Given a real protocol π and an ideal protocol ρ, we say that π realises ρ (also called “imple-
ments”, “emulates”, or “is as secure as”) if for any adversary A attacking the protocol π there
is a simulator S performing an attack on the ideal protocol ρ such that no environment Z can
distinguish between π running with A and ρ running with Z. Here Z may choose the protocol

2The framework was called “Long-term UC” in [MQU07] and renamed to “Everlasting UC” in the follow-up
work [MQU10].
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inputs and read the protocol outputs and may communicate with the adversary or simulator (but
Z is, of course, not informed whether it communicates with the adversary or the simulator). First,
the environment may communicate with the adversary during the protocol execution, and second,
the environment does not need to choose the inputs at the beginning of the protocol execution; it
may adaptively send inputs to the protocol parties at any time, and it may choose these inputs
depending upon the outputs and the communication with the adversary. These modifications are
the reason for the very strong composability properties of the UC model.

Network Execution. In the UC framework, all protocol machines and functionalities, as well
as the adversary, the simulator and the environment are modelled as interactive Turing machines
(ITM). Throughout a protocol execution, an integer k called the security parameter is accessible
to all parties. At the beginning of the execution of a network consisting of π, A, and Z, the
environment Z is invoked with an initial input z. From then on, every machine M that is activated
can send a message m to a single other machine M ′. Then that machine M ′ is activated and given
the message m and the id of the originator M ′. If in some activation a machine does not send a
message, the environment Z is activated again. Additionally the environment may issue corruption
requests for some party P . From then on, the machines corresponding to the party P are controlled
by the adversary (i.e., it can send and receive messages in the name of that machine, and it can
read the internal state of that machine). Finally, at some point the environment Z gives some
output m which can be an arbitrary string. By EXCπ,A,Z(k, z) we denote the distribution of that
output m on security parameter k and initial input z. Analogously, we define EXCρ,S,Z(k, z) for
an execution involving the protocol ρ, the simulator S, and the environment Z.

We distinguish two different flavours of corruption. We speak of static corruption if the envi-
ronment Z may only send corruption requests before the begin of the protocol, and of adaptive
corruption if Z may send corruption requests at any time in the protocol, even depending on mes-
sages learned during the execution. In this paper, we will restrict our attention to the less strict
security model using static corruption. We leave the case of adaptive corruptions, in which the en-
vironment may corrupt any party adaptively during the execution of the protocol as an interesting
open problem.

UC Definitions. If the ideal protocol ρ consists of an ideal functionality F , for technical reasons
we assume the presence of so-called dummy parties that forward messages between the environment
Z and the functionality F . For example, assume that F is a commitment functionality. In an ideal
execution, Z would send a value m to the party C (since it does not know of F and therefore will
not send to F directly). Then C would forward m to F . Then F notifies R that a commitment
has been performed. This notification is then forwarded to Z. With these dummy parties we have,
at least syntactically, the same messages as in the real execution: Z sends m to C and receives
a commit notification from R. Second, the dummy-parties allow a meaningful corruption in the
ideal model. If Z corrupts some party P , in the ideal model the effect would be that the simulator
controls the corresponding dummy party P and thus can read and modify messages to and from the
functionality F in the name of P . Thus if we write EXCF ,S,Z , this is essentially an abbreviation
for EXCρ,S,Z where the ideal protocol ρ consists of the functionality F and the dummy-parties.
Having defined the families of random variables EXCπ,A,Z(k, z) and EXCρ,S,Z(k, z) we can now
define security via indistinguishability.

Definition 10 (Universal Composability [Can01]). A protocol π UC realises a protocol ρ, if for
any polynomial-time adversary A there exists a polynomial-time simulator S, such that for any

12



polynomial-time environment Z,

{EXCπ,A,Z(k, z)}k∈N,z∈{0,1}poly(k) ≈c {EXCρ,S,Z(k, z)}k∈N,z∈{0,1}poly(k) .

Note that in this definition, it is also possible to only consider environments Z that give a single
bit of output. As demonstrated in [Can01], this gives rise to an equivalent definition. However, in
the case of everlasting UC below, this will not be the case, so we stress the fact that we allow Z to
output arbitrary strings. In particular an environment machine can output its complete view.

Natural variants of this definition are statistical UC, where all machines (environment, adver-
sary, simulator) are computationally unbounded and the families of random variables are required
to be statistically indistinguishable, and perfect UC, where all machines are computationally un-
bounded and the families of random variables are required to have the same distribution. In these
cases one often additionally requires that if the adversary is polynomial-time, so is the simulator.

Composition. For some protocol σ, and some protocol π, by σπ we denote the protocol where σ
invokes (up to polynomially many) instances of π.3 That is, in σπ the machines from σ and from
π run together in one network, and the machines from σ access the inputs and outputs of π. (In
particular, Z then talks only to σ and not to the subprotocol π directly.) A typical situation would
be that σF is some protocol that makes use of some ideal functionality F (say, a commitment) and
then σπ would be the protocol resulting from implementing that functionality by some protocol π
(say, a commitment protocol). One would hope that such an implementation results in a secure
protocol σπ. That is, if π realises F and σF realises G, then σπ realises G. Fortunately, this is the
case:

Theorem 11 (Universal Composition Theorem [Can01]). Let π, ρ, and σ be polynomial-time
protocols. Assume that π UC realises ρ. Then σπ UC realises σρ.

The intuitive reason for this theorem is that σ can be considered as an environment for π or ρ,
respectively. Since Definition 10 guarantees that π and ρ are indistinguishable by any environment,
security follows. In a typical application of this theorem, one would first show that π realises F
and that σF realises G. Then using the composition theorem one gets that σπ realises σF which in
turn realises G. Since the realises-relation is transitive (as can be easily seen from Definition 10),
it follows that σπ realises G.

This composition theorem is the main feature of the UC framework. It allows us to build up
protocols from elementary building blocks. This greatly increases the manageability of security
proofs for large protocols. Furthermore it guarantees that the protocol can be used in arbitrary
contexts. Analogous theorems also hold for statistical and perfect UC.

Dummy-adversary. When proving the security of a given protocol in the UC setting, a useful tool
is the so-called dummy-adversary. The dummy-adversary Ã is the adversary that simply forwards
messages between the environment Z and the protocol (i.e., it is a puppet of the environment
that does whatever Z instructs it to do). In [Can01] it is shown that UC security with respect to
the dummy-adversary implies UC security. The intuitive reason is that since Ã does whatever Z
instructs it to do, it can perform arbitrary attacks and is therefore the worst-case adversary given
the right environment (remember that we quantify over all environments).

3For simplicity, we assume throughout this work that the session ids assigned to these instances are {1, . . . , p} for
some polynomial p.
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We very roughly sketch the proof idea. Let protocols π and ρ and some adversary A be given.
Assume that π UC realises ρ with respect to the dummy-adversary Ã. We want to show that π
UC realises ρ with respect to A. Given an environment Z, we construct an environment ZA which
simulates Z and A. Note that an execution of EXCπ,Ã,ZA

is essentially the same as EXCπ,A,Z (up
to a regrouping of machines). Then there is a simulator S̃ such that EXCπ,Ã,ZA

and EXCρ,S̃,ZA

are indistinguishable. Let S be the simulator that internally simulates the machines A and S̃ and
forwards all actions performed by A as instructions to S̃ (remember that S̃ simulates Ã, so it
expects such instructions). Then EXCρ,S̃,ZA

is again the same as EXCρ,S,Z up to a regrouping of
machines. Summarising, we have that EXCπ,A,Z and EXCρ,S,Z are indistinguishable.

A nice property of this technique is that it is quite robust with respect to changes in the
definition of UC security. For example, it also holds with respect to statistical and perfect UC
security, as well as with respect to the notion of Everlasting UC from [MQU10].

3.2 Everlasting UC Security

In this section, we present our definitions of everlasting UC security. Our formalization builds on
Canetti’s Universal Composability framework [Can01] and extends the notion of everlasting/long-
term security due to Müller-Quade and Unruh [MQU10]. Loosely speaking, everlasting security
guarantees the “standard” notion of UC security during the execution of the protocol. This means
that the security is guaranteed against polynomially bounded adversaries. Therefore, standard
computational assumptions, such as the hardness of the decisional Diffie-Hellman problem and the
existence of one-way functions can be used as hardness assumptions. However, after the execution
of the protocol, we no longer assume that these assumptions hold, because they may be broken in
the future. Müller-Quade and Unruh model this by letting the distinguisher become unbounded
after the execution of the protocol. Everlasting security guarantees security and confidentiality in
this setting.

They showed in [MQU10] that everlasting UC commitments cannot be realised, not even in
the common reference string (CRS) or the public-key infrastructure (PKI) model.4 The fact that
everlasting UC commitments cannot be constructed in the CRS model shows a strong separa-
tion between the everlasting UC and the computational UC security notion, because commitments
schemes do exist (under standard assumptions) in the computational UC security model [CF01].
The stark impossibility result of Müller-Quade and Unruh motivated the use of other trust assump-
tions, such as trusted pseudorandom functions (TDF) and signature cards [MQU10]. It is not hard
to see that everlasting UC security is strictly stronger than computational UC security, since the
adversary is allowed to become unbounded after the execution of the protocol, and it is strictly
weaker than statistical UC security, since the adversary is polynomially bounded during the run of
the protocol.

