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Abstract. Functional commitments (Libert et al. [ICALP’16]) allow a
party to commit to a vector v of length n and later open the commitment
at functions of the committed vector succinctly, namely with communi-
cation logarithmic or constant in n. Existing constructions of functional
commitments rely on trusted setups and have either O(1) openings and
O(n) parameters, or they have short parameters generatable using pub-
lic randomness but have O(logn)-size openings. In this work, we ask
whether it is possible to construct functional commitments in which both
parameters and openings can be of constant size. Our main result is the
construction of FC schemes matching this complexity. Our constructions
support the evaluation of inner products over small integers; they are
built using groups of unknown order and rely on succinct protocols over
these groups that are secure in the generic group and random oracle
model.

1 Introduction

Commitments are one of the most fundamental cryptographic primitives having
important implications in both theory and practice. In a classical commitment
scheme, the sender commits to some value and hands it over to the receiver.
The security of commitments guarantees that the receiver learns nothing about
the committed value (hiding), while the sender cannot change the committed
value afterward (binding). Commitments are one of the best-studied primitives,
both in terms of underlying assumptions, integration into more complex cryp-
tographic schemes, and several generalizations were proposed. In this work, we
study functional commitments (FC), proposed by Libert, Ramanna, and Yung
[LRY16], that follow the goal of providing advanced functionalities while mini-
mizing communication complexity. In FC, the sender commits to a vector v of
length n and can later open the commitment to functions f(v) of the committed
vector. A distinguishing feature of FCs is that commitment and openings should
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be short, namely of size logarithmic or constant in n. In terms of security, bind-
ing for FCs means that the sender cannot open the same commitment to two
different outputs of the same function, i.e., to prove that both y and y′ ̸= y are
f(v). Functional commitments generalize other commitments notions in prior
work that are concerned with short commitments and openings, such as vector
commitments (VC) [LY10, CF13] and polynomial commitments (PC) [KZG10].
In a vector commitment, one opens single (or multiple [BBF19, LM19]) posi-
tions of the committed vector, i.e., a VC is an FC where the class of functions is
specified as the projections fi(v) = vi. In a polynomial commitment, one com-
mits to a polynomial p(X) and opens to evaluations of p on given points z, i.e.,
a PC is an FC where vp is the vector of p(X)’s coefficients and one opens to
fz(vp) = p(z).

In terms of realizations, Libert et al. [LRY16] proposed an FC construction
for linear functions. More recently, Lipmaa and Pavlyk [LP20] showed an FC for
a class of arithmetic circuits.4 Both these constructions [LRY16, LP20] rely on
groups with pairings, and they have public parameters that must be generated in
a trusted manner and whose length is at least linear in the length of the vector.

In this work, we consider the problem of realizing functional commitments
that admit constant-size public parameters generated using a transparent public-
coin setup. It is not hard to see that this question has a positive answer if one
is willing to rely on the random oracle heuristic. In this case, one can build a
functional commitment by using a succinct commitment scheme and a SNARK
with transparent setup [Mic94, AHIV17, WTs+18, BCR+19, BBHR19, COS20,
Set20, SL20, ZXZS20] thanks to which one can generate an opening through a
SNARK proof for the NP statement that y = f(v) and the commitment C opens
to v. For an NP statement of size N , most existing SNARKs with a transparent
setup have proofs of length at least O(λ logN), where λ stands for the security
parameter. The only exception are SNARKs based on the approach of [Mic94]
instantiated with a constant-query PCP and constant-size vector commitments
over class groups [BBF19, LM19]. Such an approach however involves the non-
black-box use of the code of the commitment scheme and relies on the heavy
machinery of PCPs and SNARKs. Notably, this has to be the case even if one
wants to construct an FC for simple functionalities like inner products or poly-
nomial evaluations (aka polynomial commitments). In contrast, in this paper we
ask whether we can build FC schemes for inner products in a ‘simple’ way, i.e.,
without relying on powerful (and computationally burdensome) primitives.

Indeed, when considering FCs for inner products or polynomial commitments,
all ‘simple’ constructions in the literature have logarithmic opening size. For
instance, an inner product argument such as Bulletproofs [BBB+18] yields an
FC for linear functions in which openings consist of 2 · log n elements of a group
G where the discrete logarithm problem is hard.

To summarize, to the best of our knowledge, there is no simple functional
commitment (including polynomial commitments) that admits constant-size and
4 It is also easy to note that it is possible to construct an FC for polynomials from

one for linear functions, by linearizing the polynomial.
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transparent public parameters and constant-size openings in the literature. The
only exceptions are a few vector commitment constructions [BBF19, CFG+20]
in groups of unknown order, which, however, are functional commitments for a
very specific, non-algebraic, functionality. Therefore, the main question we ask
in this work is:

Can we build a simple inner-product functional commitments with constant-
size public parameters consisting of a uniformly random string and with
constant-size openings?

1.1 Our Contributions

The main result of our paper is the construction of the first functional commit-
ments that answer the above question in the affirmative.

FC for binary inner products with constant-size openings. Our first
result is a functional commitment that supports the evaluation of binary inner
products over the integers. Namely one can commit to a vector v ∈ {0, 1}n
and, for any f ∈ {0, 1}n, open the commitment to ⟨v,f⟩ computed over Z. The
scheme works over groups of unknown order and, due to the use of succinct
proofs of exponentiation from [BBF19], relies on the random oracle and generic
group models. The scheme’s public parameters are four group elements, while
openings consist of 21 elements of the hidden-order group, and 14λ bits.

While all prior FCs for inner products use techniques that somehow rely on
the homomorphic property of an underlying vector commitment, our construc-
tion departs from this blueprint and shows a new set of techniques for proving
an inner product. In a nutshell, we start from the first vector commitment of
Campanelli et al. [CFG+20], which uses an encoding of a vector based on two
RSA accumulators, and then we show how to reduce the problem of proving an
inner product with a public function to that of proving that a certain exponent
lies in a range. To the best of our knowledge, this technique is novel. Also, a core
part of this technique is a way to succinctly prove the cardinality of a set in an
RSA accumulator, which we believe can be of independent interest.

FC for integer inner products. Our second result is a collection of trans-
formations that lift an FC for binary inner products, like the one above, to one
that supports the computation of inner products over the integers and over fi-
nite rings. More in detail, we show two main transformations for the following
functionality: one can commit to a vector v ∈ (Z2ℓ)

n and, for any f ∈ (Z2m)n,
open the commitment to ⟨v,f⟩ computed over Z.

Through the first transformation, we obtain an FC whose openings have
size of O(ℓ + m) group elements and additive (ℓ + m) log(ℓn) bits, and whose
algorithms running time is approximately (ℓ+m) times that of the FC for binary
inner products.

Through the second transformation, we achieve a different tradeoff: the algo-
rithms’ running time grow by a factor 2ℓ+m but openings have a fixed size O(1)
group elements.
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We also show analogues of both transformations for the case of inner products
modulo any integer p, i.e., for ⟨·, ·⟩ : Zn

p × Zn
p → Zp, that yield FCs with the

same complexity as the ones above, considering ℓ and m as the bitsize of p.
Among the two, the second transformation is of particular interest because,

in the case of ℓ,m = O(log λ) (resp. p = poly(λ)) it yields functional commitment
schemes with constant-size openings.

Finally, due to the known construction of polynomial commitments from
functional commitments for inner products (see above), our FCs also imply poly-
nomial commitments with transparent setup for polynomials in Zp[X].

Comparison and concrete interpretation of our results. As mentioned
above, the objective of our work is to eliminate any dependence on the size of
the parameters and proofs on the vector length n. Our constructions have sizes
dependent only on the security parameter λ. When concretely instantiating the
group of unknown order these sizes get O(λ2) for class groups [HM00, BJS10,
DGS20] or O(λ3) for RSA groups.

On the other hand, elliptic curve group elements typically have size O(λ).
Therefore, if we consider polynomial lengths n = poly(λ) then elliptic curve-
based functional vector commitments as Bulletproofs [BBB+18] have proof size
O(λ log n) = O(λ log λ), which are concretely more efficient. For this, our results
firstly serve as feasibility results for the complexity of the sizes of functional vec-
tor commitments. We note, however, that our solutions would still be asymptot-
ically better if different unknown order group instantiations with optimal O(λ)
size were introduced, or in complexity leveraging scenarios where one considers
super-polynomial vector sizes, n > poly(λ).

This asymptotic drawback of constant-sized constructions is typical for many
primitives based on groups of unknown order such as RSA accumulators [Bd94,
BP97, Lip12, BBF19], vector commitments [CF13, LM19, BBF19, CFG+20] or
SNARKs [LM19].

Therefore, if we compare to the functional commitment built using the Bul-
letproofs inner product argument [BBB+18] (which to the best of our knowledge
is currently the most efficient one that admits constant-sized and transparent pa-
rameters) the proof sizes of our schemes are concretely larger (for n = poly(λ)).
On the other hand, our FC has two main advantages. The first one is flexibility.
Our FC “natively” supports inner products over Zp for any integer p, whereas
Bulletproofs only supports inner products over Zq where q is the prime modulus
of a group G where discrete logarithm holds.5 The second advantage is that in
our FC the verification algorithm admits preprocessing, that is, after spending
O(n) group exponentiations for a deterministic preprocessing of the function f ,
the rest of the verification has a fixed cost O(λ). Notably, inner product argu-
ments based on the folding techniques of Bootle et al. [BCC+16] do not admit
this preprocessing, as their verification time is O(n) independently of the time
to read the statement.

5 One could use Bulletproofs arithmetic circuit protocol in order to simulate mod p
algebra over Zq, at the price of a prover’s overhead.
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1.2 Other related work

As mentioned earlier, functional commitments [LRY16] are related to the notion
of vector commitments [LY10, CF13] and polynomial commitments [KZG10].

In recent work, Peikert, Pepin and Sharp [PPS21] propose a new lattice-
based vector commitment and also show an extension of their construction to
support opening to functions, expressed as boolean circuits, of the committed
vector. However, their construction works in a weaker model that assumes the
availability of a trusted authority that uses a secret key to generate functional
keys that allow one to create the opening. We argue that this is a much weaker
model than the one from [LRY16] that we use in our work, where anyone can
generate openings given a set of public parameters. Furthermore, the model
of [PPS21] seems impossible to achieve if one aims to use public parameters
generated using a public-coin setup.

Concurrent work In a very recent work, Arun et al. [AGL+22] also propose a
functional commitment construction for inner products with transparent setup
and constant-size openings, and show extensions and applications of their scheme
to building constant-size SNARKs with transparent setup. Although the scheme
of [AGL+22] gives a solution to the same problem addressed in this paper, we
emphasize that their work is fully concurrent to ours. In fact, except for sharing
the fact of relying on groups of unknown order, the techniques are very different.
They use extremal combinatorics techniques, whereas we rely on a new technique
for proving the cardinality of a set in an RSA accumulator.

2 Preliminaries

Notation. We denote by λ the security parameter. The set of all polynomial
functions is denoted by poly(λ). We write ϵ(λ) ∈ negl(λ) for a function ϵ(λ) if
it vanishes faster than the inverse of any polynomial and we call it negligible.
An algorithm A is said PPT if it is modeled as a probabilistic Turing machine
that runs in time poly(λ).We use bold lowercase letters to denote a vector, e.g.
v = (v1, . . . , vn). With [n] we denote {1, . . . , n} and with [A,B] the set {A,A+
1, . . . , B−1, B} where A,B ∈ Z, A < B. The operator ∥·∥ is used for the bit-size,
i.e. ∥x∥ = ⌈log(x)⌉, for x ∈ N. Primes(λ) stands for the set of all primes of size
λ, i.e. Primes(λ) = {p : p prime ∧ ∥p∥ = λ}. Oλ(n) will mean O(λn) (and not
O(poly(λ)n)).