3.2.1 Defining Everlasting UC Security.

The formalization of [MQU10] is surprisingly simple and only extends the original UC definition
by the requirement that the execution of the real protocol and of the functionality cannot be
distinguished by an unbounded entity after the execution of the protocol is over (that is run by

4Interestingly, UC commitments that are statistically hiding can be constructed in the CRS model, as shown
by [DN02]. But [MQU10] later shows that those commitments lose their statistically hiding property under compo-
sition.
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efficient adversaries and environments). Formally, this means that the output of the environment
in the real and ideal worlds is statistically close. A comprehensive discussion is given in [MQU10],
and we briefly recall the definitions.

Definition 12 (Everlasting UC). A protocol π everlastingly UC-realizes an ideal protocol ρ if, for
any PPT adversary A, there exists a PPT simulator S such that, for any PPT environment Z,

{EXC π,A,Z(λ, z)}λ∈N,z∈{0,1}poly(λ) ≈ {EXC ρ,S,Z(λ, z)}λ∈N,z∈{0,1}poly(λ) .

In [MQU10], the authors show that the composition theorem from [Can01] also holds with
respect to Definition 12. A shortcoming of Definition 12, when applied to the token model, is that
the distinguisher has no access to the hardware token after it becomes unbounded. Another issue
is that Definition 12 does not model the case that the hardware assumption may be broken in the
long-term.

3.2.2 Everlasting UC Security with Hardware Assumptions.

We define a notion of everlasting security which allows the participants in a protocol to leak
information in the long term.

With the exception of the environment Z and the adversary A, we give each instance of a
Turing machine (ITI for short) in the protocol an additional output tape, that we call long-term
output tape. We modify the execution model to handle the long-term tapes as follows. At the end
of the execution of the protocol (i.e., when the environment Z produces its output m), adversary
A is invoked once again, this time with all long-term tapes, and produces an output a. We define
the new execution model to be EXC ′ := (m, a). A formal definition follows.

Definition 13 (Everlasting UC with Long-term Tapes). A protocol π everlastingly UC realizes an
ideal protocol ρ if, for any PPT adversary A, there exists a PPT simulator S such that, for any
PPT environment Z,

{EXC ′π,A,Z(λ, z)}λ∈N,z∈{0,1}poly(λ) ≈ {EXC ′ρ,S,Z(λ, z)}λ∈N,z∈{0,1}poly(λ)

In Definition 13, the distinguisher does not get the long-term tapes directly, instead, the tapes
go through the adversary. The real adversary A can, wlog, let the tapes go unchanged to the
distinguisher (i.e., dummy-adversary). The simulator S can replace the long-term tapes by any
simulated a of its choice. We point out that Definition 13 is equivalent to Definition 12 when none
of the ITIs in π or ρ have long-term output tapes.

It is easy to show that the composition theorem from [MQU10] carries over to our settings:
The long-term tapes of the honest parties are also given to the adversary/simulator at the end of
the protocol execution, however the simulator (when communicating with the environment) can
replace them with values of his choice. Formally, this means that the long-term tapes are just a
message sent from protocol to adversary (in the same way as, e.g., the state is sent in the case of
adaptive corruption), and consequently when proving the composition theorem, those messages are
handled in exactly the same way as the messages resulting from adaptive corruption.

3.3 Functionalities

In this section, we define some commonly used functionalities that we will need for our results.
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CRS. The first functionality is the common reference string (CRS). Intuitively, the CRS denotes
a string sampled uniformly from a given distribution G by some trusted party, and that is known
to all parties prior to the start of the protocol.

Definition 14 (Common reference string (CRS)). Let Dλ (λ ∈ N) be an efficiently samplable
distribution on {0, 1}∗. At the beginning of the protocol, the functionality FDCRS chooses a value r
according to the distribution Dλ (where λ is the security parameter) and sends r to the adversary
and all parties Pi.

Multiple commitment. Here we recall the functionality for a commitment scheme. Throughout
the following description we implicitly assume that the attacker is informed about each invocation
and that the attacker controls the output of the functionality. We omit those messages from the
description of the functionalities for readability. Note that to securely realize this functionality, a
protocol must guarantee independence among different executions of the commitment protocol.

Definition 15 (Multiple Commitment). Let S and R be two parties, where we call S the sender and
R the receiver. The functionality FS→R,ℓ

MCOM behaves as follows: Upon the command (commit, sid, x),
where x ∈ {0, 1}ℓ(λ), from S, send the message (committed, sid) to R. Upon command (unveil, sid)
from S, send (unveiled, sid, x) to R (with the matching sid). Several commands (commit) or
(unveil) with the same sid are ignored.

Oblivious Transfer Functionality. The oblivious transfer functionality allows for the receiver
party to select a bit b and the sender party to send two messages m0 and m1 to the receiver in
such a way that, the sender never learns the bit b the receiver chose, and the receiver learns only
the message mb, and nothing else about mb−1.

Definition 16 (Oblivious Transfer (OT)). Let R and S be two parties. The functionality FS→R,ℓ
OT

behaves as follows: Upon receiving the command (transfer , id, m0, m1) from S, with m0, m1 ∈
{0, 1}ℓ(λ), send the message (received, id) to R; party R replies with (choice, id, b), for b ∈ {0, 1}.
Upon receiving (choice, id, b) from R, send (eliver , id, mb) to R. We call S the sender, and R the
receiver.

Remark 17. Looking ahead, we note that we cannot define the protocol of Section 6 in the FOT-
hybrid model or in the FMCOM-hybrid model. The former is due to the protocol of Section 6
requiring an OT with the additional property of statistical receiver privacy, which is not the case
of all OT protocols that realize the FOT functionality. The latter is due to the protocol requiring
a commitment scheme with the additional property of statistical hiding, which is not the case of
all commitment schemes that realize the FMCOM functionality. Moreover, the protocol of Section 6
requires to prove statements about the contents inside of a commitment, and as shown by [CLOS02]
this is not possible using a UC commitment functionality.

4 Physical Assumptions

The functionality FHToken described in this section models generic fully malicious hardware tokens,
including PUFs. A fully malicious hardware token is the one that its state is not bounded a-priori,
its creator can install arbitrary code inside of it, and it can encapsulate an arbitrary number of
(possibly fully malicious) tokens inside of itself, called children. As far as we know, this is the
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first functionality to integrate tamper-proof hardware tokens with PUFs, allowing us to design
protocols that are transparent about the type of hardware token used, as the functionality can be
instantiated with any of the former. Moreover, in the particular case of PUFs, our model extends
the PUFs-inside-PUF model of [BKOV17] to the more general case of Tokens-inside-Token.5 We
handle encapsulated tokens in the functionality by allowing the parent token (i.e., the token that
contains other token(s)) to have oracle access to all its children during its evaluation; we believe
that token encapsulation models a realistic capability of an adversary and we believe that it is
important to include it in our model for the soundness of the security analysis. We also note that
FHToken is not PPT; this is because the functionality does not impose a restriction on the efficiency
of the malicious code.

The functionality FHToken allows tokens to be transferred among parties by invoking handover; a
token can only be queried by the party that currently owns the token by invoking query. Malicious
tokens can be created by the adversary and it can contain other tokens inside of it. In contrast
to [CGS08], the adversary can “unwrap” encapsulated tokens by invoking openup and read malicious
tokens’ state by invoking readout.

Functionality FHToken

FHToken is parameterized by an algorithm HTSamp, a PPT Turing machine Mhonest and a polynomial
p(λ) that bounds the running time of Mhonest . FHToken runs on input the security parameter 1λ, with
parties P = {P1, · · · , Pn}, and adversary A. The list L contains instances of tokens with the attributes
id, st, M, children, owner, honest, that can be accessed with the notation token.attribute, and where id is
a string that uniquely identifies a physical instance of the hardware token, st is the internal state of
the token, M is a TM that contains the code to be executed, children is a list of children (tokens) that
are contained within this token (can also be empty), owner is the party that currently owns the token
(can be embedded in case of children), and honest is a boolean value that is true when the token was
honestly generated, and false otherwise. For simplicity we omit the polynomial p(λ), since wlog any
p(λ) can be considered. We note that FHToken is not PPT, and this is due to the fact that there is no
runtime bound on M. The functionality FHToken receives commands and acts as follows.

• Upon command (create) from P ∈ P, create an empty token tok and do:
– tok.id ←$ {0, 1}λ, tok.honest := true, tok.owner := P , tok.children := ∅, tok.M := Mhonest ,

and (tok.st, pubinfo)← HTSamp(1λ).
– Add tok to L and return (id, pubinfo) to P .

• Upon command (createmal, M, st, children) from A do: For all tokc ∈ children if tokc.owner = A
then,

– Create an empty token tok, and set tok.id ←$ {0, 1}λ, tok.honest := false, tok.owner := A,
tok.M := M, tok.children := children, and tok.st := st.

– Add tok to L, and for all tokc ∈ children set tokc.owner := embedded.
– Return tok.id to A.

• Upon command (handover, id, Pj) from Pi ∈ P ∪ {A}, where Pj ∈ P ∪ {A}: For all tok ∈ L s.t.
tok.owner = Pi and tok.id = id do.

– Set tok.owner := Pj .
– Send (handover, id, Pi) to Pj .

• Upon command (query, id, q) from P ∈ P ∪ {A}: Define the recursive algorithm HTEval as
follows.

– a ← HTEval(1λ, id, q): It takes as input the security parameter, the id of the hardware

5In the model of [BKOV17] the malicious PUFs-inside-PUF are stateless, while FHToken allows the malicious PUFs
to be stateful.
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token, and a challenge q. It first runs (a, st′) ← M(st, q), where M is interpreted as the
code for an oracle Turing machine with |children| oracles. When M makes an oracle query
q′ to its i-th oracle, run b← HTEval(1λ, idi, q′) recursively and answer the query with b. M
updates its state st to the new state st′ after its execution. Return a.

– For all tok ∈ L s.t. tok.id = id, and tok.owner = P do: Run a ← HTEval(1λ, tok.id, q) and
send a to party P .

• Upon command (readout, id) from A: For all tok ∈ L s.t. tok.id = id, tok.owner = A, and
tok.honest = false do.

– Return tok.st to A
• Upon command (openup, id) from A: For all tok ∈ L s.t. tok.id = id, tok.owner = A, and

tok.honest = false do.
– Remove tok from L, and for each tokc ∈ tok.children:

∗ Set tokc.owner := P , for some P ∈ P.
– Return ok to A.

• In all other cases, enter the waiting state without sending a message.
The long-term output tape a records all the information from the tokens in L such that tok.owner = A
(or tokens owned by some other token that is owned by A, for any number of layers).

4.1 Physically Uncloneable Functions (PUFs)

In a nutshell, a PUF is a noisy source of randomness. It is a hardware device that, upon physical
stimuli, called challenges, produces physical outputs (that are measured), called responses. The
response measured for each challenge of the PUF is unpredictable, in the sense that it is hard to
predict the response of the PUF on a given challenge without first measuring the response of the
PUF on the same (or similar) challenge. When a PUF receives the same physical stimulus more
than once, the responses produced may not be exactly equal (due to the added noise), but the
Hamming distance of the responses are bounded by a parameter of the PUF.

A family of PUFs is a pair of algorithms (PUFSamp, PUFEval), not necessarily PPT. PUFSamp
models the manufacturing process of the PUF: On input the security parameter, it draws an index
σ, that represents an instance of a PUF that satisfies the security definitions for the security
parameter (that we define later). PUFEval models a physical stimulus applied to the PUF: Upon
a challenge input x, it invokes the PUF with x and measures the response y, that is returned as
the output. The length of a response y returned by algorithm PUFEval is a bitstring of size rg. A
formal definition follows.

Definition 18 (Physically Uncloneable Functions). Let rg denote the size (in bits) of the range of
the PUF responses of a PUF family. The pair PUF = (PUFSamp, PUFEval) is a PUF family if it
satisfies the following properties.

• Sampling. Let Iλ be an index set. On input the security parameter λ, the stateless and
unbounded sampling algorithm PUFSamp outputs an index σ ∈ Iλ. Each σ ∈ Iλ corresponds
to a family of distributions Dσ. For each challenge x ∈ {0, 1}λ, Dσ contains a distribution
Dσ(x) on {0, 1}rg(λ). It is not required that PUFSamp is a PPT algorithm.

• Evaluation. On input (1λ, σ, x), where x ∈ {0, 1}λ, the evaluation algorithm PUFEval outputs
a response y ∈ {0, 1}rg(λ) according to the distribution Dσ(x). It is not required that PUFEval
is a PPT algorithm.
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Additionally, we require the PUF family to satisfy a reproducibility notion that we describe next.
Reproducibility informally says that, the responses produced by the PUF when queried on the same
random challenge are always close.

Definition 19 (PUF Reproducibility). A PUF family PUF = (PUFSamp, PUFEval), for security
parameter λ, is δ-reproducible if for σ ← PUFSamp(1λ), x←$ {0, 1}λ, and y ← PUFEval(σ, x),
y′ ← PUFEval(σ, x), we have that,

Pr
[
hd(y, y′) ≤ δ

]
≥ 1− negl(λ),

for a negligible function negl(λ).

Many PUF definitions in the literature [OSVW13,BKOV17,BFSK11,DFK+14] have had prob-
lems with the super-polynomial nature of PUFs. In particular, the possibility of PUFs solving hard
computational problems, such as discrete logarithms or factoring, was not excluded, or excluded in
an awkward way. We take our inspiration from the idea that a PUF can be thought as a function
selected at random from a very large set, and therefore cannot be succinctly described; however,
it can be efficiently simulated using lazy sampling. Conceptually, we will only consider PUFs that
can be efficiently simulated by a stateful machine.

Definition 20. A polynomial-time (stateful) interactive Turing machine (MSamp, MEval) is a lazy
sampler for (PUFSamp, PUFEval) such that for all sequences (x1, . . . , xn) of inputs, the random
variables (Y1, . . . , Yn) and (Y ′1 , . . . , Y ′n), defined by the following experiments, are identically dis-
tributed.

st← MSamp(1λ); Y1 ← MEval(x1), . . . , Yn ← MEval(xn);
σ ← PUFSamp(1λ); Y ′1 ← PUFEval(σ, x1), . . . , Y ′n ← PUFEval(σ, xn);

where st denotes the initial state of the TM M.

Security of PUFs. The security of PUFs have been mainly defined by the properties of un-
predictability and uncloneability [Mae13,OSVW13,BKOV17,BFSK11,AMSY16]. In Section 4.1.1
we introduce a novel unpredictability notion for PUFs, and we later discuss why the standard
unpredictability notion is not suited for our setting.

4.1.1 Fully-adaptive PUF Unpredictability.

In contrast to the standard definition of unpredictability [BFSK11], in this work we require a
stronger notion of adaptive unpredictability. Loosely speaking, unpredictability should capture the
fact that it is hard to learn the response of the PUF on a given challenge without first querying the
PUF on a similar challenge. Note that this implies uncloneability: If one could clone the PUF, one
could use the cloned PUF to predict the answers of the original PUF. We express the similarity
of inputs/outputs of the PUF in terms of the Hamming distance hd, however, our results can be
easily adapted to other metrics.
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Definition 21 (Adaptive PUF Unpredictability). A PUF family PUF = (PUFSamp, PUFEval),
for security parameter λ, is (γ, δ)-unpredictable if for all adversaries A, there exists a negligible
function negl(λ), such that,

Pr

(hd(y, y′) ≤ δ) ∧ (hd(q, x) ≥ γ, ∀q ∈ Q) :

σ ← PUFSamp(1λ);
x←$ {0, 1}λ;

y ← APUFEval(1λ,σ,·)(x);
y′ ← PUFEval(1λ, σ, x);

 ≤ negl(λ),

where Q is the list of all queries made by A.

The adaptive PUF unpredictability says that the only way to learn the output of PUFEval(1λ, σ, x)
is to query the PUF on x (or something close enough to x). Our definition captures this by allowing
adversary A to know the challenge x before having oracle access to PUFEval.
The unsuitability of the standard PUF unpredictability of [BFSK11]. We first recall the
standard unpredictability definition of [BFSK11]. As the definition itself is based on the notion of
average min-entropy, for convenience, we present that first.

Definition 22 (Average Min-entropy [BFSK11]). The average min-entropy of the measurement
PUFEval(q) conditioned on the measurements of challenges Q = {q1, · · · , qpoly(λ)} for the PUF
family PUF = (PUFSamp, PUFEval) is defined by

H̃∞(PUFEval(q)|PUFEval(Q)) =

= − log
(
Eak←PUFEval(qk)

[
max

a
Pr
[

PUFEval(q) = a
∣∣∣ a1 = PUFEval(q1), · · · , apoly(λ) = PUFEval(qpoly(λ)

]])
= − log

(
Eak←PUFEval(qk)

[
2H∞(PUFEval(q)|a1=PUFEval(q1),··· ,apoly(λ)=PUFEval(qpoly(λ)))

])
where the probability is taken over the choice of σ from Iλ and the choice of possible PUF re-
sponses on challenge q. The term PUFEval(Q) denotes a sequence of random variables PUFEval(q1),
· · · , PUFEval(qpoly(λ)), each corresponding to an evaluation of the PUF on challenge qk, for 1 ≥ k ≥
poly(λ).

Definition 23 (PUF Unpredictability [BFSK11]). A (rg, δ)-PUF family PUF = (PUFSamp, PUFEval)
for security parameter λ is (γ(λ), m(λ))-unpredictable if for any q ∈ {0, 1}λ and challenge list
Q = {q1, . . . , qpoly(λ)}, one has that, if for all 1 ≥ k ≥ poly(λ) the Hamming distance satisfies
hd(q, qk) ≥ γ(λ), then the average min-entropy satisfies H̃∞(PUFEval(q)|PUFEval(Q)) ≥ m(λ),
where PUFEval(Q) denotes the sequence of random variables PUFEval(q1), · · · , PUFEval(qpoly(λ)),
each corresponding to an evaluation of the PUF on challenge qk. Such a PUF family is called a
(rg, δ, γ, m)-PUF family.