2.1 Functional Commitments

Functional commitments (FC), introduced by Libert, Ramanna and Yung [LRY16],
allow a sender to commit to a vector v and then to open the commitment to a
function y = f(v). As in vector commitments [CF13], what makes this primitive
non-trivial is a succinctness property, which requires commitments and open-
ings to be “short”, that is constant or logarithmic in the length of v. In our work
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we use a slight generalization of the FC notion of [LRY16] considering univer-
sal specializable public parameters. This is a model, akin to the universal CRS of
[GKM+18], where Setup creates length-independent public parameters pp, which
one can later specialize to a specific length n by using a deterministic algorithm
Specialize.

Definition 1 (Functional Commitments). A functional commitment scheme
for a class of functions F is a tuple of algorithms FC = (Setup,Specialize,Com,
Open,Ver) with the following syntax and that satisfies correctness, succinctness,
and function binding.
Setup(1λ)→ pp given the security parameter λ, outputs public parameters pp,
which contain the description of a domain D and a universal class of functions
F = {Fn}n∈N, where Fn is a class of n-input functions {f : Dn → R}.

Specialize(pp,Fn)→ ppn given public parameters pp and a description of the
function class Fn, outputs specialized parameters ppn.

Com(ppn,v)→ C on input a vector v ∈ Dn outputs a commitment C.
Open(ppn,v, f)→ Λ on input a vector v ∈ Dn and an admissible function f ∈
Fn, outputs an opening Λ.

Ver(ppn, C, f, y, Λ)→ b ∈ {0, 1} on input a commitment C, a function f ∈ Fn,
a value y ∈ R, and an opening Λ, accepts (b = 1) or rejects (b = 0).

Correctness. FC is correct if, for any public parameters pp ← Setup(1λ), any
length n ∈ N and specialized ppn ← Specialize(pp, n), any vector v ∈ Dn and
any admissible function f ∈ Fn, it holds

Ver(ppn,Com(ppn,v), f, f(v),Open(ppn,v, f)) = 1

Succinctness. FC is succinct if there exists a fixed polynomial p(·) such that for
any n = poly(λ), commitments and openings generated in the scheme have size
at most p(λ, log n).

Function binding. For any PPT adversary A and any n = poly(λ), we have

Pr

Ver(ppn, C, f, y, Λ) = 1

∧ y ̸= y′ ∧
Ver(ppn, C, f, y

′, Λ′) = 1

:

pp← Setup(1λ)

(C, f, y, Λ, y′, Λ′)← A(pp)
ppn ← Specialize(pp,Fn)

 = negl(λ)

Remark 1. The Specialize algorithm is deterministically computed from pp and
Fn. For this reason, it suffices for Function Binding that the adversary A takes
as input pp (instead of ppn).

Remark 2 (Preprocessing-based verification). Our FC constructions enjoy a pre-
processing model of verification, similar to that of preprocessing SNARKs [GKM+18].
This means that one, given ppn and a function f , can generate a verification key
vkf and the latter can be later used to verify any opening for f . In particular,
while the cost of computing vkf can depend on the complexity of the function,
e.g., it is O(n) for a linear function with n coefficients, the subsequent cost of
verifying openings using vkf depends only on the succinctness of the scheme,
e.g., it is a fixed p(λ).
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2.2 Groups of unknown order

For our constructions we use groups of unknown order G, i.e., groups where
computing the order is hard. Throughout this work we will assume an efficient
group sampling probabilistic algorithm Ggen(1λ) that generates such a group G.
Potential candidates are class groups of imaginary quadratic order [BH01] and
RSA groups where the factorization is unknown. The instantiation through class
groups is the one that admits a public-coin (aka transparent) setup.

Hardness Assumptions. Below we recall the 2-Strong RSA assumption [BFS20],
the Adaptive Root assumption [Wes19] and the Low Order assumption [BBF18].

Definition 2 (2-Strong RSA assumption [BFS20]). We say that the 2-
strong RSA assumption holds for Ggen if for any PPT adversary A:

Pr

 ue = g

∧e ̸= 2k, k ∈ N
:

G← Ggen(λ)

g ←$ G
(u, e)← A(G, g)

 = negl(λ)

The 2-Strong RSA assumption is a special case of r-Strong RSA assumption,
introduced in [BFS20]. The latter is in turn a generalization of (and trivially
reduces to) the standard Strong RSA assumption [BP97] (where r = 1). Taking
square roots can be done efficiently in Class Groups of imaginary quadratic
order [BS96], but for higher order roots it is believed to be hard. Thus 2-Strong
RSA assumption is believed to hold. For RSA groups the (plain) Strong RSA is
a standard assumption.

Definition 3 (Adaptive Root assumption [Wes18]). We say that the adap-
tive root assumption holds for Ggen if for any PPT adversary (A1,A2):

Pr

 uℓ = w

∧w ̸= 1
:

G← Ggen(λ)

(w, state)← A1(G)

ℓ←$ Primes(λ)

u← A2(ℓ, state)

 = negl(λ)

The Adaptive Root assumption is believed to hold on Class Groups and RSA
groups.6 For completeness we also recall the Low Order assumption, which is
implied by the Adaptive Root assumption (see [BBF18] for the reduction).

Definition 4 (Low Order assumption [BBF18]). We say that the low order
assumption holds for Ggen if for any PPT adversary A:

Pr

 uℓ = 1

∧u ̸= 1

∧1 < ℓ < 2poly(λ)
:
G← Ggen(λ)

(u, ℓ)← A(G)

 = negl(λ)

6 In fact over the quotient group G/{1,−1} of an RSA group, since we need to exclude
the element −1 ∈ G whose order is known.
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2.3 Arguments of Knowledge

Let R ⊂ X × W be an NP relation for a language L = {x : ∃w s.t. (x,w) ∈
R}. An argument system for L is a triple of algorithms (Setup,P,V) where:
Setup(1λ) takes a security parameter λ and outputs a common reference string
crs; P(crs, x, w) takes the crs, a statement x and a witness w; V(crs, x) takes the
crs, a statement x, interacts with the prover, and finally accepts or rejects. We de-
note an execution between the prover and verifier with ⟨P(crs, x, w),V(crs, x)⟩ =
b, with b ∈ {0, 1} being the verifier’s output. When V uses only public random-
ness, the protocol is called public coin.

Completeness. For all (x,w) ∈ R we have

Pr
[
⟨P(crs, x, w),V(crs, x)⟩ = 1 : crs← Setup(1λ)

]
= 1.

Let A = (A0,A1) be an adversary modeled as a pair of algorithms such that
A0(crs) → (x, state) (i.e. outputs an instance x ∈ X after crs ← Setup(λ) is
run) and A1(crs, x, state) interacts with a honest verifier. Then an argument of
knowledge must satisfy the following properties:

Soundness. For all PPT A = (A0,A1) we have

Pr

[
⟨A1(crs, x, state),V(crs, x)⟩ = 1

and ∄w : R(x,w) = 1

∣∣∣∣ crs← Setup(λ)
(x, state)← A0(crs)

]
∈ negl(λ).

Knowledge Extractability. For all polynomial time adversaries A1 there ex-
ists a polynomial time extractor Ext such that, for all PPT A0 it holds

Pr

 ⟨A1(crs, x, state),V(crs, x)⟩ = 1
and (x,w′) /∈ R

∣∣∣∣∣∣
crs← Setup(λ)

(x, state)← A0(crs)
w′ ← Ext(crs, x, state)

 ∈ negl(λ).

Succinctness. Informally, an argument system is succinct if the communication
and the verifier’s running time in an execution of the protocol are constant or
polylogarithmic in the witness length. Note that in our work, we do not need
zero-knowledge arguments.

2.4 Succinct Proofs of Exponentiation

We make use of the following succinct arguments of knowledge of exponents over
groups of unknown order. Below we describe the protocols’ functionalities and
defer their description to Appendix A.

PoKE. First we recall the proof of knowledge of exponent (PoKE) of [BBF19]
for the language:

LPoKE =
{
(Y, u;x) ∈ G2 × Z : Y = ux

}
8



parametrized by a group G←$ Ggen(λ) and a group element g ←$ G. The proto-
col is succinct: it consists of 3 G-element and 1 Z2λ -element and the verification
time is O(λ), both regardless of the size, ∥x∥, of the witness.

PoDDH. We also recall the proof of knowledge of a Diffie-Hellman tuple (PoDDH)
of [CFG+20], for the language:

LPoDDH =
{
(Y0, Y1, Y ;x0, x1) ∈ G3 × Z2 : gx0

0 = Y0 ∧ gx1
1 = Y1 ∧ gx0x1 = Y

}
parametrized by a group G←$ Ggen(λ) and three group elements g, g0, g1 ←$ G.
Notice that, unlike the usual DH-tuple, in the above protocol the bases are
different and honestly generated in the setup. However, the same protocol can
work for the same base, g = g0 = g1. Similarly to the PoKE, the protocol is
succinct: 3 G-elements and 2 Z2λ -elements and O(λ).

PoRE. We wil make use of a succinct protocol (PoRE) proving that the exponent
of an element Y = gx lies in a certain range, x ∈ [L,R].

LPoRE =
{
(Y, L,R;x) ∈ G× Z3 : L < x < R ∧ gx = Y

}
.

parametrized by a group G←$ Ggen(λ) and a group element g ←$ G.
For this we rely on the square-decomposition technique [Lip03, Gro05]. That

is, an integer x is in the range [L,R] if and only if there exist (x1, x2, x3) ∈ Z3

such that 4(x − L)(R − x) + 1 =
∑3

i=1 x
2
i . The proof consists of the following

subprotocols (run in parallel):

– For each i = 1, 2, 3, the prover computes xi, sends Zi = gx
2
i for i ∈ [3]

and involves with the verifier in a succinct argument of knowledge of square
exponent (PoSE) proving the validity of the last:

LPoSE =
{
(Zi;xi) ∈ G× Z : gx

2
i = Zi

}
.

PoSE is presented as a stand-alone protocol in Appendix A Figure 8.
– The prover sends Y ′ = g(x−L)(R−x) and involves in a PoDDH protocol with

the verifier for the tuple (gx−L, gR−x, Y ′). Observe that gx−L, gR−x can be
computed homomorphically by the verifier from Y = gx, thus don’t have to
be sent.

– Finally, the verifier merely checks if Y ′4 · g =
∏3

i=1 Zi.

All the above protocols are knowledge-extractable in the generic group model
for groups of unknown order [DK02, BBF19].

Non-interactive versions. All protocols can be made non-interactive by the
standard Fiat-Shamir transformation [FS87].7

7 In these types of proofs though one should set ℓ to be of size 2λ for the non-interactive
case [BBF18].
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3 Our Functional Commitment for binary inner products

In this section we present our core construction of Functional Commitments for
binary inner products with constant-size parameters and openings. Precisely, in
the scheme we commit to binary vectors v = (v1, . . . , vn) ∈ {0, 1}n and the class
of functions is F = {Fn} where, for every positive integer n, Fn = {f : {0, 1}n →
Z} such that f is a linear function represented as a vector of binary coefficients,
i.e., f = (f1, . . . , fn) ∈ {0, 1}n, and computes the result as the inner product

y = ⟨f ,v⟩ =
n∑

i=1

fi · vi ∈ Z.

Note that, for a fixed n, every possible result y is an integer in {0, . . . , n}. Our
starting point is the vector commitment (VC) of Campanelli et. al. [CFG+20],
which is based on RSA accumulators [Bd94, BP97, Lip12, BBF19]. In [CFG+20],
each position of v is encoded as a prime, via a collision-resistant hash-to-prime
function Hprime(i) → pi for each i ∈ [n]. Then, in order to commit to v, one
creates two RSA accumulators, C0, C1: the former that accumulates all primes
corresponding to zero-values of v ({pi = Hprime(i) : vi = 0}), and the latter
for one-values ({pi = Hprime(i) : vi = 1}) respectively. That is merely, C0 =

g

∏
vi=0 pi

0 and C1 = g

∏
vi=1 pi

1 . Observe that these two sets of primes form a
partition of all the primes corresponding to positions {1, . . . , n}. For binding of
the commitment, they also add a succinct proof PoDDH to show that the sets
in C0 and C1 are indeed a partition.