We now argue why Definition 23 is not suited for our setting. We present a PUF family that
satisfies Definition 23 and yet allows for an adversary to predict the response of the PUF on a
challenge never queried to the PUF (and far apart from the other queried challenges). We prove
the following theorem next.

Theorem 24. There exists a PUF family PUF = (PUFSamp, PUFEval) that satisfies Definition 23
(with m > 0), such that there exists a PPT adversary A that can predict with probability 1 the output
of the PUF on an input far from every other input queried to the PUF prior (thereby contradicting
Definition 21).
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Proof. Let PUF = (PUFSamp, PUFEval) be a PUF family for challenges of size (n + 1)-bits and
responses of size n-bits, We construct the family PUF as follows:

• PUFSamp(1λ): Samples x∗←$ {0, 1}n, and f ←$ ({0, 1}n → {0, 1}n). Return σ := (x∗, f).
• PUFEval(1λ, σ, x):

– Upon query PUFEval(1λ, σ, 0n+1) output x∗.
– Upon query PUFEval(1λ, σ, 0∥m) with m ̸= 0n output f(m).
– Upon query PUFEval(1λ, σ, 1∥m) output f(m⊕ x∗).

We first show how an adversary can predict with probability 1 the output of a PUF from
the family described above on a fresh input. Given some arbitrary fresh challenge input b∥m,
the adversary can find the corresponding response PUFEval(1λ, σ, b∥m), without ever querying the
PUF on b∥m, by doing the following: Compute x∗ := PUFEval(1λ, σ, 0n+1) and compute y :=
PUFEval(1λ, σ, b̄∥m⊕ x∗). Note that both queries are far apart from b∥m, yet the adversary learns
y = PUFEval(1λ, σ, b∥m) = PUFEval(1λ, σ, b̄∥m⊕ x∗).

Now we show that the PUF family described above satisfies Definition 23.6 Fix any polynomial-
size challenge list Q = {q1, . . . , qκ−1} and any challenge query qκ such that, for any k ∈ [κ − 1] :
hd(qκ, qk) ≥ 1, which is clearly minimal. Since f is a random function, it holds that PUFEval(1λ, σ, q)
has maximal average min-entropy, unless the PUF is queried on two inputs (qi, qj) that form a
collision for f . Note that this happens only if qi ⊕ qj = 1∥x∗. Thus all we need to show is that,
for any fixed set of queries {q1, . . . , qκ} the probability that qi ⊕ qj = 1∥x∗ is negligible, over the
random choice of x∗. This holds because

Pr
x∗←{0,1}n

[∃ (i, j) : qi ⊕ qj = 1∥x∗] = 1−
(
1− 2−n)κ2

≤ 1− 1
1 + κ22−n

= κ22−n

1 + κ22−n

by applying the Bernoulli inequality. The above expression approaches 0 exponentially fast, as n
grows. This concludes our proof. □

Contrasting our unpredictability definition with the one of [BFSK11]. The motivation
behind our newly proposed adaptive unpredictability notion (Definition 21), is that the standard
PUF unpredictability notion of [BFSK11] implicitly assumes that PUFs are only dependent on ran-
dom physical factors (likely introduced during manufacturing), and in particular it does not capture
families of PUFs that could have some programmability built in, allowing to predict the output of
a PUF on an input by querying a completely different input. What our new PUF unpredicatability
notion explicitly captures is that a “good” PUF must solely depend on random physical factors,
and in particular cannot have any form of programmability. On a more philosophical level, we
believe that our new notion is what was meant to be modelled as a property for PUFs from the
start. Since PUFs are inherently randomized devices that are specifically built to be unpredictable
and uncontrollable, a PUF family such as the one described above should not be considered to be
a “good” PUF family; however the previous notion fails to capture this fact.7

Overall, our new definition of unpredictability does not hinder in any way the progress and
development of new real-world PUFs, but merely addresses a technical oversight by the previous

6This unpredictability definition is considered in many previous works, such as [BFSK11, OSVW13, BKOV17,
Mae13].

7The authors of [BFSK11] discuss in Appendix C the different notions of security for PUFs and their relationships,
and in particular mention that their definition of unpredictability assumes that the creation process of the PUF is
not controllable.
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unpredicatability notion. Therefore, we conjecture that most real-world PUFs that satisfy the
unpredictability notion of [BFSK11] will most likely also satisfy our unpredicatability notion, since
real PUFs are inherently randomized physical devices built to be unpredictable and uncontrollable.

5 Impossibility of Everlasting OT with Malicious Hardware

In this section we prove the impossibility of realizing everlasting secure oblivious transfer (OT) in the
hardware token model, even in the presence of a trusted setup. The result carries over immediately
to any secure computation protocol due to the completeness of OT [Kil88]. We consider honest
tokens to be stateful but non-erasable (Definition 25) and the tokens produced by the adversary
can be malicious but not encapsulate other tokens (note that this restriction on malicious tokens
only makes our result stronger, as the impossibility holds even against an adversary that is more
limited). The adversary A is PPT during the execution of the protocol, but A becomes unbounded
after the execution is over (i.e. everlasting security). This extends the seminal result of Goyal et
al. [GIMS10] that shows the impossibility of having statistically (as opposed to everlasting) UC
secure oblivious transfer from stateless (as opposed to non-erasable) tokens. We stress however,
that our negative results does not contradict the work of Döttling et al. [DKMQ11,DKMN15], since
they assume honest tokens to be non-resettable or bounded-resettable (i.e., tokens cannot be reset
to a previous state, or only reset up to an a-priori bound), whereas for our result to hold the token
must be non-erasable.

In the following, we show the main theorem of the section. The result holds under the assump-
tion that the token scheduling is fixed a-priori, which captures most of the known protocols for
secure computation [DKMQ11, DKMN15, HPV16]. The scheduling of the tokens determines the
exchange of the tokens among parties. We stress that we do not impose any restriction on which
party will hold each hardware token in the end of the execution. For a formal definition of OT we
refer the reader to Section 2.2. We first define “non-erasability” for hardware tokens next.

Definition 25 (Non-erasable hardware token). A (stateful) hardware token is said to be non-
erasable if any state ever recorded by the token can be efficiently retrieved.

Note in particular that stateless tokens are trivially non-erasable, as the former cannot keep any
state.

Theorem 26. Let Π be a hardware token-based everlasting OT protocol between Alice (i.e. sender)
and Bob (i.e. receiver) where the honest tokens are non-erasable and the scheduling of the tokens
is fixed. Then, at least one of the following holds:

• There exists an everlasting adversary S ′ that uses malicious and stateful hardware tokens such
that AdvΠ

S′ ≥ ϵ(λ), or
• there exists an everlasting adversary R′ that uses malicious and stateful hardware tokens such

that AdvΠ
R′ ≥ ϵ(λ),

for some non-negligible function ϵ(λ).

Proof. The proof consists of the following sequence of modified simulations. Let the game G0
define an everlastingly-secure OT protocol for S and R. Then, by assumption, we have that for all
everlasting adversaries S ′ and R′ it holds that

AdvG0
S′ ≤ negl(λ) and AdvG0

R′ ≤ negl(λ).
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We define a quasi-semi-honest adversary to be an adversary that behaves semi-honestly but keeps
a log of all queries ever made to the hardware token (i.e. the non-erasable token assumption). Let
the game G1 define an everlastingly-secure OT protocol where S ′ and R′ are quasi-semi-honest.
Since we are strictly reducing the capabilities of the adversaries and the tokens are non-erasable,
we can state the following lemma.

Lemma 27. For all quasi-semi-honest S ′ and R′ it holds that

AdvG1
S′ ≤ negl(λ) and AdvG1

R′ ≤ negl(λ).

Let G2 be the same as G1 except that whenever S ′ (resp. R′) queries a token from R (resp. S)
that will return to R (resp. S), instead of making that query to the token, S ′ queries directly R
who answers it as the token would have. Since the distribution of the answers for the queries does
not change, we can state the following lemma.

Lemma 28. For all quasi-semi-honest S ′ and R′ it holds that

AdvG2
S′ ≤ negl(λ) and AdvG2

R′ ≤ negl(λ).

Let game G3 be exactly the same as G2 except that whenever S ′ (resp. R′) sends a token to
R (resp. S) that will not return to S ′ (resp. R′), then S ′ sends a description of the token instead.
Since we consider everlasting adversaries we assume that after the execution of the protocol all
tokens can be read out. Therefore both parties will have the description of all the tokens, even the
ones that are not sent to the other party. Note that at this point there are no hardware tokens
involved, and only description of tokens. Therefore a quasi-semi-honest adversary is identical to a
semi-honest everlasting one.8

Lemma 29. For all semi-honest everlasting S ′ and R′ it holds that

AdvG3
S′ ≤ negl(λ) and AdvG3

R′ ≤ negl(λ).

We point out that a semi-honest unbounded adversary S ′ (resp. R′) is also a semi-honest
everlasting adversary, since during the execution of the protocol it performs only the honest (PPT)
actions. We are now in the position of stating the final lemma.

Lemma 30. For all semi-honest unbounded S ′ and R′ it holds that

AdvG3
S′ ≤ negl(λ) and AdvG3

R′ ≤ negl(λ).

It was shown [Bea96] that it is not possible to build a secure OT protocol against semi-honest
unbounded adversaries (even in the presence of a trusted setup), what gives us a contradiction and
concludes our proof. □

8An everlasting semi-honest adversary follows the protocol honestly, but can behave arbitrarily after the protocol
runs is over and it becomes unbounded.
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6 Everlasting Commitment from Fully Malicious PUFs

In this section, we build an everlastingly secure UC commitment scheme from fully malicious PUFs.
Let C = (Com, Open) be a statistically hiding UC-secure commitment scheme, let (SenderOT, ReceiverOT)
be a 1-out-of-2 statistically receiver-private UC-secure OT, let f : {0, 1}λ → {0, 1}λ be a one-way
permutation, and let H : {0, 1}d(λ) × {0, 1}ℓ(λ) → {0, 1}c be a strong randomness extractor, where
d and ℓ are two polynomials such that H allows for (ℓ(λ) − c)-many bits of entropy loss, for
c := |m∥decom|. Let

R1 :=


(
y, {comi}i∈[ℓ(λ)]

)
,(

{mi, decomi}i∈[ℓ(λ)], x
) ∣∣∣∣∣∣ y = f(x)∨
{mi = Open(decomi, comi)}i∈[ℓ(λ)]


and let

R2 :=



(
y, seed, m, com, ω,
{comi, q0

i , q1
i }i∈[ℓ(λ)]

)
(

k, decom, x,
{decomi}i∈[ℓ(λ)]

)
∣∣∣∣∣∣∣∣∣∣∣∣

y = f(x)∨
m∥decom = H(seed, k)⊕ ω∧

m = Open(com, decom))∧{
si = Open(decomi, comi)
∧hd(si, qki

i ) ≤ δ

}
i∈[ℓ(λ)]




.

We denote by (P1,V1) and (P2,V2) the statistically witness-indistinguishable arguments of knowl-
edge (SWIAoK) for the relations R1 and R2, respectively. Our commitment scheme is described
next.

Everlasting Commitment scheme from PUF

Setup: Let G be the distribution for a random y in the range of the one-way permutation f , let seed be
a random seed for the strong randomness extractor H, and let crscom be the CRS for the non-interactive
commitment and crsOT for the OT protocol. The ideal functionality FG

CRS samples a random crs from
the distribution of valid values, where crs := (y, seed, crscom, crsOT) and provides Alice and Bob with
crs. We denote by x ∈ {0, 1}λ the pre-image such that f(x) = y, used by FG

CRS to sample y.

Commitment: On input (commit, id, m), for a fresh id, Alice engages with Bob in the following
interactive protocol.

1. Bob samples a PUF token by querying FPUFEval,PUFSamp
HToken on message (create), and receives back

(idPUF, pubinfo); it then samples ℓ(λ)-many random tuples of the form (p0
i , p1

i ) ∈ {0, 1}2λ and
queries FPUFEval,PUFSamp

HToken on all pairs to obtain (q0
i , q1

i ). Bob finally transfers the token to Alice by
querying (handover, idPUF, Alice).

2. Alice samples a random string k ← {0, 1}ℓ(λ), and computes (com, decom)← Com(m). Then for
all i ∈ [ℓ(λ)] she engages with Bob in an oblivious transfer protocol on input αi ← ReceiverOT(ki).
All messages of the oblivious transfer are tagged with id.

3. Bob responds to each i-th instance of the oblivious transfer with SenderOT(p0
i , p1

i ).
4. For all i ∈ [ℓ(λ)] Alice queries FPUFEval,PUFSamp

HToken on αi and parses the response as βi. If the token
does not return a valid output, Alice sets βi = 0ℓ(λ). Alice then commits to (comi, decomi) ←
Com(βi) and sends the tuple (id, com, ω := H(seed, k)⊕m∥decom, {comi}i∈[ℓ(λ)]) to Bob. Finally,
Alice interacts with Bob with the algorithm P1((y, {comi}i∈[ℓ(λ)]), ({βi, decomi}i∈[ℓ(λ)], 0)). All
messages of the SWIAoK are tagged with id.

5. Bob executes V1(y, {comi}i∈[ℓ(λ)]) and aborts all interactions with Alice if the algorithm does
not return 1, including other instances of this commitment protocol. Otherwise Bob sends
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(id, {(q0
i , q1

i )}i∈[ℓ(λ)]) to Alice and outputs (commited, id).

Opening: On input (unveil, id), Alice parses (com, decom, ω, k, {comi}i∈[ℓ(λ)], {decomi}i∈[ℓ(λ)],
{q0

i , q1
i }i∈[ℓ(λ)]) as the information generated in the commitment phase with the same id, if any, and m

as the corresponding message. Then it interacts with Bob in the following manner.
1. In the opening phase Alice sends m to Bob and executes P2((y, seed, m, com, ω,
{comi}i∈[ℓ(λ)], {q0

i , q1
i }i∈[ℓ(λ)]), (k, {decomi}i∈[ℓ(λ)], decom, 0)) in interaction with Bob.

2. Bob receives m and runs V2(y, seed, m, com, ω, {comi}i∈[ℓ(λ)], {q0
i , q1

i }i∈[ℓ(λ)]) in interaction with
Alice. If the protocol returns 1, then Bob returns (unveiled, id, m).

We note that many instances of the previously described protocol (with a different id) may run concur-
rently.

Theorem 31. Let
• C = (Com, Open) be a statistically hiding and computationally binding commitment scheme,
• (SenderOT, ReceiverOT) be a UC-secure 1-out-of-2 statistically receiver-private oblivious trans-

fer,
• H : {0, 1}d(λ) × {0, 1}ℓ(λ) → {0, 1}c be a strong randomness extractor, where d and ℓ are two

polynomials such that H allows for (ℓ(λ)− c)-many bits of entropy loss,
• and let (P1,V1) and (P2,V2) be SWIAoK systems for the relations R1 and R2, respectively.

Then the protocol above everlastingly UC-realizes the functionality FMCOM in the FPUFEval,PUFSamp
HToken -

hybrid model.

Proof. We consider the cases of the two corrupted parties separately. The proof consists of
the description of a series of hybrids and we argue about the indistinguishability of neighbouring
experiments. Then we describe a simulator that reproduces the real-world protocol to the corrupted
party while executing the protocol in interaction with the ideal functionality.

Corrupted Bob (recipient). Consider the following sequence of hybrids, with H0 being the
protocol as defined above in interaction with A and Z:
H1: Defined exactly as in H0 except that, for all executions of commitment and opening routines,
the SWIAoK for R1 and R2 are computed using the knowledge of x, the pre-image of y. This is
possible as the FCRS functionality is simulated by the simulator that samples an f(x) = y such
that it knows x. In order to avoid trivial distinguishing attack we additionally require Alice to
explicitly check that ∀i ∈ {[ℓ(λ)]} : hd(βi, qki

i ) ≤ δ and abort (prior to computing the SWIAoK)
if the condition is not satisfied. The two protocols are statistically indistinguishable due to the
statistical witness indistinguishability of the SWIAoK scheme. In particular, for all unbounded
distinguishers D querying the functionality polynomially many times, it holds that

{EXC ′H0,A,D(λ, z)}λ∈N,z∈{0,1}poly(λ) ≈ {EXC ′H1,A,D(λ, z)}λ∈N,z∈{0,1}poly(λ) .

H2, . . . ,Hℓ(λ)+1: Each H1+i for i ∈ [ℓ(λ)] is defined exactly as H1 except that in all of the sessions
Alice uses the simulator of the statistical receiver private OT protocol (that implements the FOT
functionality) to run the first i instances of the oblivious transfers. Note that the simulator (using
the knowledge of the CRS trapdoor) returns both of the inputs of the sender, in this case (p0

i , p1
i ).

By statistical receiver privacy of the oblivious transfer, it holds that the simulated execution is
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statistically close to a honest run and therefore we have that for all unbounded distinguishers D
that queries FPUFEval,PUFSamp

HToken polynomially-many times:

{EXC ′H1,A,D(λ, z)}λ∈N,z∈{0,1}poly(λ) ≈ {EXC ′Hℓ(λ)+1,A,D(λ, z)}λ∈N,z∈{0,1}poly(λ) .