Starting from this vector commitment, our contribution is a new technique
that allows us to create inner product opening proofs. To this end, our first key
observation is that:

y = ⟨v,f⟩ =
∑
i

vifi =
∑
fi=0

vi ·0+
∑
fi=1

vi ·1 =
∑
fi=1

vi = |{i ∈ [n] : fi = 1, vi = 1}|

since both vi and fi are binary. Then the prover commits to the subvector of v
corresponding to positions where fi = 1. This is done by using the same vector
commitment described previously. That is, we compute F0 = g

∏
fi=1,vi=0 pi

0 and

F1 = g

∏
fi=1,vi=1 pi

1 , accompanied with a PoDDH proof π′
PoDDH of Diffie-Hellman

tuple for the tuple (F0, F1, F ), for F = g
∏

fi=1 pi . Notice that F can be computed
by only knowing f , without knowledge of v.

The next step to prove the inner product is to show that (F0, F1) is actually a
commitment to a subvector of v. This is done by showing that F0 accumulates a
subset of the primes of C0, and similarly F1 accumulates a subset of the primes of
C1. Putting it in other words, the ‘exponent’ of Fb is contained in the accumulator
Cb: there is a Wb such that W

∏
fi=1,vi=b pi

b = Cb and Fb = g

∏
fi=1,vi=b pi

b , for
b = 0, 1. The last can be proven in a succinct way via a simple concatenation of
two PoKE proofs, π0, π1.

Observe now that the F1 accumulates exactly the (primes corresponding to)
positions that contribute to the inner product {i ∈ [n] : fi = 1, vi = 1}. The
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number of primes that F1 contains in its ‘exponent’ is exactly y. All that is
missing now is a way to convince the verifier about the number of primes in the
exponent of F1. For this, we set the size of each prime pi to be such that the
range of any product

∏
i∈I pi determines uniquely the cardinality of I (i.e., the

number of primes in the product). This way, a range proof for the ‘exponent’ of
F1 can convince the verifier about the cardinality of the accumulated set, which
is the inner product result y. For this, we generate a succinct range proof πPoRE

using our protocol of section 2.4.
The verifier, holding the commitment (C0, C1, πPoDDH), receives the opening

proof (F0, F1, π
′
PoDDH,W0, π0,W1, π1, πPoRE). It is important to make sure that F1

contains exactly the primes of positions where fi = 1 and vi = 1. The (F1, C1)-
‘subvector’ proof π1 ensures that vi = 1 for all its primes (since C1 contains only
primes for vi = 1). For the fi = 1 part, the verifier herself computes F = g

∏
fi=1 pi

and verifies that (F0, F1, F ) is a DH tuple through π′
PoDDH. This ensures that (1)

all the primes in the exponents of F0, F1 are for fi = 1 and (2) no position i for
fi = 1 was excluded maliciously; all of them were either put in F0 or F1. This
convinces the verifier that exactly the positions i where fi = 1, vi = 1 are in the
’exponent’ of F1.

3.1 Functional VCs for binary linear functions from range proofs

Here we formally describe our construction. We simplify the notation omit-
ting the indicator i ∈ [n] from the sums and the products below. For exam-
ple

∑
i xi would implicitly mean

∑
i∈[n] xi and

∏
vi=1 xi would implicitly mean∏

i∈[n],vi=1 xi. Furthermore, we use abbreviations for some products we will use
that can be found in Figure 1.

prod =
∏

i Hprime(i)

prod0 =
∏

vi=0 Hprime(i)

prod1 =
∏

vi=1 Hprime(i)

fprod =
∏

fi=1 Hprime(i)

fprod0 =
∏

fi=1,vi=0 Hprime(i)

fprod1 =
∏

fi=1,vi=1 Hprime(i)

Fig. 1: Summary of symbols for the products used in the construction.

Setup(1λ)→ pp : The setup algorithm generates a hidden order group G ←
Ggen(1λ) and samples three generators g, g0, g1 ←$ G. It determines a collision-
resistant function Hprime that maps integers to primes and it returns pp =
(G, g, g0, g1).

Specialize(pp, n)→ ppn : The algorithm samples a collision-resistant function
Hprime that maps integers to primes.8 Computes prod =

∏
i Hprime(i) and

sets Un = gprod. Returns ppn = (pp,Hprime, Un).
Com(ppn,v)→ C : The commitment algorithm takes as input a vector of bits
v = (v1, . . . , vn) ∈ {0, 1}n. It computes the product of all primes that corre-
spond to a zero-value of the vector (i.e., vi = 0) as prod0 =

∏
vi=0 Hprime(i),

8 As we discuss next and in more detail in Section 3.3, the choice of Hprime depends
on n.
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and similarly prod1 =
∏

vi=1 Hprime(i) for the one-values. Next, it computes
the accumulators

C0 = g
prod0
0 and C1 = g

prod1
1

and a PoDDH proof π = PoDDH.P ((G, g, g0, g1), (C0, C1, Un), (prod0, prod1)),
which ensures that, given the above (C0, C1, Un), it holds prod = prod0 · prod1:

L =
{
(C0, C1, Un; prod0, prod1) : g

prod0
0 = C0 ∧ g

prod1
1 = C1 ∧ gprod0·prod1 = Un

}
Returns C = (C0, C1, π).
Open(ppn, C,v,f)→ (y, Λ) : f = (f1, . . . , fn) ∈ {0, 1}n is a vector of bits. The
output of the function is

y = ⟨v,f⟩ =
∑

vifi =
∑
fi=0

vi · 0 +
∑
fi=1

vi · 1 =
∑
fi=1

vi

Let fprod =
∏

fi=1 Hprime(i), fprod0 =
∏

fi=1,vi=0 Hprime(i) and fprod1 =∏
fi=1,vi=1 Hprime(i). Computes F = gfprod and

F0 = g
fprod0
0 and F1 = g

fprod1
1

Then computes the following arguments of knowledge:
– π0: a proof that F0 contains a ‘subvector’ of C0, i.e. a proof for the language:

L0 =
{
(F0,W0; fprod0) : W

fprod0
0 = C0 ∧ g

fprod0
0 = F0

}
– π1: a proof that F1 contains a ‘subvector’ of C1, i.e. a proof for the language:

L1 =
{
(F1,W1; fprod1) : W

fprod1
1 = C1 ∧ g

fprod1
1 = F1

}
– π2: a PoDDH for F0, F1, F :

L2 =
{
(F0, F1, F ; fprod0, fprod1) : g

fprod0
0 = F0 ∧ g

fprod1
1 = F1 ∧ gfprod0·fprod1 = F

}
– π3: a range proof that fprod1 is in a certain range L(y) < fprod1 < R(y),

that is uniquely determined by y. L and R are public functions that depend
on Hprime (see Figure 2 for their concrete description).

L3 =
{
(F1, y; fprod1) : L(y) < fprod1 < R(y) ∧ g

fprod1
1 = F1

}
Returns Λ = (F0, F1,W0,W1, π0, π1, π2, π3)

Ver(ppn, C, Λ,f , y)→ b : It computes F = gfprod = g
∏

fi=1 Hprime(i) that depends
only on f and outputs 1 iff all π, π0, π1, π2, π3 verify. Notice that computing F
is necessary as is an input to the proof π2.
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Hprime : [n]→
(
2κ(λ), 2κ(λ)+

κ(λ)
n

)
collision-resistant hash-to-prime function.

L(y) =

{
2κ(λ)y, y ∈ [n]

1, y = 0
and R(y) =

{
2(κ(λ)+

κ(λ)
n )y, y ∈ [n]

1, y = 0

Fig. 2: Definitions of the range functions L,R. The functions depend on the range
Hprime, which in turn depends on n and λ (specified in the setup and specialize
phases respectively).

Remark 3. For ease of presentation, in the Open algorithm, we describe four
distinct proofs, π0, π1, π2, π3. In order to optimize the proof size, they can be
merged into a single proof avoiding redundancies. We present in details the
(merged) protocol in Section 3.3.

Determining the hash function and the range We need to find a proper
hash-to-prime function and a corresponding range [L(y), R(y)] for fprod1 such
that for any y = 1, . . . , n:

fprod1 :=
∏

vi=1,fi=1

Hprime(i) ∈ [L(y), R(y)] ⇐⇒
∣∣{i ∈ [n] : vi = 1, fi = 1}

∣∣ = y

meaning that a range for the product of the primes should translate to its num-
ber of prime factors. And the correspondence should be unique. E.g. p2p7p11 ∈
[L,R] ⇐⇒ 3 factors ⇐⇒ y = 3. For the degenerate case of y = 0, fprod = 1.

The following lemma shows that such Hprime, L,R exist and specifies their
parameters:

Lemma 1. Assume a collsion-resistant function that maps integers to prime
numbers, Hprime : [n] →

(
2κ(λ), 2κ(λ)+

κ(λ)
n

)
, parametrized by λ and n, and

functions L : {0, . . . , n} → Z, R : {0, . . . , n} → Z such that L(y) = 2κy and
R(y) = 2(κ+

κ
n )y respectively. Then for any I ⊆ [n]:∏

i∈I
Hprime(i) ∈ [L(y), R(y)] ⇐⇒ |I| = y

Proof. For any number of factors y = 1, . . . , n we have 2κy <
∏

i∈[y] pi <

2(κ+
κ
n )y. Since κy + κy

n < κ(y + 1) for any y ∈ [n] all ranges are distinct. So the
mapping is ’1-1’.

In Section 3.3 we discuss concrete instantiations for the function Hprime and
consequently L and R.
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3.2 Security

Correctness. Follows from correctness of the [CFG+20] Vector Commitment,
correctness of PoKE,PoDDH,PoRE arguments of knowledge and from Lemma 1.

Function Binding. Our proof strategy is the following. Given two openings
Λ and Λ′ of the same commitment C to distinct outputs y, y′, we first use
the ‘subvector’ proofs’ extractors π0, π1, π

′
0, π

′
1 to argue that (the exponents of)

(F0, F1) and (F ′
0, F

′
1) are subvectors of C. Then we use the PoDDH’s extractors

π2, π
′
2 to argue that in fact these subvectors are for the same subset of positions

I1 = {i ∈ [n] : fi = 1}. For the latter we also use the collision-resistance of
Hprime. Then we use the extractors of PoRE π3, π

′
3 for F1 and F ′

1 resp., the fact
that y ̸= y′ (by definition of the game) and lemma 1 to argue that these sub-
vectors (for the same positions) are different. Finally, we argue that this fact,
having two different subvectors for the same subset of positions and commitment
C, contradicts the position-binding property of the [CFG+20] Vector Commit-
ment.

Theorem 1. Let Ggen be a hidden order group generator where the [CFG+20]
VC is position binding, PoKE,PoDDH,PoRE be succinct knowledge-extractable
arguments of knowledge and Hprime be collision-resistant. Then our functional
commitment for binary inner products is function binding.

Proof. We organize the proof in hybrid arguments. To start with, we define the
game G0 as the original functional binding game of Definition 1, and our goal is
to prove that for any PPT adversary A and any n ∈ N, Pr[G0 = 1] ∈ negl(λ).

Game G0:

G0 = FuncBindA,FC(λ)

pp← Setup(1λ); ppn ← Specialize(pp, n)(
C,f , y, Λ, y′, Λ′)← A(pp)

b← Ver(ppn, C, Λ,f , y) = 1 ∧ y ̸= y′ ∧ Ver(ppn, C, Λ
′,f , y′)

return b

For any adversary A against G0, there exist the extractors of the proof of
‘subvector’ π0, π1, π

′
0, π

′
1.