Hℓ(λ)+2, . . . ,H2·ℓ(λ)+1: Each Hℓ(λ)+1+i for i ∈ [ℓ(λ)] is defined exactly as Hℓ(λ)+1 with the difference
that, in all of the sessions, the first i-many commitments comi are computed as Com(ri), for
some random ri in the appropriate domain. Note that the corresponding decommitments are no
longer used in the computation of the SWIAoK. Therefore the statistically hiding property of the
commitment scheme guarantees that the neighbouring simulations are statistically close for all
unbounded D. That is

{EXC ′Hℓ(λ)+1,A,D(λ, z)}λ∈N,z∈{0,1}poly(λ) ≈ {EXC ′H2ℓ(λ)+1,A,D(λ, z)}λ∈N,z∈{0,1}poly(λ) .

H2·ℓ(λ)+2: Let n be a bound on the total number of sessions. The hybrid H2·ℓ(λ)+2 is defined as the
previous except that Alice chooses some random values (k1, . . . , kn) ∈ {0, 1}ℓ(λ) at the beginning of
the execution. In the i-th session Alice uses the value of ki instead of a fresh k in the interaction
with the funcitonality FPUFEval,PUFSamp

HToken . The changes between the two hybrids are only syntactical
and therefore it holds that

{EXC ′H2·ℓ(λ)+1,A,D(λ, z)}λ∈N,z∈{0,1}poly(λ) = {EXC ′H2·ℓ(λ)+2,A,D(λ, z)}λ∈N,z∈{0,1}poly(λ) .

H2·ℓ(λ)+3: Let f be the following deterministic stateless oracle: f is initialized with the initial
state of the physical token sent by Bob, the tuples (k1, . . . , kn), and a random tape. On input
an index i, a set {q0

j , q1
j }j∈[ℓ(λ)], and a set {pj}j∈[ℓ(λ)], the oracle f returns 1 if and only if for

all j ∈ [ℓ(λ)] : hd(qki,j

j , βj) ≤ δ, where βj is the output of the token on input pj . In this hybrid
Alice no longer queries the token but computes the a valid opening for the i-th commitment only
if f returns 1 on inputs i, {q0

j , q1
j }j∈[ℓ(λ)], and {pj}j∈[ℓ(λ)]. Where the elements {q0

j , q1
j }j∈[ℓ(λ)] and

{pj}j∈[ℓ(λ)] are defined in the i-th session. If f returns 0, then Alice interrupts all of the executions
simultaneously. Note that this modification does not affect the view of the adversary: Since Alice
keeps ownership of the token, the state of the token is not included in the longterm tapes. Also
note that Alice never uses the values βj , except for the check mentioned above. Thus we have that

{EXC ′H2·ℓ(λ)+2,A,D(λ, z)}λ∈N,z∈{0,1}poly(λ) = {EXC ′H2·ℓ(λ)+3,A,D(λ, z)}λ∈N,z∈{0,1}poly(λ) .

H2·ℓ(λ)+4: Let Fi be the set of tuples {q0
j , q1

j }j∈[ℓ(λ)] and {pj}j∈[ℓ(λ)] such that f on input i and
those tuples returns 0. Note that Fi is well defined as soon as Bob sends the token to Alice. In
the i-th session, Alice no longer queries f but just checks whether ({q0

j , q1
j }j∈[ℓ(λ)], {pj}j∈[ℓ(λ)]) ∈ Fi

and aborts all of the executions if this is the case. We denote by γ ∈ {1, . . . , n,∞} the session in
which Alice aborts. Here the two hybrids need to be equivalent only up to the first query to f that
returns 0, thus

{EXC ′H2·ℓ(λ)+3,A,D(λ, z)}λ∈N,z∈{0,1}poly(λ) = {EXC ′H2·ℓ(λ)+4,A,D(λ, z)}λ∈N,z∈{0,1}poly(λ) .

H2·ℓ(λ)+5: Defined exactly as H2·ℓ(λ)+4 with the difference that for all sessions i of the protocol ωi is
computed asHi⊕m∥decom, whereHi is a random string in {0, 1}c. To prove the indistinguishability
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of H4 and H5 we define the intermediate hybrids (H2·ℓ(λ)+4,0, . . . ,H2·ℓ(λ)+4,n), where in H2·ℓ(λ)+4,i

the strings (ω1, . . . , ωi) are computed as inH2·ℓ(λ)+5 whereas the strings (ωi+1, . . . , ωn) are computed
as in H2·ℓ(λ)+4. Note that H2·ℓ(λ)+4,0 = H2·ℓ(λ)+4 and H2·ℓ(λ)+4,n = H2·ℓ(λ)+5. By definition the
hybrids H2·ℓ(λ)+4,i−1 and H2·ℓ(λ)+4,i differ only in the value of Hi (which is H(seed, ki) in the former
case and a random string in the latter). Note that ki is used only in the computation of Hi and
that the only variable that depends on ki is γ. Since γ is from a set of size n + 1, we can bound
from above the entropy loss of ki to log(n + 1)-many bits. Recall that (n + 1) ≪ 2λ, therefore we
have that ℓ(λ)− c > log(n + 1), for an appropriate choice of ℓ(). Hence, by the strong randomness
of H we have that

{EXC ′H2·ℓ(λ)+4,i−1,A,D(λ, z)}λ∈N,z∈{0,1}poly(λ) ≈ {EXC ′H2·ℓ(λ)+4,i,A,D(λ, z)}λ∈N,z∈{0,1}poly(λ) .

Since the distance between H2·ℓ(λ)+4,0 and H2·ℓ(λ)+4,n is the sum of the bounds obtained by the
leftover hash lemma [ILL89], we can conclude that

{EXC ′H2·ℓ(λ)+4,A,D(λ, z)}λ∈N,z∈{0,1}poly(λ) ≈ {EXC ′H2·ℓ(λ)+5,A,D(λ, z)}λ∈N,z∈{0,1}poly(λ) .

H2·ℓ(λ)+6: Defined as H2·ℓ(λ)+5 except that in all sessions com is a commitment to a random string
s. Note that in the execution of H2·ℓ(λ)+5 the value of decom is masked by a random string Hi and
therefore it is information theoretically hidden to the eyes of the adversary. By the statistically
hiding property of Com we have that for all unbounded distinguisher A the following holds:

{EXC ′H2·ℓ(λ)+5,A,D(λ, z)}λ∈N,z∈{0,1}poly(λ) ≈ {EXC ′H2·ℓ(λ)+6,A,D(λ, z)}λ∈N,z∈{0,1}poly(λ) .

H2·ℓ(λ)+7: Defined as H2·ℓ(λ)+6 except that Alice opens the commitment to an arbitrary message m′.
We observe that the execution of H2·ℓ(λ)+6 is completely independent from the message m, except
when m is sent to Bob in clear in the opening phase. Therefore we have that for all unbounded
distinguishers D that query the functionality polynomially-many times:

{EXC ′H2·ℓ(λ)+6,A,D(λ, z)}λ∈N,z∈{0,1}poly(λ) = {EXC ′H2·ℓ(λ)+7,A,D(λ, z)}λ∈N,z∈{0,1}poly(λ) .

S: We now define S as a simulator in the ideal world that engages the adversary in the simulation
of a protocol when queried by the ideal functionality on input (commited, sid). The interaction of S
with the adversary works exactly as specified in H2·ℓ(λ)+7, with the only difference that the message
m′ is set to be equal to x, where (unveil, sid, x) is the message sent by the ideal functionality with
the same value of sid. Since the simulation is unchanged to the eyes of the adversary we have that

{EXC ′H2·ℓ(λ)+7,A,D(λ, z)}λ∈N,z∈{0,1}poly(λ) = {EXC ′ρ,S,D(λ, z)}λ∈N,z∈{0,1}poly(λ) .

By transitivity we have that H0 is statistically indistinguishable from S to the eyes of the environ-
ment Z. We can conclude that our protocol everlastingly UC-realizes the commitment functionality
FMCOM for any corrupted Bob. We stress that that we allow Bob to be computationally unbounded
and we only require that the number of sessions is bounded by some polynomial in λ.
Corrupted Alice (committer). Let H0 be the execution of the protocol as described above in
interaction with A and Z. We define the following sequence of hybrids:
H1: Defined as H0 except that the the following algorithm is executed locally by Bob at the end
of the commit phase of each session, in addition to Bob’s normal actions.
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E(1λ): Let K be a bitstring of length ℓ(λ), the extractor parses the list of queries Q that Alice sent
to FPUFEval,PUFSamp

HToken before the last message of Bob in the commitment phase. Then for all
Qj ∈ Q it checks whether ∃j ∈ [ℓ(λ)] such that ∃z ∈ {0, 1} such that hd(Qj , pz

i ) ≤ γ, where
pz

i is defined as in the original protocol. If this is the case the extractor sets Ki = z. If the
value of Ki is already set to a different bit the extractor aborts. If at the end of list Q there
is some i such that Ki is undefined, the extractor aborts. Otherwise it parses ω⊕H(seed, K)
as m′||decom and it returns (m′, decom).

Note that Bob does not use the output of E and therefore, for all distinguishers D, we have that:

{EXC ′H0,A,D(λ, z)}λ∈N,z∈{0,1}poly(λ) = {EXC ′H1,A,D(λ, z)}λ∈N,z∈{0,1}poly(λ) .