Game G1: is the same as G0 except that we execute the extractors E0, E1, E ′0, E ′1
of π0, π1, π

′
0, π

′
1, which output (W0, fprod0) , (W1, fprod1) ,

(
W ′

0, fprod
′
0

)
and

(
W ′

1, fprod
′
1

)
,

respectively.
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G1

pp← Setup(1λ); ppn ← Specialize(pp, n)(
C,f , y, Λ, y′, Λ′)← A(pp)
fprod0 ← E0(G, g0); fprod1 ← E1(G, g1)

fprod′0 ← E
′
0(G, g0); fprod

′
1 ← E

′
1(G, g1)

bwit =
∧

i=0,1

(
(W

fprodi
i = Ci) ∧ (W ′fprod′i

i = Ci) ∧ (g
fprodi
i = Fi) ∧ (gi

fprod′i = F ′
i )
)

b← Ver(ppn, C, Λ,f , y) = 1 ∧ y ̸= y′ ∧ Ver(ppn, C, Λ
′,f , y′)

if bwit = 0 then b← 0

return b

where above Λ = (F0, F1,W0,W1, π0, π1, π2, π3), Λ′ = (F ′
0, F

′
1,W

′
0,W

′
1, π

′
0, π

′
1, π

′
2, π

′
3)

and ppn = (G, g, g0, g1,Hprime, Un).
It is easy to see that the games G0 and G1 are identical except if bwit = 0.

However, bwit = 0 only when one of the witnesses returned by the extractors is
incorrect. By the knowledge extractability of the proof of ‘subvector’ we obtain
that

Pr[G0 = 1]− Pr[G1 = 1] ≤ Pr[bwit = 0] ∈ negl(λ).

Game G2: is the same as G1 except the case fprod0 · fprod1 ̸= fprod or
fprod′0 · fprod

′
1 ̸= fprod.

G2

pp← Setup(1λ); ppn ← Specialize(pp, n)(
C,f , y, Λ, y′, Λ′,

)
← A(pp)

fprod0 ← E0(G, g0); fprod1 ← E1(G, g1)

fprod′0 ← E
′
0(G, g0); fprod

′
1 ← E

′
1(G, g1)

bwit =
∧

i=0,1

(
(W

fprodi
i = Ci) ∧ (W ′fprod′i

i = Ci) ∧ (g
fprodi
i = Fi) ∧ (gi

fprod′i = F ′
i )
)

bcol = (fprod0 · fprod1 = fprod) ∧
(
fprod′0 · fprod

′
1 = fprod

)
b← Ver(ppn, C, Λ,f , y) = 1 ∧ y ̸= y′ ∧ Ver(ppn, C, Λ

′,f , y′)

if bwit = 0 ∨ bcol = 0 then b← 0

return b

where above Λ = (F0, F1,W0,W1, π0, π1, π2, π3), Λ′ = (F ′
0, F

′
1,W

′
0,W

′
1, π

′
0, π

′
1, π

′
2, π

′
3)

and ppn = (G, g, g0, g1,Hprime, Un).

Lemma 2. Assume that the Low order assumption holds for Ggen, then Pr[G1 =
1]− Pr[G2 = 1] ∈ negl(λ).
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Proof. We consider a game G′
2 by running the extractors of the PoDDH proofs

π2 and π′
2, which outputs (fprod0, fprod1) s.t. g

fprod0
0 = F0 ∧ g

fprod1
1 = F1 ∧

gfprod0·fprod1 = F and (fprod0
′
, fprod1

′
) s.t. gfprod0

′

0 = F ′
0∧g

fprod1
′

1 = F ′
1∧gfprod0

′·fprod1
′
=

F , respectively. It is easy to see that Pr[G2 = 1] − Pr[G′
2 = 1] ∈ negl(λ). The

following equalities hold:

gfprod0·fprod1 = gfprod0
′·fprod1

′
= F ;

g0
fprod0 = F0; g0

fprod0
′
= F ′

0;

g1
fprod1 = F1 and g1

fprod1
′
= F ′

1.

The game G′
2 only differs from G1 in the case (fprod0 · fprod1 ̸= fprod)∨

(
fprod′0 · fprod

′
1 ̸= fprod

)
.

We divide it into two cases.
Case 1: fprod0 · fprod1 ̸= fprod or fprod′0 · fprod

′
1 ̸= fprod. The first inequality

implies that there exists 1 ̸= v = fprod − fprod0 · fprod1 < 2poly(λ) such that
gv = 1, which is a violation to the Low order assumption and occurs with a
negligible probability. The second one implies a similar result.

Case 2: the two above equalities hold. Then G′
2 differs from G1 only if one

of the four following inequalities holds.

fprod0 ̸= fprod0; fprod0
′ ̸= fprod′0; fprod1 ̸= fprod1 or fprod1

′ ̸= fprod′1.

Again, any of these inequalities imply a low order root of 1.
Therefore, Pr[G1 = 1]− Pr[G2 = 1] ∈ negl(λ).

Game G3: is obtained by adding the range check for fprod1 and fprod′1 to
G2.

G3

pp← Setup(1λ); ppn ← Specialize(pp, n)(
C,f , y, Λ, y′, Λ′,

)
← A(pp)

fprod0 ← E0(G, g0); fprod1 ← E1(G, g1)

fprod′0 ← E
′
0(G, g0); fprod

′
1 ← E

′
1(G, g1)

bwit =
∧

i=0,1

(
(W

fprodi
i = Ci) ∧ (W ′fprod′i

i = Ci) ∧ (g
fprodi
i = Fi) ∧ (gi

fprod′i = F ′
i )
)

bcol = (fprod0 · fprod1 = fprod) ∧
(
fprod′0 · fprod

′
1 = fprod

)
brange = (fprod1 ∈ [L(y), R(y)]) ∧

(
fprod′1 ∈ [L(y′), R(y′)]

)
b← Ver(pp, C, Λ,f , y) = 1 ∧ y ̸= y′ ∧ Ver(pp, C, Λ′,f , y′)

if bwit = 0 ∨ bcol = 0 ∨ brange = 0 then b← 0

return b

where above Λ = (F0, F1,W0,W1, π0, π1, π2, π3), Λ′ = (F ′
0, F

′
1,W

′
0,W

′
1, π

′
0, π

′
1, π

′
2, π

′
3)

and ppn = (G, g, g0, g1,Hprime, Un).
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The two games G2 and G3 are different only in the case the range check fails,
which means either π3 or π′

3 is incorrect. By the argument of knowledge of PoRE,
we conclude that Pr[G2 = 1]− Pr[G3 = 1] ∈ negl(λ).

Game G4: is the same as G3 except we decode the subvectors s, s′ from the
exponents fprod1 and fprod′1 corresponding to the subset {i : fi = 1}. Then we
recompute the exponents from the prime products at 0-positions and 1-positions
and check if they coincide with fprod0, fprod1, fprod

′
0 and fprod′1.

G4

pp← Setup(1λ); ppn ← Specialize(pp, n)(
C,f , y, Λ, y′, Λ′)← A(pp)

fprod0 ← E0(G, g0); fprod1 ← E1(G, g1)

for i : fi = 1 do

pi ← Hprime(i); si = (pi | fprod1); s
′
i = (pi | fprod′1)

s = {si}fi=1; s
′ = {s′i}fi=1

fprod′0 ← E
′
0(G, g0); fprod

′
1 ← E

′
1(G, g1)

bwit =
∧

i=0,1

(
(W

fprodi
i = Ci) ∧ (W ′fprod′i

i = Ci) ∧ (g
fprodi
i = Fi) ∧ (gi

fprod′i = F ′
i )
)

bcol = (fprod0 · fprod1 = fprod) ∧
(
fprod′0 · fprod

′
1 = fprod

)
brange = (fprod1 ∈ [L(y), R(y)]) ∧

(
fprod′1 ∈ [L(y′), R(y′)]

)
bsubv =

fprod0 =
∏

fi=1,si=0

Hprime(i) ∧ fprod′0 =
∏

fi=1:s′i=0

Hprime(i)


b← Ver(pp, C, Λ,f , y) = 1 ∧ y ̸= y′ ∧ Ver(pp, C, Λ′,f , y′)

if bsubv = 0 ∨ bwit = 0 ∨ bcol = 0 ∨ brange = 0 then b← 0

return b

where above Λ = (F0, F1,W0,W1, π0, π1, π2, π3), Λ′ = (F ′
0, F

′
1,W

′
0,W

′
1, π

′
0, π

′
1, π

′
2, π

′
3),

ppn = (G, g, g0, g1,Hprime, Un).

Lemma 3. Assume that Hprime is collision-resistant, Pr[G3 = 1] − Pr[G4 =
1] ∈ negl(λ).

Proof. The output of G4 differs from G3’s only when bsubv = 0∧bwit = 1∧bcol = 1.
By assumption, for all i such that fi = 1, Hprime(i)’s are all distinct. Then by
definition of s,∏

fi=1,si=1

Hprime(i) | fprod1 and
∏

fi=1,si=0

Hprime(i) | fprod0. (1)

Multiplying both hand sides of the two equations, we obtain
∏

fi=1 Hprime(i) |
fprod. Notice that the equality holds, hence it also holds for the equations in (1).
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Lemma 4. Let Ggen be a hidden order group generator where the [CFG+20]
SVC is position binding, then Pr[G4 = 1] ∈ negl(λ).

Proof. We show that given any adversary (A, E), where E = (E0, E1, E ′0, E ′1),
winning game G4 with non-negligible advantage, we can construct B winning
the position-binding game of the [CFG+20] VC.

Indeed, B on input pp outputs (C, I1, s, (W0,W1), s
′, (W ′

0,W
′
1)), where I1 =

{i ∈ [n] : fi = 1} and (W0,W1), (W
′
0,W

′
1) play the role of the (accepting) opening

proofs for the [CFG+20] SVC. The verifier for position binding computes aj =∏
fi=1,si=j Hprime(i); a′j =

∏
fi=1,s′i=j Hprime(i) for j = 0, 1. Since bsubv = 1,

aj = fprodj and a′j = fprod′j for j = 0, 1. Next, since bwit = 1, W aj

j = Cj and

W ′
j
a′
j = Cj , for j = 0, 1.
Now since y ̸= y′, brange = 1 and from lemma 1 we infer that fprod1 ̸= fprod′1

(because they have different number of factors) so s ̸= s′. Combining these argu-
ments, we obtain that Ver(C, I1, s, , (W0,W1)) = 1, Ver(C, I1, s′, , (W ′

0,W
′
1)) = 1

(for the VC) and s ̸= s′, i.e., B succeeds in the position-binding game with the
same probability of (A, E).

By combining all the lemmas we conclude that any PPT adversary has at most
negligible probability of breaking the function binding of our SVC scheme.

3.3 Instantiation

Instatiation of Hprime. As stated in Lemma 1, Hprime should be a collision-
resistant function with domain [n] that outputs prime numbers in the range(
2κ(λ), 2κ(λ)+

κ(λ)
n

)
. Here we specify the function κ(·) and show instantiations

for Hprime under these restrictions.
Hashing to primes is a well studied problem [GHR99, CS99, CMS99]. A

standard technique is rejection sampling: on input x it computes y = FK(x, 0),
where FK is a pseudorandom function with seed K and range [A,B], and checks
y for primality. If y is not prime it continues to y = FK(x, 1) and so on, until it
finds a prime F (x, j) for some j. From the density of primes the expected number
of tries is log(B −A). As an alternative, FK can also be a random oracle.

Assume a collision-resistant hash function H that we model as a random
oracle and its outputs are in the range

(
2κ(λ), 2κ(λ)+

κ(λ)
n

)
.9 For H to be collision

resistant we require, due to the birthday bound, its range to contain at least 22λ
prime numbers. From the density of primes we know that in the above range
there are about:

2κ+
κ
n

κ+ κ
n

− 2κ

κ
≈ 2κ+

κ
n

κ
− 2κ

κ
=

2κ
(
2

κ
n − 1

)
κ

prime numbers, where for the first approximate equality we assumed that κ≪ n.
9 We can securely fix the range of a hash function (as SHA512) by fixing some of its

bits and truncating others.
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So if we set κ (depending on λ and n) to be the smallest positive integer such
that:

2κ
(
2

κ
n − 1

)
κ

≥ 22λ

then H gives sufficiently many primes to instantiate Hprime (via the rejection
sampling method we described above).

For example for n = 260 and λ = 128: κ = 317. So instantiating Hprime with
the rejection sampling method based on the SHA512 (for FK) fixing its output
range to (2317, 2317+317/260) we get a sufficient Hprime for our functional vector
commitment construction that satisfies lemma 1.

Instantiation of the Arguments of Knowledge. Here we present the merged
argument of knowledge for our Open algorithm of section 3.1. As noted, it was
presented modularly in order to ease the presentation of the protocol and its
security proof, however we can merge the proofs for the four languages L0 −
−L3 into a single protocol, using standard composition techniques. The unified
language of the Open algorithm is:

L =


(F0, F1, F,W0,W1,R, L; fprod0, fprod1) :

W
fprod0
0 = C0 ∧ g

fprod0
0 = F0∧

∧W fprod1
1 = C1 ∧ g

fprod1
1 = F1∧

∧gfprod0·fprod1 = F ∧ L < fprod1 < R


The description of the protocol is in Figure 3.

The protocol gets non-interactive after the Fiat-Shamir transform. We note
that for ℓ an instantiation of the random oracle with a hash-to-prime function
of outputs in Primes(2λ) suffices.

Concrete Security Assumptions After the above instantiations we get that
our overall binary inner product commitment is secure in the GGM and RO
model assuming that H (used for Hprime as described above) is collision-resistant:
the argument of knowledge of Figure 3 is knowledge-extractable in the generic
group model and gets non-interactive in the random oracle model and the
[CFG+20] SVC is position binding under the 2-strong RSA and Low order as-
sumptions (that are secure in the GGM).

3.4 Efficiency

Our FC for binary inner products has O(1) public parameters, O(1) commitment
size and O(1) openings proof size. More in detail, |ppn| consists of 4 |G|-elements
and the descriptions of G and Hprime (which are concise). |C| is 5 |G|-elements
and 2 |Z22λ |-elements. Finally the opening proof |Λ| is 21 |G|-elements and 7
|Z22λ |-elements.10

10 We do not consider optimizations for the arguments of knowledge with which we
could reduce the size of |C| by 1 and |Λ| by 6 group elements respectively.
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Setup(λ) : G←$ Ggen(λ), g, g0, g1 ←$ G, set crs := (G, g, g0, g1).

P→ V: Computes:
– F ′

1 = g
(fprod1−L)(R−fprod1)
1

– Run square decomposition algorithm in [PT18] to find x1, x2, x3 such that
(fprod1 − L)(R− fprod1) =

∑3
i=1 x

2
i .

– For i = 1, 2, 3: Zxi
= g

x2
i

1 , zxi
= gxi

1

Sends (F ′
1, {Zxi

, zxi
}3i=1)

V→ P: Sends ℓ←$ Primes(λ)

P→ V: Computes:
– For b = 0, 1: qb = ⌊fprodb/ℓ⌋, Qb = W qb

b , Q′
b = gqbb , rb = fprodb mod ℓ.

– q = ⌊fprod0 · fprod1/ℓ⌋, Q = gq, r = fprod0 · fprod1 mod ℓ

– For i = 1, 2, 3: qxi
= ⌊xi/ℓ⌋, Qxi

= z
qxi
i , Q′

xi
= g

qxi
i , rxi

mod ℓ

– qL = ⌊(fprod1 − L)/ℓ⌋, QL = gqL1 , rL = (fprod1 − L) mod ℓ

– qR = ⌊(R− fprod1)/ℓ⌋, QR = gqR1 , rR = (R− fprod1) mod ℓ

– qLR = ⌊(fprod1−L) · (R− fprod1)/ℓ⌋, QLR = gqLR

1 , rLR = (fprod1−L) · (R−
fprod1) mod ℓ

Sends π :=
(
{Qb, Q

′
b, rb}1b=0, Q, {Qxi

, Q′
xi
, rxi
}3i=1, QL, rL, QR, rR, QLR

)
.

V(crs, Y, ℓ, π): Outputs 1 iff:
– r0, r1, rx1

, rx2
, rx3

, rL, rR ∈ [ℓ]

– Q′ℓ
b g

rb
b = Fb, Qℓ

bW
rb
b = Cb, for b = 0, 1

– Qℓgr = F

– Q′ℓ
xi
g
rxi
1 = zi, Qℓ

xi
z
rxi
xi = Zxi , for i = 1, 2, 3

– Qℓ
Lg

rL
1 = F1 · g−L

1 , Qℓ
Rg

rR
1 = gR1 · F−1

1 , Qℓ
LRg

rLR
1 = F ′

1

– F ′4
1 · g1 =

∏3
i=1 Zi

where r = r0r1 mod ℓ and rLR = rLrR mod ℓ.

Fig. 3: Our merged protocol for the Open algorithm of our binary inner product
Functional Commitment (section 3.1). The proof size and verification time are
independent of the size of fprod and thus n.

Generating the public parameters, via Setup and Specialize, takes a G-exponentiation
of size κn = Oλ(n). The generation doesn’t require any private coins and thus
is transparent.

The prover’s time (i.e., the running time of Open) is dominated by the com-
putation of the square decomposition x1, x2, x3, that is Pollack and Trevino
algorithm [PT18] on input of size 2κn running in time O

(
(2κn)2/ log(2κn)

)
.

Therefore, our prover requires Oλ(λn
2/ log(λn)) integer operations and O(n)

group exponentiations.
The verifier’s running time (i.e. Ver) is dominated by the computation of

F = g
∏

fi=1 Hprime(i), which takes (in the worst case where f = (1, 1, . . . , 1)) a
G-exponentiation of size κn = Oλ(n). The rest of the computations, i.e. the
verification of the argument of knowledge, take constant time O(2λ) = Oλ(1)
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G-exponentiations. However, below we make two observations that can speed up
the verification in two useful ways.

Preprocessing-based verification. Our Functional Commitment construc-
tion allows preprocessing the verification (see Remark 2). The verifier can com-
pute a-priori the function-dependent value F so that the online verification gets
Oλ(n). Notably, this preprocessing is deterministic and proof-independent, and
thus can be reused to verify an unbounded number of openings for the same
function f .

From group-based to integers-based linear work. Even without prepro-
cessing, the prover can compute and send to the verifier a PoE proof [Wes19,
BBF19] (see Appendix A) for F = g

∏
fi=1 Hprime(i). Then the verifier verifies PoE

instead of computing F herself. This takes Oλ(n) integer operations and Oλ(1)
group exponentiations, in place of Oλ(n) group operations, which concretely
gives a significant saving.

4 Our FC for Inner Products Over the Integers

In this section, we present two transformations that turn any functional com-
mitment for binary inner products (like the one we presented in Section 3) into
a functional commitment for inner products of vectors of (bounded) integers.
Precisely, we build an FC where one commits to vectors v ∈ (Z2ℓ)

n and the
class of admissible functions is

Fn = {f : (Z2ℓ)
n → Z}

where each f is represented as a vector f ∈ (Z2m)
n.

Consider an FC scheme bitFC for binary inner products, and let tCom(n),
tOpen(n), tVer(n) be the running times of its algorithms Com, Open and Ver
respectively, and let s(n) be the size of its openings.

Our two transformations yield FCs for the integer inner products function-
ality F that achieve different tradeoffs:

1. With our first transformation we obtain an FC where

t′Com(n) = tCom(nℓ), t
′
Open(n) = (ℓ+m) · tOpen(nℓ), t

′
Ver(n) = (ℓ+m) · tVer(nℓ),

s′(n) = (ℓ+m) · (s(nℓ) + log(nℓ))

2. With our second transformation we obtain an FC where

t′Com(n) = tCom(nℓ2
ℓ+m), t′Open(n) = tOpen(nℓ2

ℓ+m), t′Ver(n) = tVer(nℓ2
ℓ+m),

s′(n) = s(nℓ2ℓ+m)

Given the tradeoffs, and considering instantiations of bitFC like ours, in which
s(n) is a fixed value in the security parameters, then the second transformation
is particularly interesting in the case ℓ,m = O(1) are constant or O(log λ) as
it yields an FC with constant, or polynomial, time overhead and constant-size
openings.
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4.1 Our lifting to FC for integer inner products with
logarithmic-size openings

We start by providing here an intuitive description of our transformation. We
give a formal description of the FC scheme slightly below.

For our transformation, we use a binary representation of the vectors of
integers v ∈ (Z2ℓ)

n and f ∈ (Z2m)
n, that is:

v = (v1, . . . , vn) ∈ ({0, 1}ℓ)n and f = (f1, . . . , fn) ∈ ({0, 1}m)n

Denote vi =
∑ℓ−1

j=0 v
(j)
i 2j and fi =

∑m−1
k=0 f

(k)
i 2k the bit decomposition of vi, fi

respectively. Then we can rewrite the inner product of v and f as

y = ⟨f ,v⟩ =
n∑

i=1

vifi =
n∑

i=1

ℓ−1∑
j=0

m−1∑
k=0

v
(j)
i f

(k)
i 2j+k

 . (2)

If we swap the counters we conclude to:

y =

ℓ−1∑
j=0

m−1∑
k=0

(
n∑

i=1

v
(j)
i f

(k)
i

)
2j+k =

ℓ−1∑
j=0

m−1∑
k=0

⟨v(j),f (k)⟩2j+k

where above v(j) = (v
(j)
1 , . . . , v

(j)
n ) ∈ {0, 1}n is a bit-vector of the j-th bits of

all entries vi (and similarly for f (k)). The inner product y of v and f is hereby
broken into the above sum of ℓm binary inner products. So, a first idea to open
the inner product over the integers would be to let one create ℓ commitments,
one for each v(j) of length n, and then open to the inner product y by revealing
all the ℓm binary inner products, each with its corresponding opening proof. The
issue with this idea is that it yields an O(ℓm log n)-size opening.

Next, we show a more efficient way to use an FC for binary inner product
that avoids this quadratic blowup.

To this end, we show that y can also be represented as the sum of ℓ + m
binary inner products between vectors of length nℓ. We start observing that we
can rewrite (2) as

y =

n∑
i=1

ℓ−1∑
j=0

v
(j)
i ·

(
m−1∑
k=0

f
(k)
i 2j+k

)
=

n∑
i=1

ℓ−1∑
j=0

v
(j)
i · f̂

(j)
i (3)

where, for every i, j, each f̂
(j)
i is the integer

∑m−1
k=0 f

(k)
i ·2j+k ∈ [0, 2ℓ+m−1]. Now

the inner product y over integers is reshaped as an inner product between an
nℓ-long binary vector

v′ = v(0)∥ . . . ∥v(ℓ−1)

and an nℓ-long function with coefficients in [0, 2ℓ+m−1]. It is left to appropriately
grind this inner product into binary inner products. We are about to show that
those binary inner products are between v′ and the following binary vectors
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f ′
h = f (h)∥f (h−1)∥ . . . ∥f (h−ℓ+1)

where h ∈ [0, ℓ+m− 2],f (k) = (0, . . . , 0) for all k ̸∈ [0,m− 1].
Indeed, let y′h = ⟨v′,f ′

h⟩. Then by changing the variable k = h − j and
rearranging the summation of j, we can rewrite (2) as

y =

ℓ+m−2∑
h=0

ℓ−1∑
j=0

⟨v(j),f (h−j)⟩ · 2h =

ℓ+m−2∑
h=0

⟨v′,f ′
h⟩ · 2h =

ℓ+m−2∑
h=0

y′h · 2h.