H2: Let H2 be defined as H1 except that Bob outputs the message m′ as computed by E instead
of the message m as sent by Alice in the opening phase. For the indistinguishability of H1 and H2
we have to argue that if the opening of the adversary succeeds, then the extraction succeeds with
overwhelming probability, i.e., m = m′. For the ease of exposition we assume that the sessions are
enumerated with a unique identifier, e.g., according to their initialization order. Let Abort be the
event such that there exists a session j ∈ [n] such that the simulator aborts but the opening is
successful. We are going to prove the following lemma.

Lemma 32. Pr[ Abort : H2] ≤ negl(λ).

Proof. We define NoUnique as the event such that there exists a session j ∈ [n] such that the
corresponding Kj as defined in E is not uniquely defined but the commitment is successful, i.e.,
there exists some i ∈ [ℓ(λ)] such that Kj

i = 0 and Kj
i = 1. Let NoDefined be the event such that

there exists a j ∈ [n] and i ∈ [ℓ(λ)] such that Kj
i is undefined at the end of the iteration, but the

corresponding opening phase is successful. By definition of E we have that

Pr[ Abort : H2] ≤ Pr[ NoUnique : H2] + Pr[ NoDefined : H2] .

The rest of the proof proceeds as follows:
• We show through a series of intermediate hybrids (HU

0 , . . . ,HU
3 ) that the event NoUnique

happens only with negligible probability.
• We show through a series of intermediate hybrids (HD

0 , . . . ,HD
4 ) that the event NoDefined

happens only with negligible probability.
• The proof of the lemma follows by a union bound.

We first derive a bound for the probability that the event NoUnique happens. Consider the following
sequence of hybrids.
HU

0 : The experiment HU
0 identical to H2 except that we sample some j∗ from the identifiers

associated to all sessions and some i∗ from [ℓ(λ)]. Let n be a bound on the total number of session
and let NoUnique(j∗, i∗) be the event where NoUnique happens in session j∗ and for the i∗-th bit.
Since j∗ and i∗ are randomly chosen we have that

Pr[ NoUnique : H2] ≤ Pr
[

NoUnique(j∗, i∗) : HU
0

]
· nℓ(λ).

HU
1 : The experiment HU

1 is defined as HU
0 except that it stops before the execution of the i∗-th OT

in session j∗. Let st be the state of all the machines in the execution of HU
0 , the experiment does

the following:
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• Continue the execution of HU
0 from st.

• Input/output all the i∗-th OT messages from session j∗.
• Simulate all other messages internally.

The experiments sets the bit b = 1 if and only if the commitment of the j-th session succeeds.
Let NoUnique∗(j∗, i∗) be the event that Kj∗

i∗ is not uniquely defined. Since the execution does not
change to the eyes of Alice we have that

Pr
[

NoUnique(j∗, i∗) : HU
0

]
= Pr

[
b = 1 ∧ NoUnique∗(j∗, i∗) : HU

1

]
.

HU
2 : Defined as HU

2 except that the CRS for the OT is sampled to be in extraction mode. By the
computational indistinguishability of the CRS, it holds that

Pr
[

b = 1 ∧ NoUnique∗(j∗, i∗) : HU
1

]
≈ Pr

[
b = 1 ∧ NoUnique∗(j∗, i∗) : HU

2

]
.

HU
3 : Defined as HU

2 except that the extractor for the OT is used in the i∗-th OT of the j∗-th
session. The experiment sets b = 1 if the simulation succeeds. Recall that the simulator outputs
the choice of the receiver bi∗ and expects as input the value p

bi∗
i∗ . Note that this implies that the

value p
1−bi∗
i∗ is information theoretically hidden to the eyes of Alice. Also note that

Pr
[

b = 1 ∧ NoUnique∗(j∗, i∗) : HU
3

]
=∑

st,i∗,j∗,pi∗ ,Q,ω,seed, s.t. NoUnique∗(j∗,i∗) ·Pr
[

b = 1 : HU
3

]
by the simulation security of the OT we can rewrite∑

st,i∗,j∗,pi∗ ,Q,ω,seed, s.t. NoUnique∗(j∗,i∗) ·Pr
[

b = 1 : HU
3

]
≥∑

st,i∗,j∗,pi∗ ,Q,ω,seed, s.t. NoUnique∗(j∗,i∗) ·Pr
[

b = 1 : HU
2

]
thus by Jensen’s inequality we have that

Pr
[

NoUnique(j∗, i∗) : HU
3

]
≥ Pr

[
b = 1 ∧ NoUnique∗(j∗, i∗) : HU

2

]
.

As we argued before the value of p
1−bi∗
i∗ is information theoretically hidden to the eyes of Al-

ice. However by definition of NoUnique∗(j∗, i∗) Alice queries both (p0
i∗ , p1

i∗) to the functionality
FPUFEval,PUFSamp

HToken . It follows that we can bound the probability of the event NoUnique∗(j∗, i∗) to
happen to a negligible function in the security parameter. Therefore we have that

Pr[ Abort : H3] ≤ negl(λ) + Pr[ NoDefined : H3] .

In order to show a bound on the probability of NoDefined to happen in H2 we define another
sequence of hybrids.
HD

0 : The experiment HD
0 identical to H2 except that we sample some j∗ from the identifiers

associated to all sessions. Let n be a bound on the total number of session and let NoDefined(j∗)
be the event where NoDefined happens for the session j. Since j∗ is randomly chosen we have that

Pr[ NoDefined : H2] ≤ Pr
[

NoDefined(j∗) : HD
0

]
· n.

HD
1 : The experiment HB

1 is defined as HD
0 except that it stops before the execution of the SWIAoK

in the commitment of session j∗. Let st be the state of all the machines in the execution of HD
0

under the assumption that no machine keeps a copy of the pre-image x after generating crs. Let
P∗ be the following algorithm:
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• Continue the execution of HD
0 from st.

• Input/output all the SWIAoK messages from session j∗.
• Simulate all other messages internally.

The experiment HD
1 runs b ←

〈
P∗(st; r),V1(y, {comi}i∈[ℓ(λ)])

〉
, where {comi}i∈[ℓ(λ)] are the mes-

sages sent in session j∗ from Alice. Let NoDefined∗(j∗) be the event that there exists some Kj∗

i

that is undefined before the execution of the SWIAoK in session j∗. Then we have that

Pr
[

NoDefined(j∗) : HD
0

]
= Pr

[
b = 1 ∧ NoDefined∗(j∗) : HD

1

]
,

by definition of NoDefined(j∗).
HD

2 : Defined asHD
1 except that the extractor ({mi, decomi}i∈[ℓ(λ)], x)← ExtP∗(st)(y, {comi}i∈[ℓ(λ)]; r)

is executed instead of the SWIAoK. Note that

Pr

 {mi, decomi}i∈[ℓ(λ)] ← ExtP∗(st)(y, {comi}i∈[ℓ(λ)]; r) :
({mi, decomi}i∈[ℓ(λ)], (y, {comi}i∈[ℓ(λ)])) ∈ R1
∧NoDefined∗(j∗) : HD

2

 =

∑
st,ω,seed,j∗,Q s.t. NoDefined∗(j∗) Pr[ st, ω, seed, j∗,Q]

·Pr
[
{mi, decomi}i∈[ℓ(λ)] ← ExtP∗(st)(y, {comi}i∈[ℓ(λ)]; r) :
({mi, decomi}i∈[ℓ(λ)], (y, {comi}i∈[ℓ(λ)])) ∈ R1

]

by the extraction property of the SWIAoK we can rewrite∑
st,ω,seed,j∗,Q s.t. NoDefined∗(j∗) Pr[ st, ω, seed, j∗,Q]

·Pr
[
{mi, decomi}i∈[ℓ(λ)] ← ExtP∗(st)(y, {comi}i∈[ℓ(λ)]; r) :
({mi, decomi}i∈[ℓ(λ)], (y, {comi}i∈[ℓ(λ)])) ∈ R1

]
≥∑

st,ω,seed,j∗,Q s.t. NoDefined∗(j∗) Pr[ st, ω, seed, j∗,Q]

·
Pr
[

1 =
〈
P∗(st; r),V3(y, {comi}i∈[ℓ(λ)]))

〉 ]c

p .

By Jensen’s inequality we can conclude that

Pr

 {mi, decomi}i∈[ℓ(λ)] ← ExtP∗(st)(y, {comi}i∈[ℓ(λ)]; r) :
({mi, decomi}i∈[ℓ(λ)], (y, {comi}i∈[ℓ(λ)])) ∈ R1
∧NoDefined∗(j∗) : HD

2

 ≥ Pr
[

b = 1 ∧ NoDefined∗(j∗) : HD
1

]c
p

.

HD
3 : The experiment HB

3 is defined as HD
2 except that it stops before the execution of the SWIAoK

in the opening of session j∗. Let st be the state of all the machines in the execution of HD
2 under

the assumption that no machine keeps a copy of the trapdoor x after generating crs. Let P∗ be the
following algorithm:

• Continue the execution of HD
2 from st.