Using as a building block the binary functional vector commitment we get
a functional vector commitment for bounded-integers as follows: only one com-
mitment C is needed for the concatenating vector v′. Then the opening proof
consists of the partial outputs {yh}h∈[0,ℓ+m−2] together with their correspond-
ing functional opening proofs {Λh}h∈[0,ℓ+m−2], one for each binary inner product
⟨v′,f ′

h⟩. For verification, one is checking that each Λh verifies with respect to C
and f ′

h, to ensure that yh are the correct partial outputs. Then it reconstructs
y =

∑ℓ+m−2
h=0 yh2

h according to the above equality.

FC scheme Consider bitFC as an arbitrary FC for binary inner products, we
present below a formal description of the transformation.

Setup(1λ)→ pp : runs pp = bitFC.Setup(1λ). Returns pp

Specialize(pp,Fn)→ ppFn
: given the description of the functions class Fn, which

includes the bounds ℓ,m and the vector length n, the specialization algorithms
sets N = nℓ and returns ppFn

= bitFC.Specialize(pp, N).
Com(ppn,ℓ,v)→ C : Let v = (v1, . . . , vn) ∈ ({0, 1}ℓ)n be a vector of ℓ-bit en-
tries, and let v(j) = (v

(j)
1 , . . . , v

(j)
n ) be the binary vector expressing the j-th bit

of all entries in v, i.e., it holds v =
(∑ℓ−1

j=0 v
(j)
1 2j , . . . ,

∑ℓ−1
j=0 v

(j)
n 2j

)
.

The commitment algorithm computes the commitment

C = bitFC.Com(ppFn
,v′), s.t. v′ = v(0)∥ . . . ∥v(ℓ−1)

and returns C.
Open(ppFn

, C,v,f)→ (y, Λ) : f = (f1, . . . , fn) ∈ ({0, 1}m)n is a vector of m-bit
entries.
If f =

(∑m−1
k=0 f

(k)
1 2k, . . . ,

∑m−1
k=0 f

(k)
n 2k

)
then f (k) = (f

(k)
1 , . . . , f

(k)
n ) is the

binary vector of the k-th bit of all entries of f .
The opening algorithm proceeds as follows. For each h = 0, . . . , ℓ+m− 2:

set f ′
h = f (h)∥f (h−1)∥ . . . ∥f (h−ℓ+1), where f (i) = (0, . . . , 0)∀i ̸∈ [0,m− 1],

and compute yh = ⟨v′,f ′h⟩ and Λh = bitFC.Open(ppFn
, C,v′,f ′

h),

Return Λ = {yh, Λh}h∈[0,ℓ+m−2] .

Ver(ppFn
, C, Λ,f , y)→ b : returns 1 iff:

1. bitFC.Ver
(
ppFn

, C, Λh,f
′
h, yh

)
= 1, for each h ∈ [0, ℓ+m− 2].
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2. y =
∑ℓ+m−2

h=0 yh2
h.

Theorem 2. If the binary functional vector commitment is functional binding,
then our bounded-integer functional vector commitment is functional binding.

Proof. The proof is straightforward from the fact that two valid openings y, z
over integer imply immediately that there exists at least an index h for which
there are two valid openings for distinct binary inner products yh ̸= zh.

4.2 Our lifting to FC for integer inner products with constant-size
openings

Here we provide a different method to lift an FC for binary inner products to an
FC for integer inner products that achieves a different tradeoff. The prover time
and verification time are 2ℓ+m times those of the bitFC scheme (with function
inputs of bit-size nℓ2ℓ+m), while openings are exactly the same as those of bitFC
(and thus constant-size using our scheme of Section 3).

Intuition In the transformation of the previous section we showed how how
to express the inner product y = ⟨v,f⟩ of n-long vectors of integers into the
weighted sum of ℓ+m− 1 binary inner products of vectors of length nℓ:

y =

ℓ+m−2∑
h=0

⟨v′,f ′
h⟩ · 2h =

ℓ+m−2∑
h=0

yh · 2h

The drawback of this transformation is that we need to include all the yh in the
opening, and each of this integer is up to log n-bits long.

It turns out that we can iterate the same idea and encode the above weighted
sum into a single inner product ⟨ṽ, f̃⟩ of binary vectors of length nℓH with
H =

∑ℓ+m−2
h=0 2h = 2ℓ+m−1 − 1.

For every h ∈ [0, ℓ+m−2], define the vector f̃h = f ′
h∥·∥f ′

h ∈ {0, 1}nℓ2
h

, that
is the concatenation of 2h copies of f ′

h. Similarly, set ṽh = v′∥ · · · ∥v′ ∈ {0, 1}nℓ2h .
Next, if we define

ṽ = ṽh∥ · · · ∥ṽh ∈ {0, 1}nℓH and f̃ = f̃0∥ · · · ∥f̃ℓ+m−2 (4)

it can be seen that

⟨ṽ, f̃⟩ =
ℓ+m−2∑
h=0

⟨ṽh, f̃h⟩ =
ℓ+m−2∑
h=0

⟨v′,f ′
h⟩ · 2h = y

FC Scheme More in detail the FC scheme works as follows.

Setup(1λ)→ pp : runs pp = bitFC.Setup(1λ). Returns pp

Specialize(pp,Fn)→ ppFn
: given the description of the functions class Fn, which

includes the bounds ℓ,m and the vector length n, the specialization algorithms
sets N = nℓH, with H = 2ℓ+m−1−1, and returns ppFn

= bitFC.Specialize(pp, N).
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Com(ppFn
,v)→ C : Given v = (v1, . . . , vn) ∈ ({0, 1}ℓ)n, compute a vector ṽ ∈

{0, 1}nℓH as in equation (4), and return the commitment

C = bitFC.Com(ppFn
, ṽ).

Open(ppFn
, C,v,f)→ Λ : Given f = (f1, . . . , fn) ∈ ({0, 1}m)n, compute vec-

tors ṽ, f̃ ∈ {0, 1}nℓH as in equation (4), and return the opening

Λ = bitFC.Open(ppFn
, ṽ, f̃).

Ver(ppFn
, C, Λ,f , y)→ b : returns 1 iff bitFC.Ver(ppFn

, C, Λ, f̃ , y) = 1.

Theorem 3. If bitFC is functional binding, then the FC described above is func-
tional binding.

The proof is straightforward based on the observation that two valid openings
for distinct y ̸= y′ of our FC are also two valid proofs, for the same commitment
and outputs, for the bitFC scheme.

5 Our FC for Inner Products mod p

In this section, we show how to extend the transformations of the previous section
in order to build FCs for inner products modulo an integer p, starting from an
FC for binary inner products. Namely we build FCs for

Fp,n = {f : (Zp)
n → Zp}.

Solutions with logarithmic-size openings. For the FC of our first trans-
formation of Section 4.1, the adaptation to support the inner product mod p
is easy. The only change is to run that construction by setting ℓ = m = ∥p∥
and by letting the second verification check be: y =

∑ℓ+m−2
h=0 yh · 2h mod p. No-

tice that the FC scheme has exactly the same complexity analysis, considering
ℓ = m = ∥p∥.

More in general, given any FC for integer inner products it is possible to
construct one for inner products modulo an integer p, at the cost of additionally
including log(np2) bits in the opening: one simply adds to the opening the result
y over the integers, and the verifier additionally checks that yp = y mod p.

Solutions with constant-size openings. To build an FC for Fp,n in which
openings remain of constant size, we discuss two solutions based on our second
transformation of Section 4.2.

The first solution is described in Section 5.1. It shows how to use an FC
for integer inner products to obtain an FC for inner products modulo p, for
p = poly(λ), with no overhead in the size of openings. This construction can be
instantiated using the FCs obtained with our second transformation of Section
4.2. To avoid a quadratic blowup in verification time, this construction can start
from FC for integer inner products that enjoy preprocessing-based verification.
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This way, the verification of the resulting FC remains O(n); as drawback, however
the resulting FC does not have preprocessing anymore.

FC for Z inner products, with
O(1) proofs and preprocessing

==⇒
FC for Zp inner products, with
O(1) proofs (no preprocessing)

The second solution consists into using the same transformation of Section
4.2 with the following differences: set ℓ = m = ∥p∥ and, as a building block, use
an FC for binary inner products modulo p, i.e., for computing ⟨v,f⟩ (mod p)
for v,f ∈ {0, 1}n. If such a building block is available and it has constant size
proofs, it is easy to see that this variant of the transformation is correct and
secure. Clearly, due to the complexity of the transformation we can only use it
for small integers p = O(1), O(log λ).

The only missing piece for this construction is showing this building block.
In Section 5.2 we describe a construction of such a scheme, obtained by tweaking
our scheme of section 3. This solution preserves preprocessing verification.

FC for Z2 inner products mod p,

with O(1) proofs
==⇒

FC for Zp inner products,
with O(1) proofs

5.1 Using FC for integer inner products with preprocessing

As explained above, given an FC for integer inner products intFC (like the ones
of Section 4) one can easily build one for inner products (mod p) by including
in the opening proof the result y of the inner product over the integers, while
the actual result is yp = y mod p. But y (worst-case) can be n · p2. So the size
of the proof gets at least ∥y∥ < 2 log(p) + log(n).

To remove the logarithmic dependence on n, we observe that having yp = y
mod p (which the verifier always has as it is an input of the verification algo-
rithm) suffices for the verifier to check the opening. That is, since the euclidean
division of y by p is y = k · p+ yp then 0 ≤ k ≤ np. Therefore the verifier, after
receiving yp, can brute-force try all the quotients k ∈ [0, np], set y(k) = k ·p+yp
and check if the proof verifies with respect to the integer y(k). If there is no
k ∈ [0, np] such that the proof verifies, it rejects, otherwise she finds the actual
y which is accepting.

Naively, this approach would take time np · tVer(n), where tVer(n) is the ver-
ification time of intFC, when checking inner products of length n. The problem
with this is that, for tVer(n) = Oλ(n), the verification becomes Oλ(n

2). However,
we notice that the verification time of this brute-force search can be kept linear
if the scheme intFC one starts from has the preprocessing property. The obser-
vation is that all the np verifications are done with respect to the same function.
Thus one can first compute vkf using the preprocessing algorithm, in time Oλ(n)
(Oλ(n log λ) for p = O(log λ)), and then run the np verifications, each in fixed
n-independent time Oλ(1). Hence, using preprocessing we can achieve a verifica-
tion that is Oλ(pn), which is Oλ(n) (or Oλ(n log λ)) for small domains p = O(1)
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(or p = O(log λ) resp.). As a drawback, one can notice that this brute-force
search inherently loses the possibility of achieving preprocessing verification.

We conclude observing that, by considering an instantiation of intFC obtain
by applying the transformation of Section 4.2 to the FC of Section 3 we ob-
tain, for p = O(1) (p = O(log λ)), an FC for inner products (mod p) in which
openings have fixed size Oλ(1) and verification is Oλ(n) (Oλ(n log λ) resp.).

5.2 A variant of our FC for binary inner products mod p

In this section, we present another approach of our FC in 3 to treat binary
inner products mod p. That is, we let the prover computes g to the power of
L(y), R(y) for the verifier. The add-ons to the opening proof is the g to the
power of L(y), R(y) accompanied with an argument of knowledge showing that
the integer y encoded in these exponentiation is equivalent to yp modulo p.

Intuition Here we explain the initial idea of our argument of knowledge. For
simplicity, we first consider p to be a power of 2, in particular, p = 2ℓ. Then we
can express y = q2ℓ + yp with some quotient q and residue yp. Recall from fig. 2
that L(y) = 2κy and R(y) = 2(κ+

κ
n )y. Here we are ready to describe the hints.

The prover should send QL = g2
κq

, QR = g2
(κ+ κ

n
)q

and also QL,j = g2
κq2j

and QR,j = g2
(κ+ κ

n
)q2j

for j = 1, . . . , ℓ to the verifier.
She also uses a Proof of Square Exponent PoSE for each consecutive pair

QL,j , QL,j+1, to show that each pair is of the form gx, gx
2

for the known base g
and some x. Similarly, she also needs to prove this relation for each consecutive
pair QR,j , QR,j+1

At the end, the verifier checks the validity of the PoSE’s and also checks that
Q2κyp

L,ℓ = gL(y) and Q2(κ+ κ
n

)yp

R,ℓ = gR(y).

However, the modulo p could be known before gL(y) and gR(y) are fixed. In
order to turn this idea into an argument of knowledge, we let the verifer send
another prime modulo e as a challenge. Moreover, to treat generalized modulo p
that are not powers of 2, we merge the construction with a square-and-multiply
algorithm.

PoKEEM. The proof of knowledge of exponent of exponent modulo p (PoKEEM)
is for the following relation

LPoKEEM =
{
(Y, a, p, xp;x) ∈ G× Z : Y = ga

x

, x = xp mod p
}

parametrized by a group G ←$ Ggen(λ) and a group element g ←$ G. The
protocol is in Figure 4.
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Setup(λ) : G←$ Ggen(λ), g ←$ G, set crs := (G, g).

V→ P: Sends e←$ Primes(λ)
Denote the binary representation ep = bs · · · b1 and ei = ⌊e/2s−i⌋;
P→ V: Computes q = ⌊x/e⌋, r = x mod ep and sets Qi = ga

eiq

for each i ∈ [1, s] and Q′
i = ga

2eiq for each i ∈ [1, s − 1]. For each
i ∈ [1, s − 1], computes π

(i)
PoSE = PoSE.P(crs, (Qi, Q

′
i), a

eiq) and π
(i)
PoDDH =

PoDDH.P(crs, (Qi, Q
′
i, Qi+1), (a

eiq, a2eiq)) if bi+1 = 1 or π(i)
PoDDH = (Qi+1 = Q′

i)
if bi+1 = 0.
Sends Λ := (Q,Q′,π, r) for Q = (Q1, . . . , Qs),Q

′ = (Q′
1, . . . , Qs−1),π =

(π
(i)
PoSE)

s−1
i=1 and π′ = (π

(i)
PoDDH)

s−1
i=1 .

V(crs, Y, ℓ, Λ): Outputs 1 iff r ∈ [ep], xp = r mod p, Qs
ar

= Y and all the proofs
π,π′ verify.

Fig. 4: The succinct argument of knowledge of exponent (PoKEEM) protocol.

Theorem 4. The protocol PoKEEM is an argument of knowledge for the lan-
guage LPoKEEM.

Proof. (Sketch) The proof starts from running the extractor for every proof π(i)
PoSE

and π
(i)
PoSE in π, pi′ to obtain a list of witnesses. These witnesses are the zi’s and

z′i’s such that gzi = Qi and gz
′
i = Q′

i. The subsequent argument is to show
that these exponent values are consistent (i.e. we should not extract two distinct
values for some zi coming from different proofs). This holds indeed, otherwise
we find some low-order relation gc = 1 for c is the difference of the two values.
In particular, zs = epz1.

Now, simplifying the notation z = z1, we want to show that z is of the form ax

for some integer x. Rewinding the protocol for another challenge e′, we obtain
another response r′ and extracted value z′ such that Y = gz

epar

= gz
e′par′

.
We argue that zepar = z′e

′par
′
, otherwise we find a low-order relation. Now

we represent z = dac and z′ = d′ac
′

such that d, d′ ∤ a. Therefore, we have
depacep−c′e′p+r−r′ = d′e

′p. W.l.o.g we may assume that t = cep − c′e′p + r − r′

is positive, and the relation depat = d′e
′p is over N. By some number-theoretical

arguments together with an observation that d, d′ are chosen before e, e′ are
sampled and also (e, e′) = 1 with overwhelming probability, we derive that t = 0

and d = d′ = 1. In other words, z = ac and Y = ga
cep+yp

.

Our variant We are ready to describe our FC for binary inner products mod p
more precisely. We only describe the differences with the scheme of Section 3.

In the Open algorithm, the prover additionally includes the values gL(y), gR(y)

in the opening proof Λ. She also plugs the PoKEEM proof, computed for a = 2κ

and a = 2(κ+
κ
n ), in order to prove that the exponents of exponents in gL(y) and

gR(y) are congruent to yp, respectively.
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In the Ver algorithm, in order to verify an output yp, the verifier first runs
the verification of Section 3 with the difference that it checks the range proof by
using the values gL(y), gR(y) included in Λ. Next, the verifier checks the validity
of the PoKEEM proof for elements gL(y), gR(y) and exponent yp.

Security We state the theorem below to fulfill the security of our FC variant
over Zp.

Theorem 5. If protocol PoKEEM is an argument of knowledge for LPoKEEM and
our binary functional vector commitment is functional binding, then our variant
of binary functional vector commitment over Zp is functional binding.

The proof directly comes from the extraction of an integer y congruent to
yp modulo p from gL(y), gR(y) and an observation that the existence two valid
opening modulo p immediately implies the existence of two opening over integer.

Efficiency This modification adds up the opening size for binary inner products
an Oλ(log p+ λ) complexity. It also takes time Oλ(log p+ λ) + tVer(n) to verify,
where tVer(n) is the verification time of intFC.

Considering an instantiation of intFC deriving from applying the transforma-
tion of Section 4.2 to the FC of Section 3 we then, for p = O(1), obtain an FC
for inner products modulo p in which openings are of size Oλ(1) and verification
is in time Oλ(1) with preprocessing.

Acknowledgements We would like to thank Chaya Ganesh for useful com-
ments and for pointing out the computational complexity of the square decom-
position algorithm that affects the prover time of our construction.

The second and third authors received funding from the European Research
Council (ERC) under the European Union’s Horizon 2020 research and inno-
vation program under project PICOCRYPT (grant agreement No. 101001283),
by the Spanish Government under projects SCUM (ref. RTI2018-102043-B-I00)
and RED2018-102321-T, and by the Madrid Regional Government under project
BLOQUES (ref. S2018/TCS-4339). This work is also supported by a research
grant (ref. PL-RGP1-2021-051) from Protocol Labs.

References

AGL+22. Arasu Arun, Chaya Ganesh, Satya Lokam, Tushar Mopuri, and Sriram
Sridhar. Dew: Transparent constant-sized zksnarks. Cryptology ePrint
Archive, Report 2022/419, 2022.

AHIV17. Scott Ames, Carmit Hazay, Yuval Ishai, and Muthuramakrishnan Venkita-
subramaniam. Ligero: Lightweight sublinear arguments without a trusted
setup. In Bhavani M. Thuraisingham, David Evans, Tal Malkin, and
Dongyan Xu, editors, ACM CCS 2017, pages 2087–2104. ACM Press, Oc-
tober / November 2017.

29



BBB+18. Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter
Wuille, and Greg Maxwell. Bulletproofs: Short proofs for confidential trans-
actions and more. In 2018 IEEE Symposium on Security and Privacy, pages
315–334. IEEE Computer Society Press, May 2018.

BBF18. Dan Boneh, Benedikt Bünz, and Ben Fisch. A survey of two verifiable delay
functions. Cryptology ePrint Archive, Report 2018/712, 2018.

BBF19. Dan Boneh, Benedikt Bünz, and Ben Fisch. Batching techniques for accu-
mulators with applications to IOPs and stateless blockchains. In Alexandra
Boldyreva and Daniele Micciancio, editors, CRYPTO 2019, Part I, volume
11692 of LNCS, pages 561–586. Springer, Heidelberg, August 2019.

BBHR19. Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. Scalable
zero knowledge with no trusted setup. In Alexandra Boldyreva and Daniele
Micciancio, editors, CRYPTO 2019, Part III, volume 11694 of LNCS, pages
701–732. Springer, Heidelberg, August 2019.

BCC+16. Jonathan Bootle, Andrea Cerulli, Pyrros Chaidos, Jens Groth, and
Christophe Petit. Efficient zero-knowledge arguments for arithmetic circuits
in the discrete log setting. In Marc Fischlin and Jean-Sébastien Coron, ed-
itors, EUROCRYPT 2016, Part II, volume 9666 of LNCS, pages 327–357.
Springer, Heidelberg, May 2016.

BCR+19. Eli Ben-Sasson, Alessandro Chiesa, Michael Riabzev, Nicholas Spooner,
Madars Virza, and Nicholas P. Ward. Aurora: Transparent succinct ar-
guments for R1CS. In Yuval Ishai and Vincent Rijmen, editors, EURO-
CRYPT 2019, Part I, volume 11476 of LNCS, pages 103–128. Springer,
Heidelberg, May 2019.

Bd94. Josh Cohen Benaloh and Michael de Mare. One-way accumulators: A
decentralized alternative to digital sinatures (extended abstract). In Tor
Helleseth, editor, EUROCRYPT’93, volume 765 of LNCS, pages 274–285.
Springer, Heidelberg, May 1994.

BFS20. Benedikt Bünz, Ben Fisch, and Alan Szepieniec. Transparent SNARKs
from DARK compilers. In Anne Canteaut and Yuval Ishai, editors, EU-
ROCRYPT 2020, Part I, volume 12105 of LNCS, pages 677–706. Springer,
Heidelberg, May 2020.

BH01. Johannes Buchmann and Safuat Hamdy. A survey on {IQ} cryptography,
2001.

BJS10. Jean-François Biasse, Michael J. Jacobson, and Alan K. Silvester. Security
estimates for quadratic field based cryptosystems. In Ron Steinfeld and
Philip Hawkes, editors, ACISP 10, volume 6168 of LNCS, pages 233–247.
Springer, Heidelberg, July 2010.

BP97. Niko Bari and Birgit Pfitzmann. Collision-free accumulators and fail-stop
signature schemes without trees. In Walter Fumy, editor, EUROCRYPT’97,
volume 1233 of LNCS, pages 480–494. Springer, Heidelberg, May 1997.

BS96. Wieb Bosma and Peter Stevenhagen. On the computation of quadratic 2-
class groups. Journal de théorie des nombres de Bordeaux, 8(2):283–313,
1996.

CF13. Dario Catalano and Dario Fiore. Vector commitments and their applica-
tions. In Kaoru Kurosawa and Goichiro Hanaoka, editors, PKC 2013, vol-
ume 7778 of LNCS, pages 55–72. Springer, Heidelberg, February / March
2013.

CFG+20. Matteo Campanelli, Dario Fiore, Nicola Greco, Dimitris Kolonelos, and
Luca Nizzardo. Incrementally aggregatable vector commitments and appli-
cations to verifiable decentralized storage. In Shiho Moriai and Huaxiong

30



Wang, editors, ASIACRYPT 2020, Part II, volume 12492 of LNCS, pages
3–35. Springer, Heidelberg, December 2020.

CMS99. Christian Cachin, Silvio Micali, and Markus Stadler. Computationally pri-
vate information retrieval with polylogarithmic communication. In Jacques
Stern, editor, EUROCRYPT’99, volume 1592 of LNCS, pages 402–414.
Springer, Heidelberg, May 1999.

COS20. Alessandro Chiesa, Dev Ojha, and Nicholas Spooner. Fractal: Post-quantum
and transparent recursive proofs from holography. In Anne Canteaut and
Yuval Ishai, editors, EUROCRYPT 2020, Part I, volume 12105 of LNCS,
pages 769–793. Springer, Heidelberg, May 2020.

CS99. Ronald Cramer and Victor Shoup. Signature schemes based on the strong
RSA assumption. In Juzar Motiwalla and Gene Tsudik, editors, ACM CCS
99, pages 46–51. ACM Press, November 1999.

DGS20. Samuel Dobson, Steven D Galbraith, and Benjamin Smith. Trustless
unknown-order groups. Cryptology ePrint Archive, 2020.

DK02. Ivan Damgård and Maciej Koprowski. Generic lower bounds for root extrac-
tion and signature schemes in general groups. In Lars R. Knudsen, editor,
EUROCRYPT 2002, volume 2332 of LNCS, pages 256–271. Springer, Hei-
delberg, April / May 2002.