• Input/output all the SWIAoK messages from the opening phase of session j∗.
• Simulate all other messages internally.
The experiment HD

1 runs b ←
〈
P∗(st; r),V1(y, seed, m, com, ω, {comi}i∈[ℓ(λ)], {q0

i , q1
i }i∈[ℓ(λ)])

〉
,

where the input of the verification algorithm corresponds to the messages exchanged in session j∗.
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To the eyes of Alice this change is only syntactical and therefore we have that

Pr

 {mi, decomi}i∈[ℓ(λ)] ← ExtP∗(st)(y, {comi}i∈[ℓ(λ)]; r) :
({mi, decomi}i∈[ℓ(λ)], (y, {comi}i∈[ℓ(λ)])) ∈ R1
∧NoDefined∗(j∗) : HD

2

 =

Pr

 {mi, decomi}i∈[ℓ(λ)] ← ExtP∗(st)(y, {comi}i∈[ℓ(λ)]; r) :
({mi, decomi}i∈[ℓ(λ)], (y, {comi}i∈[ℓ(λ)])) ∈ R1
∧b = 1 ∧ NoDefined∗(j∗) : HD

3

 .

HD
4 : Defined asHD

3 except that the extractor (k, {decomi}i∈[ℓ(λ)], decom, x)← ExtP∗(st)(y, seed, m, com, ω,
{comi}i∈[ℓ(λ)], {q0

i , q1
i }i∈[ℓ(λ)]; r) is executed instead of the SWIAoK. An argument identical as above

can be used to show that

Pr



{mi, decomi}i∈[ℓ(λ)] ← ExtP∗(st)(y, {comi}i∈[ℓ(λ)]; r) :
({mi, decomi}i∈[ℓ(λ)], (y, {comi}i∈[ℓ(λ)])) ∈ R1∧

(k, {decom′i}i∈[ℓ(λ)], decom, x)← ExtP∗(st)
(

y, seed, m, com, ω,
{comi, q0

i , q1
i }i∈[ℓ(λ)]

; r

)
:

((k, {decom′i}i∈[ℓ(λ)], decom, x),
(

y, seed, m, com, ω,
{comi, q0

i , q1
i }i∈[ℓ(λ)]

)
∈ R2

∧NoDefined∗(j∗) : HD
3


≥

Pr

 {mi, decomi}i∈[ℓ(λ)] ← ExtP∗(st)(y, {comi}i∈[ℓ(λ)]; r) :
({mi, decomi}i∈[ℓ(λ)], (y, {comi}i∈[ℓ(λ)])) ∈ R1
∧b = 1 ∧ NoDefined∗(j∗) : HD

3


c

p .

In the following analysis we ignore the case where the two extracted witnesses are a valid trapdoor
for the common reference string y, as this event can be easily ruled out with a reduction to the
one-wayness of f . Let us denote by βi ← Open(comi, decom′i). Now it is now enough to observe that
the successful termination of the protocol implies that for all i ∈ [ℓ(λ)] we have that hd(qki

i , β′i) ≤ δ,
for some k = k1|| . . . ||kℓ(λ). By definition of NoDefined∗(j∗) there exists some i∗ such that A never
queried any p′ to FPUFEval,PUFSamp

HToken such that neither hd(p′, p0
i∗) ≤ γ nor hd(p′, p1

i∗) ≤ γ, before
seeing the last message of the commitment phase. By the unpredictability of the PUF it follows
that Pr

[
(hd(mi∗ , q0

i∗) ≤ δ) ∨ (hd(mi∗ , q1
i∗) ≤ δ)

]
≤ negl(λ). We can conclude that there exists an i∗

such that βi∗ ̸= mi∗ . Since decomi∗ and decom′i∗ are valid opening informations for mi∗ and βi∗ ,
respectively, then we can derive the following bound

Pr



{mi, decomi}i∈[ℓ(λ)] ← ExtP∗(st)(y, {comi}i∈[ℓ(λ)]; r) :
({mi, decomi}i∈[ℓ(λ)], (y, {comi}i∈[ℓ(λ)])) ∈ R1∧

(k, {decom′i}i∈[ℓ(λ)], decom, x)← ExtP∗(st)
(

y, seed, m, com, ω,
{comi, q0

i , q1
i }i∈[ℓ(λ)]

; r

)
:

((k, {decom′i}i∈[ℓ(λ)], decom, x),
(

y, seed, m, com, ω,
{comi, q0

i , q1
i }i∈[ℓ(λ)]

)
∈ R2

∧NoDefined∗(j∗) : HD
3


≤ negl(λ),

by the binding property of the commitment scheme. Therefore we can conclude that

Pr[ Abort : H2] ≤ negl(λ).
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This proves our lemma. □

In order to conclude our proof we need to show that the extractor always returns a valid message-
decommitment pair for the same message that Alice outputs in the opening phase. More formally,
let NoExt be the event such that for the output of the extractor (m′, decom)← E(1λ) it holds that
m′ ̸= Open(com, decom), where com is the variable sent by Alice in the same session. Additionally,
let BadExt be the event such that the output of extractor (m′, decom) is a valid opening for com
but m′ ̸= m, where m is the message sent by Alice in the opening for the same session. We are now
going to argue that the probability that either NoExt or BadExt happens is bounded by a negligible
function.

Lemma 33. Pr[ NoExt : H2] ≤ negl(λ).

Proof. Consider the sequence of games HD
0 , . . . ,HD

4 as defined in the proof of Lemma 32. Let
NoExt∗(j∗) be the event that the algorithm E returns an invalid opening for the commitment in
session j∗ and the extractors of the zero knowledge proofs output a valid pair of witnesses. With
an argument along the same lines of the proof of Lemma 32 we can show that

Pr[ NoExt : H2] ≤
Pr
[

NoExt∗(j∗) : HD
4

]c
p

.

We now observe that whenever the extractor of the SWIAoK is successful then, for all i ∈ [ℓ(λ)]
it holds that that βi ← Open(comi, decom′i) and that hd(qki

i , βi) ≤ δ, for some k = k1|| . . . ||kℓ(λ).
Additionally we have that H(k, seed)⊕ω is a valid decommitment information for com. By definition
of NoExt we have that m′ ̸= Open(com, decom), where (m′, decom) is the output of E and it is defined
as ω⊕H(seed, K). This implies that K ̸= k, since the function H is deterministic. Therefore there
must exists some i∗ such that Ki∗ ̸= ki∗ . By Lemma 32 we know that K is uniquely defined and
therefore Alice did not query FPUFEval,PUFSamp

HToken for any p′ such that hd(pzi
i , p′) ≤ γ for zi ̸= Ki, and

therefore for all i ∈ [ℓ(λ)] it holds, by the unpredictability of the PUF, that

Pr
[

hd(βi, q1−Ki
i ) ≤ δ

]
≤ negl(λ),

and in particular we have that βi∗ ̸= mi∗ . Since decomi∗ and decom′i∗ are valid openings for mi∗

and βi∗ with respect to comi∗ , the probability of NoExt∗(j∗) to happen in HD
4 can be bound to

a negligible function by the binding property of the commitment scheme. This proves the initial
lemma. □

Lemma 34. Pr[ BadExt : H2] ≤ negl(λ).

Proof. The formal argument follows along the same lines as the proof of Lemma 33. The main
observation here is that the argument implies that the output of E and the tuple (m, decom), where
m is sent in plain by Alice and decom is the output of the extractor for the SWIAoK, must be
identical with overwhelming probability. □
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By the union bound we have that

Pr[ Abort : H2] + Pr[ NoExt : H2] + Pr[ BadExt : H2] ≤ negl(λ).

It follows that for all session j ∈ [n] our extractor as defined above does not abort except with
negligible probability and outputs the same message that the adversary opens to with overwhelming
probability. Therefore we can conclude that

{EXC ′H1,A,D(λ, z)}λ∈N,z∈{0,1}poly(λ) ≈ {EXC ′H2,A,D(λ, z)}λ∈N,z∈{0,1}poly(λ) .

S: We can now define the simulator S that is identical to H2 except that the output m′ of the
algorithm E (defined as above) is used in the message (commit, sid, m′) to the ideal functionality
FMCOM. The corresponding decommitment message (unveil, sid) is sent when the adversary returns
a valid decommitment to some message m. Since the interaction is unchanged to the eyes of the
adversary, we have that

{EXC ′H2,A,D(λ, z)}λ∈N,z∈{0,1}poly(λ) = {EXC ′ρ,S,D(λ, z)}λ∈N,z∈{0,1}poly(λ) .

This implies that our protocol everlastingly UC-realizes the commitment functionality FMCOM for
any corrupted Alice and concludes our proof. □
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Sébastien Coron and Jesper Buus Nielsen, editors, Advances in Cryptology – EURO-
CRYPT 2017, Part I, volume 10210 of Lecture Notes in Computer Science, pages
382–411, Paris, France, April 30 – May 4, 2017. Springer, Heidelberg, Germany.

[Can01] Ran Canetti. Universally composable security: A new paradigm for cryptographic
protocols. In 42nd Annual Symposium on Foundations of Computer Science, pages
136–145, Las Vegas, NV, USA, October 14–17, 2001. IEEE Computer Society Press.

33
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