FS87. Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions
to identification and signature problems. In Andrew M. Odlyzko, editor,
CRYPTO’86, volume 263 of LNCS, pages 186–194. Springer, Heidelberg,
August 1987.

GHR99. Rosario Gennaro, Shai Halevi, and Tal Rabin. Secure hash-and-sign sig-
natures without the random oracle. In Jacques Stern, editor, EURO-
CRYPT’99, volume 1592 of LNCS, pages 123–139. Springer, Heidelberg,
May 1999.

GKM+18. Jens Groth, Markulf Kohlweiss, Mary Maller, Sarah Meiklejohn, and Ian
Miers. Updatable and universal common reference strings with applica-
tions to zk-SNARKs. In Hovav Shacham and Alexandra Boldyreva, editors,
CRYPTO 2018, Part III, volume 10993 of LNCS, pages 698–728. Springer,
Heidelberg, August 2018.

Gro05. Jens Groth. Non-interactive zero-knowledge arguments for voting. In John
Ioannidis, Angelos Keromytis, and Moti Yung, editors, ACNS 05, volume
3531 of LNCS, pages 467–482. Springer, Heidelberg, June 2005.

HM00. Safuat Hamdy and Bodo Möller. Security of cryptosystems based on class
groups of imaginary quadratic orders. In Tatsuaki Okamoto, editor, ASI-
ACRYPT 2000, volume 1976 of LNCS, pages 234–247. Springer, Heidelberg,
December 2000.

KZG10. Aniket Kate, Gregory M. Zaverucha, and Ian Goldberg. Constant-size com-
mitments to polynomials and their applications. In Masayuki Abe, editor,
ASIACRYPT 2010, volume 6477 of LNCS, pages 177–194. Springer, Hei-
delberg, December 2010.

Lip03. Helger Lipmaa. On diophantine complexity and statistical zero-knowledge
arguments. In Chi-Sung Laih, editor, ASIACRYPT 2003, volume 2894 of
LNCS, pages 398–415. Springer, Heidelberg, November / December 2003.

Lip12. Helger Lipmaa. Secure accumulators from euclidean rings without trusted
setup. In Feng Bao, Pierangela Samarati, and Jianying Zhou, editors, ACNS
12, volume 7341 of LNCS, pages 224–240. Springer, Heidelberg, June 2012.

31



LM19. Russell W. F. Lai and Giulio Malavolta. Subvector commitments with
application to succinct arguments. In Alexandra Boldyreva and Daniele
Micciancio, editors, CRYPTO 2019, Part I, volume 11692 of LNCS, pages
530–560. Springer, Heidelberg, August 2019.

LP20. Helger Lipmaa and Kateryna Pavlyk. Succinct functional commitment for
a large class of arithmetic circuits. In Shiho Moriai and Huaxiong Wang,
editors, ASIACRYPT 2020, Part III, volume 12493 of LNCS, pages 686–
716. Springer, Heidelberg, December 2020.

LRY16. Benoît Libert, Somindu C. Ramanna, and Moti Yung. Functional com-
mitment schemes: From polynomial commitments to pairing-based accu-
mulators from simple assumptions. In Ioannis Chatzigiannakis, Michael
Mitzenmacher, Yuval Rabani, and Davide Sangiorgi, editors, ICALP 2016,
volume 55 of LIPIcs, pages 30:1–30:14. Schloss Dagstuhl, July 2016.

LY10. Benoît Libert and Moti Yung. Concise mercurial vector commitments and
independent zero-knowledge sets with short proofs. In Daniele Micciancio,
editor, TCC 2010, volume 5978 of LNCS, pages 499–517. Springer, Heidel-
berg, February 2010.

Mic94. Silvio Micali. CS proofs (extended abstracts). In 35th FOCS, pages 436–
453. IEEE Computer Society Press, November 1994.

PPS21. Chris Peikert, Zachary Pepin, and Chad Sharp. Vector and functional com-
mitments from lattices. In Theory of Cryptography Conference, pages 480–
511. Springer, 2021.

PT18. Paul Pollack and Enrique Treviño. Finding the four squares in lagrange’s
theorem. Integers, 18A:A15, 2018.

Set20. Srinath Setty. Spartan: Efficient and general-purpose zkSNARKs with-
out trusted setup. In Daniele Micciancio and Thomas Ristenpart, editors,
CRYPTO 2020, Part III, volume 12172 of LNCS, pages 704–737. Springer,
Heidelberg, August 2020.

SL20. Srinath Setty and Jonathan Lee. Quarks: Quadruple-efficient transparent
zkSNARKs. Cryptology ePrint Archive, Report 2020/1275, 2020.

Wes18. Benjamin Wesolowski. Efficient verifiable delay functions. Cryptology
ePrint Archive, Report 2018/623, 2018. https://eprint.iacr.org/2018/
623.

Wes19. Benjamin Wesolowski. Efficient verifiable delay functions. In Yuval Ishai
and Vincent Rijmen, editors, EUROCRYPT 2019, Part III, volume 11478
of LNCS, pages 379–407. Springer, Heidelberg, May 2019.

WTs+18. Riad S. Wahby, Ioanna Tzialla, abhi shelat, Justin Thaler, and Michael
Walfish. Doubly-efficient zkSNARKs without trusted setup. In 2018 IEEE
Symposium on Security and Privacy, pages 926–943. IEEE Computer Soci-
ety Press, May 2018.

ZXZS20. Jiaheng Zhang, Tiancheng Xie, Yupeng Zhang, and Dawn Song. Trans-
parent polynomial delegation and its applications to zero knowledge proof.
In 2020 IEEE Symposium on Security and Privacy, pages 859–876. IEEE
Computer Society Press, May 2020.

A Argument of Knowledge Protocols

Protocol PoE: On top of the succinct arguments of knowledge described in Sec-
tion 2.3, to optimize our constructions’ verification time we can utilize the PoE

32

https://eprint.iacr.org/2018/623
https://eprint.iacr.org/2018/623


protocol, introduced by Wesolowski [Wes19] for exponents of the form 2T and
generalized by [BBF19] for arbitrary exponents. That is a sound argument for
the relation:

LPoE =
{(

Y, u, x ∈ G2 × Z;∅
)
: Y = ux

}

Setup(λ) : G←$ Ggen(λ), g ←$ G, set crs := (G, g).

V→ P: Sends ℓ←$ Primes(λ)

P→ V: Computes q = ⌊x/ℓ⌋ and sets Q = uq. Sends π := Q.
V(crs, Y, ℓ, π): Computes r = x mod ℓ and outputs 1 iff Qℓur = Y .

Fig. 5: The succinct sound argument (PoE).

PoE is a sound argument system under the adaptive root assumption for
Ggen and it is not knowledge sound, since there is no witness. The verifier knows
the exponent x. It is used for to improve verification: the verifier performs an
O(λ) group exponentiation and O(∥x∥) integer operations, instead of an O(∥x∥)
group exponentiation. Although asymptotically this is the same, concretely it
gives a significant improvement, since integer operations are much more efficient.
Furthermore, its size is 1 group element independently of the size of x.

The proof of knowledge of exponent.

LPoKE =
{
(Y, u;x) ∈ G2 × Z : Y = ux

}

Setup(λ) : G←$ Ggen(λ), g ←$ G, set crs := (G, g).

P→ V: Sends z = gx

V→ P: Sends ℓ←$ Primes(λ)

P→ V: Computes q = ⌊x/ℓ⌋, r = x mod ℓ and sets Q = uq, Q′ = gq. Sends
π := (Q,Q′, r).
V(crs, Y, ℓ, π): Outputs 1 iff r ∈ [ℓ], Qℓur = Y and Q′ℓgr = z.

Fig. 6: The succinct argument of knowledge of exponent (PoKE) protocol.

Remark 4. The above protocol is for arbitrary bases u, adversarially chosen. As
noted in [BBF19] the protocol gets simpler in case the base is trusted, generated
in the setup phase (i.e. u = g and Y = gx). In particular, z shall not be sent
(since it’s the statement, z = Y ) and the proof is 1 group element less.
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The proof of Diffie-Hellman tuple.

LPoDDH =
{
(Y0, Y1, Y ;x0, x1) ∈ G3 × Z2 : gx0

0 = Y0 ∧ gx1
1 = Y1 ∧ gx0x1 = Y

}

Setup(λ) : G←$ Ggen(λ), g, g0, g1 ←$ G, set crs := (G, g).

V→ P: Sends ℓ←$ Primes(λ)

P→ V: Computes q = ⌊x0x1/ℓ⌋, q0 = ⌊x0/ℓ⌋, q1 = ⌊x1/ℓ⌋, r0 = x0

mod ℓ, r1 = x1 mod ℓ and sets Q = gq, Q0 = gq00 , Q1 = gq11 . Sends
π := (Q,Q0, Q1, r0, r1).
V(crs, Y, ℓ, π): Computes r = r0r1 mod ℓ. Outputs 1 iff Qℓgr = Y and Qℓ

0g
r0 =

Y0 and Qℓ
1g

r1
1 = Y1.

Fig. 7: The succinct argument of knowledge of Diffie-Hellman tuple (PoDDH),
under different bases g, g0, g1.

The succinct proof of square exponent.

LPoSE =
{
(Zi;xi) ∈ G× Z : gx

2
i = Zi

}
.

Setup(λ) : G←$ Ggen(λ), g ←$ G, set crs := (G, g).

P→ V: Sends zi = gxi

V→ P: Sends ℓ←$ Primes(λ)

P→ V: Computes q = ⌊xi/ℓ⌋, r = xi mod ℓ and sets Q = zqi , Q
′ = gq. Sends

π := (Q,Q′, r).
V(crs, Y, ℓ, π): Outputs 1 iff r ∈ [ℓ], Qℓzri = Zi and Q′ℓgr = zi.

Fig. 8: The succinct argument of knowledge of square exponent (PoSE).

The succinct range proof protocol

LPoRE =
{
(Y,L,R;x) ∈ G× Z3 : L < x < R ∧ gx = Y

}
.
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Setup(λ) : G←$ Ggen(λ), g, g0, g1 ←$ G, set crs := (G, g).

P→ V: Computes:
– Y ′ = g(x−L)(R−x)

– For i = 1, 2, 3: Zxi = g
x2
i

1 , zxi = gxi
1

Sends (Y ′, {Zxi
, zxi
}3i=1)

V→ P: Sends ℓ←$ Primes(λ)

P→ V: Computes:
– q = ⌊x/ℓ⌋, Qb = gq, r = x mod ℓ.
– For i = 1, 2, 3: qxi

= ⌊xi/ℓ⌋, Qxi
= z

qxi
i , Q′

xi
= g

qxi
i , rxi

mod ℓ

– qL = ⌊(x− L)/ℓ⌋, QL = gqL1 , rL = (x− L) mod ℓ

– qR = ⌊(R− x)/ℓ⌋, QR = gqR1 , rR = (R− x) mod ℓ

– qLR = ⌊(x− L) · (R− x)/ℓ⌋, QLR = gqLR

1 , rLR = (x− L) · (R− x) mod ℓ
Sends π :=

(
Q, r, {Qxi

, Q′
xi
, rxi
}3i=1, QL, rL, QR, rR, QLR

)
.

V(crs, Y, ℓ, π): Outputs 1 iff:
– Qℓgr = Y

– Q′ℓ
xi
grxi = zi, Qℓ

xi
z
rxi
xi = Zxi

, for i = 1, 2, 3

– Qℓ
Lg

rL = Y · g−L, Qℓ
Rg

rR = gR · Y −1, Qℓ
LRg

rLR = Y ′

– Y ′4 · g =
∏3

i=1 Zi

where r = r0r1 mod ℓ and rLR = rLrR mod ℓ.

Fig. 9: The succinct Argument of Knowledge of range of an exponent.
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